Computer Science 1

Introduction

as Grenier

Summary

|. Introduction
Algorithms, complexity and programming

1.
1.
V.
V.
VI.
VII.

CS1 - Thomas Grenier

Introduction

1. Why studying algorithms ?
Definitions and interests of algorithms design
Pseudocode
Efficiency
Correctness

2. Why learning C++ ?
Languages history and future
Object programming language
C++

CS1 - Thomas Grenier

1.Why studying algorithms ?

Definitions and interests of algorithms design
Pseudocode

Efficiency

Correctness

CS1 - Thomas Grenier

1.a — Definitions and interests

m Algorithm

Any well-defined computational procedure that
takes some value, or set of values, as input and
produces some value, or set of values, as output

=» Tool for solving well-specified computational
problem

CS1 - Thomas Grenier

1.a — Definitions and interests

m Example

Sort a sequence of numbers into non-decreasing order
= Input: sequence of n numbers {a,, a,, ... a,}

= Output: permutation (reordering) {a’;, a@’, ... @’} of the input
sequence suchas a; <a,<...sa,.

m Exercise:

Give an algorithm that computes the average value of n
given numbers.

Give an algorithm that computes the median value of n
given numbers.

CS1 - Thomas Grenier

1.a — Definitions and interests

m Conclusions of the exercise

How to specify an algorithm?

s my algorithm correct ?

s my algorithm better than another one ?

What kind of problems are solved by algorithms?

By the way...is it really interesting to study
algorithms?

= Computers are faster and faster!

= Memory is cheaper and cheaper!

CS1 - Thomas Grenier

1.a — Definition and interests

How to specify an algorithms?

m Specifying an algorithm
Describe it in French or English or ...
As computer program
As hardware design

The only requirement is that the specification must provide
a precise description of the computational procedure to be
followed

But... How to convey the essence of the algorithm

> Concisely?
> Without issues of software engineering?

> We will use a dedicated language : pseudocode

CS1 - Thomas Grenier 8

1.a — Definitions and interests

Is my algorithm correct ?

m Correctness of an algorithm - definitions

An algorithm Is said correct if, for every input
Instance, it halts with the correct output

A correct algorithm solves the given
computational problem

m How to demonstrate an algorithm Is correct?

We often use a loop invariant (similar to
mathematical induction)

Sometimes difficult to use... (strange loop,
recurrence)

CS1 - Thomas Grenier 9

1.a — Definitions and interests

Is my algorithm better than another one ?

m Algorithm analysis
Meaning: “predicting the resources that the algorithm
requires”
= Memory, communication bandwidth, computational time, ...

=» By analyzing several algorithms for a problem, a most
efficient one can be easily identified
= \We generally focus on the computational time

The running time of an algorithm depends on the input
and the size of the input !

=>» Algorithms efficiency
> Worst case, best case, average case analysis
> Order of growth of the running time function of the input size

CS1 - Thomas Grenier 10

1.a — Definitions and interests

What kind of problems are solved by algorithms?

m Problems solved by algorithms

All ? theoretically right (but practically wrong cause of bounded
resources...)

=>» Use of approximate/convergent algorithms and “incorrect” (with
controlled error rate) algorithms

m Challenging problems are linked to

Optimization (minimization of a cost function f(x)): industrial,
logistic, mathematical problems

Manipulation of large numbers (related to input size):
DNA, chess, cosmology, cryptography, web search
engine...

Real time

CS1 - Thomas Grenier 11

1.a — Definitions and interests

Is it really interesting to study algorithms?

m Guess in few years... Computers were infinitely fast
and computer memory were free?
= Computational time is null, no space memory limit...

All right but:

= Does your process stop?
= With the correct output ?

=> You have to demonstrate it
m Inreal world ...
Computer are fast but not infinitely fast
Memory is cheap but not free
Energy?
Cost?
=» The most efficient algorithms is the best compromise

CS1 - Thomas Grenier 12

1.b — Pseudocode

How to specify an algorithm?

m Pseudocode to specify an algorithm
Example: compute the average of an array

AVERAGE(A)

1 > Initialize sum at the first value of A : A[l].

