TD7 : Stockage et systèmes de fichiers

1 Chemins relatifs, chemins absolus

Exercice 1 La commande ls DIRNAME affiche le contenu du dossier DIRNAME. Avec l'option -R, elle parcourt égalment tous les sous-dossiers, récursivement, et affiche leur contenu, comme illustré dans l'exemple ci-dessous.

```
% ls -R .
bidule blo machin trac
./bidule:
bla bli truc
./bidule/bli:
truc
./bidule/truc:
chose
./machin:
blu chouette
./machin/blu:
truc
./machin/blu/truc:
./machin/chouette:
bla truc
./machin/chouette/truc:
./trac:
bla bli truc
./trac/bli:
truc
./trac/truc:
chose
```

- Dans notre exemple, combien y a-t-il de répertoires? Combien de fichiers?
- Dessinez un schéma représentant cette hiérarchie, en distinguant les fichiers et les répertoires.
- Proposez une séquence de commandes shell recréant une arborescence identique.
 Utilisez mkdir PATH pour créer les répertoires, et touch PATH pour les fichiers.
- Même question, mais en interdisant les arguments contenant un slash, par exemple path/to/some/file. Utilisez plutôt la commande cd pour vous déplacer.

2 Gestion de l'espace

Pour les calculs en binaire, aidez vous du tableau page suivante.

Exercice 2 On s'intéresse à un disque dur d'une capacité de 4 Tio. Combien faut-il de bits pour encoder un numéro de secteur? On suppose que la taille d'un secteur est 512 octets.

Exercice 3 On cherche à formatter en FAT une clé USB de 4Gio.

- Si on choisit une taille de bloc de 4kio (8 secteurs), combien de bits sont nécessaires pour encoder un numéro de bloc?
- On suppose que la FAT est implémentée comme un tableau (contigu) de numéros de blocs, où chaque numéro est stocké sur un nombre entier d'octets. Quel taille occupera la FAT elle-même?

Exercice 4 On s'intéresse à un système de fichiers unix (indexé multi-niveau) avec une taille de bloc de 2 kio et des *inodes* aux caractéristiques suivantes :

- les 12 premiers champs (numérotés 0 à 11) pointent sur des blocs de données.
- le champ nº 12 pointe vers un bloc indirect contenant 256 pointeurs vers des blocs de données.
- le champ nº 13 pointe vers un *bloc double-indirect*, avec 256 pointeurs vers des blocs indirects.
- le champ n° 14 pointe vers un *bloc triple-indirect*, avec 256 pointeurs vers des double-indirects.

Questions:

- Soit un fichier de 4500 octets. Combien de blocs occupe-t-il?
- Même question pour un fichier de 567000 octets : combien de blocs sont nécessaires pour représenter ce fichier, en incluant les blocs d'indirection?
- Quelle est la taille maximum d'un fichier sur ce système? répondez en kio/Mio/Gio/etc, la valeur numérique exacte n'est pas intéressante.

Annexe: aide pour les calculs en binaire

Les premiers nombres entiers, notés en décimal, hexadécimal, et binaire :

Dec	Hex	Bin
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100

Dec	Hex	Bin
5	5	101
6	6	110
7	7	111
8	8	1000
9	9	1001

Dec	Hex	Bin
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	Е	1110

Dec	Hex	Bin
15	F	1111
16	10	10000
17	11	10001
18	12	10010
19	13	10011

Les premières puissances de 2, notées en décimal :

a premierea p	4.004000 40	_,	on acc	,a								
$2^0 = 1$	2 ¹⁶ =	65 536 2	2 ³² =	4 2	294 967	296	$2^{48} =$		281 4	74 976	710	656
$2^1 = 2$	$2^{17} = 1$	31 072 2	$2^{33} =$	8 5	89 934	592	$2^{49} =$		562 94	49 <mark>95</mark> 3	421	312
$2^2 = 4$	$2^{18} = 2$	262 144 2	$2^{34} =$	17 1	79 869	184	$2^{50} =$	1	125 89	99 906	842	624
$2^3 = 8$	$2^{19} = 5$	524 288 2	$2^{35} =$	34 3	359 738	368	$2^{51} =$	2	251 79	99 813	685	248
$2^4 = 16$	$2^{20} = 10$)48 576 2	$2^{36} =$	68 7	19 476	736	2 ⁵² =	4	503 59	99 627	370	496
$2^5 = 32$	$2^{21} = 20$	97 152 2	$2^{37} =$	137 4	138 953	472	$2^{53} =$	9	007 19	99 254	740	992
$2^6 = 64$	$2^{22} = 41$	194 304 2	$2^{38} =$	274 8	377 906	944	$2^{54} =$	18	014 39	98 509	481	984
$2^7 = 128$	$2^{23} = 83$	888 608 2	2 ³⁹ =	549 7	755 813	888	$2^{55} =$	36	028 79	97 018	963	968
$2^8 = 256$	$2^{24} = 16.7$	777 216 2	$2^{40} =$	1 099 5	11 627	776	$2^{56} =$	72	057 59	94 037	927	936
$2^9 = 512$	$2^{25} = 33.5$	554 432 2	$2^{41} = 2^{41}$	2 199 0	23 255	552	$2^{57} =$	144	115 18	38 075	855	488
$2^{10} = 1024$	$2^{26} = 67.1$	08 864 2	$2^{42} = 4$	4 398 0)46 511	104	$2^{58} =$	288	230 3	76 151	711	744
$2^{11} = 2048$	$2^{27} = 134.2$	217 728 2	$2^{43} = 3$	8 796 C	93 022	208	2 ⁵⁹ =	576	460 7	52 303	423	488
$2^{12} = 4096$	$2^{28} = 2684$	135 456 2	$2^{44} = 1$	7 592 1	86 044	416	$2^{60} =$	1 152	921 50	04 606	846	976
$2^{13} = 8192$	$2^{29} = 536.8$	370 912 2	$2^{45} = 3$	5 184 3	372 088	832	$2^{61} =$	2 305	843 00	9 213	693	952
$2^{14} = 16384$	$2^{30} = 1\ 073\ 7$	741 824 2	$2^{46} = 70$	0 368 7	⁷ 44 177	664	$2^{62} =$	4 611	686 0 ⁻	18 427	387	904
$2^{15} = 32768$	$2^{31} = 2 147 4$	183 648 2	$2^{47} = 140$	0 737 4	188 355	328	$2^{63} =$	9 223	372 03	36 854	775	808
							$2^{64} =$	18 446	744 0	73 709	551	616

On rappelle également que :

- -1 kio = 1024 octets,
- -1 Mio = 1024 Kio,
- 1 Gio = 1024 Mio,
- -1 Tio = 1024 Gio,
- etc. (avec dans l'ordre : Pio, Eio, Zio, Yio)

En cas de doute sur ces unités, n'hésitez pas à demander des précisions.