
Computer Science 1

Sorting Problems

Thomas Grenier

CS1 - Thomas Grenier 2

Summary

I. Introduction

II. First example : sorting algorithms

III. Bases of C++ syntax

IV. Second example: sorting with linked list

V. C++ Classes and UML

VI. Useful data structures

VII. Exercises/project

 Algorithms design and C++

CS1 - Thomas Grenier 3

Sorting algorithms

 Definition of the sorting problem

Sort a sequence of numbers into non-decreasing
order
 Input: sequence of n numbers {a1, a2, … an}

 Output: permutation (reordering) {a’1, a’2, … a’n} of the
input sequence such as a’1 ≤ a’2 ≤ … ≤ a’n.

The input sequence is usually a n-element array

Numbers to be sorted are rarely isolated values
 Part of data collection called a record

 Each record contains a key, which is the value to be
sorted

 The remainder of the record consists of satellite data

CS1 - Thomas Grenier 4

Sorting algorithms

 Why sorting?

Many computer scientists consider sorting to be
the most fundamental problem in the study of
algorithms
 Easy to understand

 Inherent in many applications

 Used as subroutine
 (graphical layered objects render, …)

 There is a wide variety of sorting algorithms
 Large set of techniques are used (memory, data structure,

recurrence)

 Application of correctness and efficiency demonstrations

CS1 - Thomas Grenier 5

List of sorting algorithms

 More than 20 good sorting algorithms
 Wikipedia  list of sorting algorithm

 Popular sorting algorithms

Bubble-Sort

 Insertion-Sort, Selection-Sort

Shell-Sort

Merge-Sort, Quick-Sort

Heapsort

Counting-Sort, BucketSort,

IntroSort

CS1 - Thomas Grenier 6

Bubble-Sort algorithm

 Method

 The algorithm works as follows:

 The algorithm starts at the beginning of the data set.

 It compares the first two elements, and if the first one is greater

than the second one, it swaps them.

 It continues doing this for each pair of adjacent elements to the

end of the data set.

 And then it starts again with the first two elements, repeating until

no swaps have occurred on the last pass.

 Write the Bubble-Sort algorithm

 Show the correctness of the Bubble-Sort algorithm

 Give the time complexity (worst and best case)

CS1 - Thomas Grenier 7

Bubble-Sort algorithm, animation

CS1 - Thomas Grenier 8

Bubble-Sort algorithm While

Correctness :

 the for inner loop improve the sorting sequence of A

The jth highest value of A moves to jth index at the jth execution of this for loop

The process ends when no permutation occurs :

each A[i] is less or equal than A[i+1]

 Best case: already sorted array

Worst case: invert sorted array

Last element has to move to the first index

)()(nOnT 

)()(2nOnT 

 Memory: (defined later))1()(OnM 

CS1 - Thomas Grenier 9

Bubble-Sort algorithm, For

 Give the time complexity (worst and best case)

 Prove the correctness of the Bubblesort algorithm

 Another version of Bubblesort

CS1 - Thomas Grenier 11

Insertion-Sort

)()(2nOnT 

)1()(OnM 

 Time complexity

"Memory" denotes the amount of auxiliary storage needed beyond that used by the array itself

 Memory

CS1 - Thomas Grenier 12

Insertion-Sort

 How this algorithm works

CS1 - Thomas Grenier 13

Insertion-Sort, animation

CS1 - Thomas Grenier 14

Selection-Sort algorithm

 Method

The algorithm works as follows:

 Find the minimum value in the array (index!)

