Rédaction scientifique - La Forme

Atelier: édition et mise en page

1. Objectifs

- Mettre en page du texte brut
- Comprendre le fonctionnement des balises/styles dans un logiciel/langage d'édition

2. Consignes

- Ouvrir le fichier texte brut fourni sur <u>Moodle</u> dans un éditeur de texte (Notepad++, BlocNotes ou équivalent)
- Lire le texte
- Mettre en page le texte en utilisant l'outil de votre choix :
 - Markdown : utilisez le serveur collaboratif <u>HedgeDoc</u> de l'INSA
 - Microsoft Word / Libre Office Writer
 - LaTeX : utilisez le *template* Overleaf "Écrire du texte" fourni <u>sur Moodle</u> (en ligne)
- Reconstruire les **paragraphes** et appliquer un style pour les **titres**
- Donner un titre à l'article

Ω Tip

Pour vous aider, rendez-vous sur les pages <u>Balises typographiques</u> et <u>La mise en page</u> du site Rédaction Scientifique. Vous pouvez aussi consulter la <u>FAQ LaTEX GUTenberg</u>.

Atelier: équations

1. Objectifs

- Écrire correctement une équation avec du code (clavier, souris)
- Définir les variables avec des phrases, avant ou après l'équation

2. Consignes

- Pour chaque exemple ci-dessous :
 - Lister tout ce qui ne va pas
 - Réécrire les équations dans le logiciel de votre choix
 - Word : utilisez l'éditeur d'équation (Ctrl + Alt + =) et tapez du code
 - Libre Office Writer: installez l'extension <u>TexMaths</u>
 - Markdown : utilisez le serveur collaboratif <u>HedgeDoc</u> de l'INSA
 - LaTeX : utilisez le *template* Overleaf "Écrire des équations" fourni <u>sur Moodle</u> (en ligne)

2.1. Exemple 1

de poisson à partir du coefficient directeur de la droite via la relation : $\epsilon_T = -\nu \times \epsilon_L$ Il est également possible de déterminer le module de Young grâce à la formule suivante :

$$\sigma L = E \times \mathcal{E} L$$

2.2. Exemple 2

La charge maximale applicable est :

$$F_{\text{max elastique acier}} = Rel_{acier} \times S$$

$$F_{\text{max elastique acier}} = 200 * 24.33 * 2.96 = 14403 l$$

3. Aide

3.1. Modèle d'équation

Voici un modèle d'équations bien écrites avec les variables correctement définies.

Nous rappelons l'équation de la chaleur :

$$\rho c_p \frac{\partial \theta}{\partial t} = -\text{div}\left(\vec{q}\right) + r \quad , \tag{1}$$

où ρ est la masse volumique du matériau, c_p la chaleur spécifique, θ la température, \vec{q} le vecteur flux, et r la source de chaleur.

Dans le cas d'un problème stationnaire, l'équation (1) est simplifiée pour donner :

$$-\operatorname{div}\left(\vec{q}\right) + r = 0 \quad . \tag{2}$$

3.2. Noms des variables dans les exemples

Voici la nomenclature des variables pour vous aider :

Variable	Nom
ϵ_T	déformation transverse
ϵ_L	déformation longitudinale
ν	coefficient de Poisson
σL	contrainte longitudinale
Е	Module de Young
$F_{ m max\it elastiqueacier}$	Charge maximale appliquée
Rel_{acier}	Limite élastique de l'acier

Variable	Nom
S	Section initiale de l'éprouvette

3.3. Écrire des équations

♀ Tip

Pour vous aider, rendez-vous sur les pages <u>Écrire des équations</u> du site Rédaction Scientifique (rs-docs). Vous pouvez aussi consulter la <u>FAQ LaTeX GUTenberg</u>.

Vous aurez également besoin de savoir <u>écrire les nombres et les unités</u>.