2 sum — A[l]

3 for j < 2 to length|A]

4 > Sum each value of A in sum : A[2..length|A]|.
5 do sum « sum + Alj]

6 return sum /length|A]

- Indentation
- Comment

CS1 - Thomas Grenier 13

1.b — Pseudocode

m Pseudocode conventions

Variables

Assignmentis : €
Local to the given procedure
Have the right type (described using mathematical notation)

Array elements are accessed by specifying the array name
followed by the index in brackets. The first array element is at
iIndex 1.

Compound data are typically organized into objects, which
are composed of attributes or fields. Objects and arrays are
treated as pointer.

Examples:
A[l] € A[2] * A[1]
size < length[A]

CS1 - Thomas Grenier 14

1.b — Pseudocode

m Pseudocode conventions

Tests: if-then, if-then-else
= Indentation indicates block structure!

Examples

SIMPLE-IF-THEN-TEST(a, b) SIMPLE-IF-THEN-ELSE-TEST(a, b)
I ifa>0 > Test if a is greater than b.

2 then I ifa>0b

3 temp —a 2 then return TRUE

4 a b 3 else return FALSE

5 b« temp

CS1 - Thomas Grenier

15

1.b — Pseudocode

m Pseudocode conventions

Loop : for, while, repeat-until (do-while)
= Indentation indicates block structure!

SIMPLE-FOR()

Examples 1 for i« 1to 10
2 do
3 print 7 number : 7 ¢
SIMPLE-WHILE()
1 7 — 1 SIMPLE-REPEAT()
2 while 7 < 10 1 71+1
3 do 2 repeat
4 print 7 number : 7 ¢ 3 print 7 number : 7 ¢
5) 1 <— 1+ 1 4 1 +— 1+ 1
5 until - > 10

CS1 - Thomas Grenier

1.b — Pseudocode

m Pseudocode conventions

Procedure parameters are passed by value!

Modification of a value parameter in procedure is not seen by
the calling procedure

Modification of an object field (or an array element) is seen by
the calling procedure (object are passed using pointer...)

Example

PARAMETERS-TO-PROCEDURE(A, b)

> the next assignment is not visible to the calling procedure
1 b1
> the next assignment is visible to the calling procedure

2 AM — 1

CS1 - Thomas Grenier 17

1.b — Pseudocode

m Pseudocode conventions

short circuiting of Boolean operators (‘and’, ‘or’ ...)

Evaluate the expression “x and y”: first evaluate x, and then
evaluate y to determine the whole expression only if X is
evaluated to True.

Evaluate the expression “x or y”: first evaluate x, and then
evaluate y only if x is evaluated to False.

Exam p|es SHORT-CIRCUITING(A, 7,)
> Cause of short circuiting we don’t worry about what happens
> when we try to evaluate A[i] when 7 is NIL or out of range

1 if i A NIL and A[i] =y

2 then

3

4 if @ < lenght[A] and Ali] =y
D then

6

CS1 - Thomas Grenier 18

1.c — Efficiency

m Example: 2 algorithms for a same problem

l.e. insertion and merge sort
Computational time of these algorithms depends on the input size n

= The first algorithm (insertion sort) takes time roughly equal to c,.n? to sort
n numbers
= The second algorithm (merge sort) takes time roughly equal to c,.n.log,(n)
to sort n numbers
Insertion sort runs on a fast computer A (1 billion instructions per
second) and is coded by the world’s craftiest programmer. Resulting
code requires 2n? instructions to sort n numbers

Merge sort runs on a slower computer B (ten million instructions per
second) and is coded by an average programmer using high level
language with inefficient compiler. Resulting code requires 50n.log(n)
Instructions to sort n numbers

