
Computer Science 1

Introduction

Thomas Grenier

CS1 - Thomas Grenier 2

Summary

I. Introduction

 Algorithms, complexity and programming

II. First example : sorting algorithms

III. Bases of C++ syntax

IV. Second example: sorting with linked list

V. C++ Classes and UML

VI. Useful data structures

VII. Exercises/project

 Algorithms design and C++

CS1 - Thomas Grenier 3

Introduction

1. Why studying algorithms ?

a) Definitions and interests of algorithms design

b) Pseudocode

c) Efficiency

d) Correctness

2. Why learning C++ ?

a) Languages history and future

b) Object programming language

c) C++

CS1 - Thomas Grenier 4

1.Why studying algorithms ?

a) Definitions and interests of algorithms design

b) Pseudocode

c) Efficiency

d) Correctness

CS1 - Thomas Grenier 5

1.a – Definitions and interests

 Algorithm

Any well-defined computational procedure that

takes some value, or set of values, as input and

produces some value, or set of values, as output

 Tool for solving well-specified computational

problem

CS1 - Thomas Grenier 6

1.a – Definitions and interests

 Example

 Sort a sequence of numbers into non-decreasing order

 Input: sequence of n numbers {a1, a2, … an}

 Output: permutation (reordering) {a’1, a’2, … a’n} of the input

sequence such as a’1 ≤ a’2 ≤ … ≤ a’n.

 Exercise:

Give an algorithm that computes the average value of n

given numbers.

Give an algorithm that computes the median value of n

given numbers.

CS1 - Thomas Grenier 7

1.a – Definitions and interests

 Conclusions of the exercise

How to specify an algorithm?

 Is my algorithm correct ?

 Is my algorithm better than another one ?

What kind of problems are solved by algorithms?

By the way…is it really interesting to study

algorithms?

 Computers are faster and faster!

 Memory is cheaper and cheaper!

CS1 - Thomas Grenier 8

 Specifying an algorithm

Describe it in French or English or …

As computer program

As hardware design

 …
The only requirement is that the specification must provide

a precise description of the computational procedure to be
followed

But… How to convey the essence of the algorithm
Concisely?

Without issues of software engineering?

We will use a dedicated language : pseudocode

How to specify an algorithms?
1.a – Definition and interests

CS1 - Thomas Grenier 9

 Correctness of an algorithm - definitions

An algorithm is said correct if, for every input

instance, it halts with the correct output

A correct algorithm solves the given

computational problem

 How to demonstrate an algorithm is correct?

We often use a loop invariant (similar to

mathematical induction)

Sometimes difficult to use… (strange loop,

recurrence)

Is my algorithm correct ?
1.a – Definitions and interests

CS1 - Thomas Grenier 10

1.a – Definitions and interests

 Algorithm analysis

Meaning: “predicting the resources that the algorithm

requires”

 Memory, communication bandwidth, computational time, …

 By analyzing several algorithms for a problem, a most

efficient one can be easily identified

 We generally focus on the computational time

 The running time of an algorithm depends on the input

and the size of the input !

 Algorithms efficiency

Worst case, best case, average case analysis

Order of growth of the running time function of the input size

Is my algorithm better than another one ?

CS1 - Thomas Grenier 11

1.a – Definitions and interests

 Problems solved by algorithms

 All ? theoretically right (but practically wrong cause of bounded

resources…)

 Use of approximate/convergent algorithms and “incorrect” (with

controlled error rate) algorithms

 Challenging problems are linked to

Optimization (minimization of a cost function f(x)): industrial,

logistic, mathematical problems

Manipulation of large numbers (related to input size):

DNA, chess, cosmology, cryptography, web search

engine…

 Real time

What kind of problems are solved by algorithms?

CS1 - Thomas Grenier 12

1.a – Definitions and interests

 Guess in few years… Computers were infinitely fast
and computer memory were free?

 Computational time is null, no space memory limit…

 All right but:
 Does your process stop?

 With the correct output ?

 You have to demonstrate it

 In real world …
 Computer are fast but not infinitely fast

Memory is cheap but not free

 Energy?

 Cost?

 The most efficient algorithms is the best compromise

Is it really interesting to study algorithms?

CS1 - Thomas Grenier 13

1.b – Pseudocode

 Pseudocode to specify an algorithm

Example: compute the average of an array

How to specify an algorithm?

 Indentation

 Comment

CS1 - Thomas Grenier 14

 Pseudocode conventions

Variables
 Assignment is : 

 Local to the given procedure

 Have the right type (described using mathematical notation)

 Array elements are accessed by specifying the array name
followed by the index in brackets. The first array element is at
index 1.

