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Summary

I. Introduction

II. First example : sorting algorithms

III. Bases of C++ syntax

IV. Second example: sorting with linked list

V. C++ Classes and UML

VI. Useful data structures

VII. Exercises/project

 Algorithms design and C++ 
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Sorting algorithms

 Definition of the sorting problem

Sort a sequence of numbers into non-decreasing 
order
 Input: sequence of n numbers {a1, a2, … an}

 Output: permutation (reordering) {a’1, a’2, … a’n} of the 
input sequence such as  a’1 ≤ a’2 ≤ … ≤ a’n. 

The input sequence is usually a n-element array

Numbers to be sorted are rarely isolated values
 Part of data collection called a record

 Each record contains a key, which is the value to be 
sorted

 The remainder of the record consists of satellite data
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Sorting algorithms

 Why sorting?

Many computer scientists consider sorting to be 
the most fundamental problem in the study of 
algorithms
 Easy to understand

 Inherent in many applications

 Used as subroutine 
 (graphical layered objects render, …)

 There is a wide variety of sorting algorithms
 Large set of techniques are used (memory, data structure, 

recurrence)

 Application of correctness and efficiency demonstrations
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List of sorting algorithms

 More than 20 good sorting algorithms
 Wikipedia  list of sorting algorithm

 Popular sorting algorithms

Bubble-Sort

 Insertion-Sort, Selection-Sort

Shell-Sort

Merge-Sort, Quick-Sort

Heapsort

Counting-Sort, BucketSort,

IntroSort



CS1 - Thomas Grenier 6

Bubble-Sort algorithm

 Method

 The algorithm works as follows:

 The algorithm starts at the beginning of the data set.

 It compares the first two elements, and if the first one is greater 

than the second one, it swaps them.

 It continues doing this for each pair of adjacent elements to the 

end of the data set.

 And then it starts again with the first two elements, repeating until 

no swaps have occurred on the last pass.

 Write the Bubble-Sort algorithm

 Show the correctness of the Bubble-Sort algorithm

 Give the time complexity (worst and best case) 
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Bubble-Sort algorithm, animation
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Bubble-Sort algorithm While

Correctness :

 the for inner loop improve the sorting sequence of A

The jth highest value of A moves to jth index at the jth execution of this for loop

The process ends when no permutation occurs : 

each A[i] is less or equal than A[i+1]

 Best case: already sorted array

Worst case: invert sorted array

Last element has to move to the first index 

)()( nOnT 

)()( 2nOnT 

 Memory: (defined later) )1()( OnM 
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Bubble-Sort algorithm, For

 Give the time complexity (worst and best case)

 Prove the correctness of the Bubblesort algorithm

 Another version of Bubblesort
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Insertion-Sort

)()( 2nOnT 

)1()( OnM 

 Time complexity

"Memory" denotes the amount of auxiliary storage needed beyond that used by the array itself

 Memory
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Insertion-Sort

 How this algorithm works
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Insertion-Sort, animation
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Selection-Sort algorithm

 Method

The algorithm works as follows:

 Find the minimum value in the array (index!)

 Swap it with the value in the first position 

 Repeat the steps above for remainder of the array 

(starting at the next position) 

Write the Selection-Sort algorithm

Give the time and memory complexities of this 

algorithm
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Selection-Sort algorithm, animation
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Not-In-Place Selection-Sort algorithm

 Give a sorting algorithm using 2 different 

arrays based on Selection-Sort algorithm

 Give the time complexity

 Give the memory complexity

 Compare these values to values of the In-

place version
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Merge-Sort algorithm, recursive

 Recursive algorithms

To solve a given problem, they call themselves 
recursively one or more times to deal with closely 
related subproblems

These algorithms typically follow a Divide and 
conquer approach
 Divide the problem into a number of subproblems

 Conquer the subproblems by solving them recursively. 
If the subproblem sizes are small enough, just solve the 
subproblems in a straightforward manner

 Combine the solutions of the subproblems into the 
solution of the original problem
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Merge-Sort algorithm, recursive

 For Merge-Sort

Divide the n-element sequence to be sorted into 

two subsequences of n/2 elements

Conquer: Sort the two subsequences recursively 

using Merge-Sort

Combine: Merge the two sorted subsequences to 

produce the sorted answer

Write the Merge(A,p,q,r) algorithm which merges 

two sorted sequences (A[p..q] and A[q+1..r]). 
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Merge-Sort algorithm, animation
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Merge-Sort algorithm, recursive

 Write the Merge(A,p,q,r) algorithm which 

merges two sorted subarrays (A[p..q] and 

A[q+1..r]),and then forms a single sorted 

subarray that replaces the current subarray 

(A[p..r])

Hints : create 2 subarrays
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…
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Merge-Sort algorithm, recursive

 Write the Merge-Sort(A,p,r) algorithm which 

sort recursively the array A[p..r]

If p ≥ r the subarray contains at most one element 

and then it is already sorted

Otherwise, the divide step computes an index q 

that partition A[p..r] into 2 subarrays

A[p..q] containing               elements         

A[q+1..r] containing            elements          2/n

 2/n
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Merge-Sort algorithm, recursive

 Running time analysis

 Intuitively 
 Merge procedure takes O(n)

 Merge-Sort procedure calls Merge procedure log2(n) times

 Merge-Sort algorithms running time is O(n.log2(n))

Master theorem approach










otherwise)()()/(

if)1(
)(

nDnCbnaT

cn
nT

Combine time

Divide time
Number of subproblems

Subproblems depending value

Straightforward solution
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Merge-Sort algorithm, recursive

 Master theorem










otherwise)()()/(

if)1(
)(

nDnCbnaT

cn
nT
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Merge-Sort algorithm, recursive

 Master theorem applied to Merge-Sort










1 if)1()()2/(2

1if)1(
)(

nnnT

n
nT










1 if.)2/(2

1if
)(

nncnT

nc
nT

The constant c represents the time required to solve problems of size 1 as 

well as the time per array element of the divide and combine steps 

))(log()(.)()( 2

)2(log2 nnnTncnn 

thus

then
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Merge-Sort algorithm, recursive

 Memory needed by the Merge-Sort algorithm?

The A array (normal…)

At the last step the summed size of subarrays is n

 M(n)=O(n) 
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Quicksort

 Method
Quicksort sorts by using a divide and conquer strategy to 

divide an array into two sub-arrays

 The steps are:
 Pick an element, called a pivot, from the array 

 Reorder the array so that all elements which are smaller than the 
pivot come before the pivot and so that all elements greater than 
the pivot come after it (equal values can go whatever the way). 
After this partitioning, the pivot is in its final position. This is called 
the partition operation. 

 Recursively sort the sub-array of smaller elements and the sub-list 
of greater elements

 The base cases of the recursion are either array of size 
zero or of size one, which are always sorted
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Quicksort, animation
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Quicksort

 Write the quicksort algorithm

 Compare time complexity of quicksort with 

merge-sort

 Compare memory used by quicksort to 

memory used by merge-sort
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Quicksort algorithm

Partition procedure

pivot
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Sorting in O(n)

 Game…

Students vs. teacher