Give the computational times of each algorithm if n = {1 000, 38 000,1
000 000}

CS1 - Thomas Grenier 19

1.c — Efficiency

m Example: 2 algorithms for a same problem

2n°instructio ns

m rA: : .
Compute 10%instructio ns / second
Computer B : 506n_ Iogz(n?lnstructlo ns
10 instructio ns / second
n 1000 38000 1 000000 | 10000000
A (in seconds) 0.002 2.888 2000 200000

B (in seconds) | 0.050 2.890 99.65 1163

CS1 - Thomas Grenier

20

1.c — Efficiency

m Example

Computational time in seconds

207
187
167
147
127

107

8
6
4
2
0

. 2 algorithms for a same problem

—— Computer A

—— Computer B

|

1.0

T y T y T y T
15 2.0 2.5 3.0

CS1 - Thomas

T T 1
3.5 4.0 4.5 5.0

Input size (N=10"x numbers)

Grenier

22

1.c — Efficiency

m Definition : Running time of an algorithm T(n)

On a particular input, that's the number of executed
primitive operations (or ‘steps’)

= Step should be defined as machine-independent as possible

= Particular input can be: best case, worst case or average case

For pseudocode

= a constant amount of time is required to execute each line of
pseudocode:

The execution of the it line takes time c;
= Running time of the algorithm is given by:

number of lines

T(n)= > c;.(number of times linei is executed)
=1

CS1 - Thomas Grenier 23

1.c — Efficiency

m Pseudocode example

AVERAGE(A)

1 > Initialize sum at the first value of A : A[1].

2 sum — A[l]

3 for j — 2 to length|A]

4 > Sum each value of A in sum : A[2..length|A]|.
5 do sum «— sum + Alj]

6 return sum / length[A]

T(n)=c,+nc,+(n-1).c. +C,
=n(C,+C;)+C, —C. +C;

CS1 - Thomas Grenier

times

24

1.c — Efficiency

m Order of growth

To simplify computational time analysis:
= All ¢, are equal to a constant time

—>T(n)=a.n+b
= Consider only the leading term of formula, since the
lower-order terms are relatively insignificant for large n

—T(n)=a.n
m Asymptotic notation
We asymptotically bound the function T(n)
= Asymptotic upper bound: O-notation — T (n)=0(n)
= Asymptotic upper and lower bounds: ©-notation

—>T (n) — @(ﬂ) Which is stronger than O(n)

CS1 - Thomas Grenier 25

1.c — Efficiency

m Two classical asymptotic notations

O pig-on O(N) e
cg(n) c28(n)
f(n)
f(n) -

n ' n
10

J(n) =0(gn))

"y = 0

O(g(n))=1{f(n):3c ,n, >00 < f(n)<cg(n),vn=n,}
®(g(n))={f(n):3c,,c,,n, >0[0<c,g(n)< f(n)<c,g(n), vn=n,}

CS1 - Thomas Grenier 26

1.c — Efficiency

m Exercise

Find the best-case and the worst-case running
time of Insertion-Sort > Let t be the number of times

the ‘while’ instruction is executed

Give the order of growth at iteration |

INSERTION-SORT(A)
1 for j <« 2 to length[A]

2

Tt = W

-~ OO

do key «— Alj]
1 — 7 —1
while i > 0 and A[i] > key
do Ali + 1] «— Al
1—1—1
Ali + 1] « key

CS1 - Thomas Grenier

27

1.d — Correctness

m \WWe often use Loop invariant to understand
why an algorithm gives the correct answer

In computer science, a predicate that, if true, will
remain true throughout a specific sequence of
operations, is called (an) invariant to that
sSeguence. (Wikipedia)

m Proof of correctness is trivial... or very hard
Average proof of correctness is trivial

Insertion-Sort proof of correctness is also trivial!

CS1 - Thomas Grenier 30

1.d — Correctness

m To use loop Invariant to prove correctness,
we must show three things about It:

Initialization: It is true prior the first iteration of
the loop

Maintenance: If it is true before an iteration of the
loop, it remains true before the next iteration

Termination: When the loop terminates, the
Invariant gives us a useful property that helps
show that the algorithm is correct

m The invariant must be correctly defined

CS1 - Thomas Grenier 31

1.d — Correctness

m Example Loop invariant for Insertion-Sort

=>» Invariant : the subarray A[1l..J-1] is sorted

Initialization: before the first iteration j=2.
= The subarray A[1] is sorted!