 Compound data are typically organized into objects, which
are composed of attributes or fields. Objects and arrays are
treated as pointer.

Examples:
A[1]  A[2] * A[1]

size  length[A]

1.b – Pseudocode

CS1 - Thomas Grenier 15

 Pseudocode conventions

Tests: if-then, if-then-else

 Indentation indicates block structure!

Examples

1.b – Pseudocode

CS1 - Thomas Grenier 16

 Pseudocode conventions

Loop : for, while, repeat-until (do-while)

 Indentation indicates block structure!

Examples

1.b – Pseudocode

CS1 - Thomas Grenier 17

 Pseudocode conventions

Procedure parameters are passed by value!
 Modification of a value parameter in procedure is not seen by

the calling procedure

 Modification of an object field (or an array element) is seen by

the calling procedure (object are passed using pointer…)

Example

1.b – Pseudocode

CS1 - Thomas Grenier 18

 Pseudocode conventions

short circuiting of Boolean operators (‘and’, ‘or’ …)

 Evaluate the expression “x and y”: first evaluate x, and then

evaluate y to determine the whole expression only if x is

evaluated to True.

 Evaluate the expression “x or y”: first evaluate x, and then

evaluate y only if x is evaluated to False.

Examples

1.b – Pseudocode

CS1 - Thomas Grenier 19

 Example: 2 algorithms for a same problem
 i.e. insertion and merge sort

 Computational time of these algorithms depends on the input size n

 The first algorithm (insertion sort) takes time roughly equal to c1.n
2 to sort

n numbers

 The second algorithm (merge sort) takes time roughly equal to c2.n.log2(n)
to sort n numbers

 Insertion sort runs on a fast computer A (1 billion instructions per
second) and is coded by the world’s craftiest programmer. Resulting
code requires 2n2 instructions to sort n numbers

 Merge sort runs on a slower computer B (ten million instructions per
second) and is coded by an average programmer using high level
language with inefficient compiler. Resulting code requires 50n.log(n)
instructions to sort n numbers

 Give the computational times of each algorithm if n = {1 000, 38 000,1
000 000}

1.c – Efficiency

CS1 - Thomas Grenier 20

 Example: 2 algorithms for a same problem

Computer A :

Computer B :

1.c – Efficiency

second/nsinstructio10

nsinstructio2
9

2n

second/nsinstructio10

nsinstructio)(log50
6

2 nn

n 1000 38000 1 000 000 10 000 000

A (in seconds) 0.002 2.888 2000 200000

B (in seconds) 0.050 2.890 99.65 1163

CS1 - Thomas Grenier 22

 Example: 2 algorithms for a same problem

1.c – Efficiency

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

2

4

6

8

10

12

14

16

18

20

Computer A

Computer B

C
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 i
n
 s

e
c
o
n
d
s

Input size (n=10^x numbers)

CS1 - Thomas Grenier 23

 Definition : Running time of an algorithm T(n)

On a particular input, that’s the number of executed

primitive operations (or ‘steps’)

 step should be defined as machine-independent as possible

 Particular input can be: best case, worst case or average case

 For pseudocode

 a constant amount of time is required to execute each line of

pseudocode:

 The execution of the ith line takes time ci

 Running time of the algorithm is given by:

1.c – Efficiency





linesofnumber

i

i executedisilinetimesofnumbercnT
1

).()(

CS1 - Thomas Grenier 24

1.c – Efficiency

 Pseudocode example
cost

0

c2

c3

0

c5

c6

times

1

1

n

n-1

n-1

1

6532).1(.)(ccncncnT 

65253)(cccccn 

CS1 - Thomas Grenier 25

 Order of growth

To simplify computational time analysis:
 All ci are equal to a constant time

 Consider only the leading term of formula, since the
lower-order terms are relatively insignificant for large n

 Asymptotic notation

We asymptotically bound the function T(n)

 Asymptotic upper bound: O-notation

 Asymptotic upper and lower bounds: Θ-notation

1.c – Efficiency

bnanT  .)(

nanT .)(

)()(nnT 

)()(nOnT 

Which is stronger than O(n)

CS1 - Thomas Grenier 26

 Two classical asymptotic notations

1.c – Efficiency

)(nO)(n“big-oh” “Theta”

         021021 ,00,,:)(nnngcnfngcnccnfng 

       00 ,00,:)(nnncgnfncnfngO 

CS1 - Thomas Grenier 27

 Exercise

Find the best-case and the worst-case running

time of Insertion-Sort

Give the order of growth

1.c – Efficiency

 Let tj be the number of times

the ‘while’ instruction is executed

at iteration j

CS1 - Thomas Grenier 30

 We often use Loop invariant to understand

why an algorithm gives the correct answer

 In computer science, a predicate that, if true, will

remain true throughout a specific sequence of

operations, is called (an) invariant to that

sequence. (Wikipedia)

 Proof of correctness is trivial… or very hard

Average proof of correctness is trivial

 Insertion-Sort proof of correctness is also trivial!