 Swap it with the value in the first position

 Repeat the steps above for remainder of the array

(starting at the next position)

Write the Selection-Sort algorithm

Give the time and memory complexities of this

algorithm

CS1 - Thomas Grenier 15

Selection-Sort algorithm, animation

CS1 - Thomas Grenier 17

Not-In-Place Selection-Sort algorithm

 Give a sorting algorithm using 2 different

arrays based on Selection-Sort algorithm

 Give the time complexity

 Give the memory complexity

 Compare these values to values of the In-

place version

CS1 - Thomas Grenier 18

Merge-Sort algorithm, recursive

 Recursive algorithms

To solve a given problem, they call themselves
recursively one or more times to deal with closely
related subproblems

These algorithms typically follow a Divide and
conquer approach
 Divide the problem into a number of subproblems

 Conquer the subproblems by solving them recursively.
If the subproblem sizes are small enough, just solve the
subproblems in a straightforward manner

 Combine the solutions of the subproblems into the
solution of the original problem

CS1 - Thomas Grenier 19

Merge-Sort algorithm, recursive

 For Merge-Sort

Divide the n-element sequence to be sorted into

two subsequences of n/2 elements

Conquer: Sort the two subsequences recursively

using Merge-Sort

Combine: Merge the two sorted subsequences to

produce the sorted answer

Write the Merge(A,p,q,r) algorithm which merges

two sorted sequences (A[p..q] and A[q+1..r]).

CS1 - Thomas Grenier 20

Merge-Sort algorithm, animation

CS1 - Thomas Grenier 21

Merge-Sort algorithm, recursive

 Write the Merge(A,p,q,r) algorithm which

merges two sorted subarrays (A[p..q] and

A[q+1..r]),and then forms a single sorted

subarray that replaces the current subarray

(A[p..r])

Hints : create 2 subarrays

CS1 - Thomas Grenier 22

…

CS1 - Thomas Grenier 23

Merge-Sort algorithm, recursive

 Write the Merge-Sort(A,p,r) algorithm which

sort recursively the array A[p..r]

If p ≥ r the subarray contains at most one element

and then it is already sorted

Otherwise, the divide step computes an index q

that partition A[p..r] into 2 subarrays

A[p..q] containing elements

A[q+1..r] containing elements  2/n

 2/n

CS1 - Thomas Grenier 25

Merge-Sort algorithm, recursive

 Running time analysis

 Intuitively
 Merge procedure takes O(n)

 Merge-Sort procedure calls Merge procedure log2(n) times

 Merge-Sort algorithms running time is O(n.log2(n))

Master theorem approach










otherwise)()()/(

if)1(
)(

nDnCbnaT

cn
nT

Combine time

Divide time
Number of subproblems

Subproblems depending value

Straightforward solution

CS1 - Thomas Grenier 26

Merge-Sort algorithm, recursive

 Master theorem










otherwise)()()/(

if)1(
)(

nDnCbnaT

cn
nT

CS1 - Thomas Grenier 27

Merge-Sort algorithm, recursive

 Master theorem applied to Merge-Sort










1 if)1()()2/(2

1if)1(
)(

nnnT

n
nT










1 if.)2/(2

1if
)(

nncnT

nc
nT

The constant c represents the time required to solve problems of size 1 as

well as the time per array element of the divide and combine steps

))(log()(.)()(2

)2(log2 nnnTncnn 

thus

then

CS1 - Thomas Grenier 28

Merge-Sort algorithm, recursive

 Memory needed by the Merge-Sort algorithm?

The A array (normal…)

At the last step the summed size of subarrays is n

 M(n)=O(n)

CS1 - Thomas Grenier 29

Quicksort

 Method
Quicksort sorts by using a divide and conquer strategy to

divide an array into two sub-arrays

 The steps are:
 Pick an element, called a pivot, from the array

 Reorder the array so that all elements which are smaller than the
pivot come before the pivot and so that all elements greater than
the pivot come after it (equal values can go whatever the way).
After this partitioning, the pivot is in its final position. This is called
the partition operation.

 Recursively sort the sub-array of smaller elements and the sub-list
of greater elements

 The base cases of the recursion are either array of size
zero or of size one, which are always sorted

CS1 - Thomas Grenier 30

Quicksort, animation

CS1 - Thomas Grenier 31

Quicksort

 Write the quicksort algorithm

 Compare time complexity of quicksort with

merge-sort

 Compare memory used by quicksort to

memory used by merge-sort

CS1 - Thomas Grenier 32

Quicksort algorithm

Partition procedure

pivot

CS1 - Thomas Grenier 33

Sorting in O(n)

 Game…

Students vs. teacher