Maintenance:

= Problem of the inner while loop
use another loop invariant,

or simply note that the while loop moves A[j-1], A[j-2],...by one
position to the right until proper position for key is found

Termination:
= The outer ‘for’ loop ends when j>n, this occur when j=n+1
= Therefore n=j-1

= Thus the subarray A[1..j-1] consists of the elements originally in
A[1..n] but in sorted order

CS1 - Thomas Grenier

32

2.Why studying C++ ?

Languages history and future
Object programming language
C++ ?

CS1 - Thomas Grenier

33

2.a — Languages history and future

m When was the first program written ?

Ada Lovelace
1815-1852

CS1 - Thomas Grenier

34

" -

2.a — Languages history and future

52
~1843 1945

15t program
(Ada Lovelace)

Plankalkul
(Zuse)

A-0
(Grace Hopper)

Fortran

54 59

Cobol

64 72
67 75

83
85

SmallTalk

C

Dennis Ritchie

Simula67

95

BASIC
(Kemeny & Kurtz)

Altair BASIC

(B. Gates & P. Allen)

CS1 - Thomas Grenier

2005

Ct
Microsoft

Java

Sun Microsystems

C++

Bjarne Stroustrup

35

" -

2.a — Languages history and future

52 64 72 83
~1843 1945 54 59 67 75 85 95 2005

1st program Irst jobject oriented languages -
(Ada Lovelace) Cobol — _
Microsoft
SmallTalk
Plankalkdl ——
C :
(Zuse) Dennis Ritchie =700\, Java
e AN Sun Microsystems
(G AI-_IO) Simula67 >‘“‘ = C++

race Hopper S — :

Altair BASIC Bjarne Stroustrup
BASIC (B. Gates & P. Allen)

Fortran (Kemeny & Kurtz)

OOP: oriented-object programming

CS1 - Thomas Grenier 36

2.a — Languages history and future

= What kind of language for the future?
Based on object-oriented language or on new paradigms

Very high level language
= Hardware abstraction (like java)
= Data type abstraction (cf. python)
= Full object communication, reflection (ie. objectiveC, RUST)
= Intelligent operators (matlab)
Visual (3D) programming language
= Link objects and/or functions together (Access, Simulink)
= No syntax language for algorithms (LabView, Alice)

CS1 - Thomas Grenier

37

2.b — Object-oriented languages

® The most famous are C/C++, java, python

m Now new standards of each language include
object oriented capabillities
Cobol, Basic, matlab, fortran, Perl , PHP...
= In real-world

OOP can be used to translate from real-world
phenomena to program elements (and vice versa)

m Specify OO Program - Modeling
UML: Unified Modeling Language

CS1 - Thomas Grenier 38

2.b — Object oriented languages

m Fundamental paradigms (top 3)

Encapsulation
= fields and methods are merged into class
=» Object (or instance) is a pattern (exemplar) of class

Inheritance

= Subclasses are more specialized versions of a class,
which inherit attributes and behaviors from their parent
classes, and can introduce their own fields and
methods

Polymorphism

= Polymorphism allows the programmer to treat derived
class members just like their parent class' members

CS1 - Thomas Grenier 39

2.C — C++

m Characteristics of C++

Combination of both high and low level language
features

Statically typed
Object oriented language
Procedural programming

Data abstraction (or at least this possibility can be
offered...)

Generic programming (template)
Operators overloading

New standard is C++0x ... promising for the future

CS1 - Thomas Grenier 40

2.C — C++

m About the C++ syntax

Similar to C (useful for low level programming)

Similar to many languages (java, C#, Pascal,
matlab, python, RUST)

Not so far from pseudocode ©
= The first array element is at index O ...

CS1 - Thomas Grenier

41