1.d – Correctness

CS1 - Thomas Grenier 31

 To use loop invariant to prove correctness,

we must show three things about it:

 Initialization: It is true prior the first iteration of

the loop

Maintenance: If it is true before an iteration of the

loop, it remains true before the next iteration

Termination: When the loop terminates, the

invariant gives us a useful property that helps

show that the algorithm is correct

 The invariant must be correctly defined

1.d – Correctness

CS1 - Thomas Grenier 32

 Example Loop invariant for Insertion-Sort
 Invariant : the subarray A[1..j-1] is sorted

 Initialization: before the first iteration j=2.
 The subarray A[1] is sorted!

Maintenance:
 Problem of the inner while loop

 use another loop invariant,

 or simply note that the while loop moves A[j-1], A[j-2],…by one
position to the right until proper position for key is found

 Termination:
 The outer ‘for’ loop ends when j>n, this occur when j=n+1

 Therefore n= j-1

 Thus the subarray A[1..j-1] consists of the elements originally in
A[1..n] but in sorted order

1.d – Correctness

CS1 - Thomas Grenier 33

2.Why studying C++ ?

a) Languages history and future

b) Object programming language

c) C++ ?

CS1 - Thomas Grenier 34

2.a – Languages history and future

 When was the first program written ?

Ada Lovelace

1815-1852

CS1 - Thomas Grenier 35

2.a – Languages history and future

~1843

1st program

(Ada Lovelace)

…

1945
52

Plankalkül

(Zuse)

A-0

(Grace Hopper)

BASIC

(Kemeny & Kurtz)

Simula67

SmallTalk

C

Dennis Ritchie

C++

Bjarne Stroustrup

Cobol

Altair BASIC

(B. Gates & P. Allen)

Java

Sun Microsystems

59
64

67
72

75

Fortran

54 95

C#

Microsoft

200585
83

CS1 - Thomas Grenier 36

2.a – Languages history and future

~1843

1st program

(Ada Lovelace)

…

1945
52

Plankalkül

(Zuse)

A-0

(Grace Hopper)

BASIC

(Kemeny & Kurtz)

Simula67

SmallTalk

C

Dennis Ritchie

C++

Bjarne Stroustrup

Cobol

Altair BASIC

(B. Gates & P. Allen)

java

Sun Microsystems

59
64

67
72

75

Fortran

54 95

C#

Microsoft

200585
83

First object oriented languages

OOP effervescence OOP golden age …

OOP: oriented-object programming

CS1 - Thomas Grenier 37

 What kind of language for the future?

 Based on object-oriented language or on new paradigms

 Very high level language

 Hardware abstraction (like java)

 Data type abstraction (cf. python)

 Full object communication, reflection (ie. objectiveC, RUST)

 Intelligent operators (matlab)

 Visual (3D) programming language

 Link objects and/or functions together (Access, Simulink)

 No syntax language for algorithms (LabView, Alice)

2.a – Languages history and future

CS1 - Thomas Grenier 38

 The most famous are C/C++, java, python

 Now new standards of each language include

object oriented capabilities

Cobol, Basic, matlab, fortran, Perl , PHP…

 In real-world

OOP can be used to translate from real-world

phenomena to program elements (and vice versa)

 Specify OO Program  Modeling

UML: Unified Modeling Language

2.b – Object-oriented languages

CS1 - Thomas Grenier 39

 Fundamental paradigms (top 3)

Encapsulation
 fields and methods are merged into class

 Object (or instance) is a pattern (exemplar) of class

 Inheritance
 Subclasses are more specialized versions of a class,

which inherit attributes and behaviors from their parent
classes, and can introduce their own fields and
methods

Polymorphism
 Polymorphism allows the programmer to treat derived

class members just like their parent class' members

2.b – Object oriented languages

CS1 - Thomas Grenier 40

 Characteristics of C++

Combination of both high and low level language
features

Statically typed

Object oriented language

Procedural programming

Data abstraction (or at least this possibility can be
offered…)

Generic programming (template)

Operators overloading

…

2.c – C++

New standard is C++0x … promising for the future

CS1 - Thomas Grenier 41

 About the C++ syntax

Similar to C (useful for low level programming)

Similar to many languages (java, C#, Pascal,

matlab, python, RUST)

Not so far from pseudocode 

 The first array element is at index 0 …

2.c – C++

