
page 1/7

IST-ASM Retake Exam — Fall 2023

Name:

• First, write your name in the box above. Then, have a quick read through all 7 questions.
• In the end, you will write up your answers on this paper.

– But please make a draft elsewhere first. Only hand in something readable. Really.
• This is an open-book open-laptop exam: you may work on scrap paper and/or on your screen.
• Each question is independent from others, except stated otherwise.

Question 1 For each acronym below, give the full unabbreviated expression.

INSA Institut National des Sciences Appliquées

CPU

LR

PC

SP

Central Processing Unit, Link Register, Program Counter, Stack Pointer

Question 2 Fill in the following table by converting each value to all notations.

Decimal Binary Hexadecimal

99

F1

42

1 1 1 1 1 0 1 0

99 110 0011 63
241 1111 0001 F1
66 100 0010 42

250 1111 1010 FA

Question 3 In the boxes below, give the full machine language encoding for intruction blt r6, r7, -8.

048121620242831



page 2/7

32 67 FF F8 == 0011 0010 0110 0111 1111 1111 1111 1000

Question 4 Write a program which sets register 4 to the value 0xCAFE. You cannot use the leti instruction.

leti is forbidden because it would be too confusing: leti R5, 0xCAFE would leave the immediate un-
touched, which triggers a sext at runtime. this is probably not what you want.
(Our assembler assumes that 0xFFFF really is a −1, the programmer has to write leti Rn, 0x0FFFF if
they really want a positive number. yes this is confusing)

$ python
>>> hex(0xcafe >> 1)
’0x657f’

addi R4, R0, 0x657F
add R4, R4, R4



page 3/7

Question 5 The Hamming weight of an integer is defined as the number of bits equal to one in its binary
representation. For instance, the Hamming weight of 42 = 0b101010 is three, and the Hamming weight of
0xFFFFFFFF is 32. Write a program which computes the Hamming weight of any number (initially stored in R1)
then halts. In a comment, indicate which register holds the result.

;

leti R1, 0x00FF00AA ; weight 4+4+2+2 = 12
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
leti R2, 0 ; initial weight

loop:
beqz R1, done ; are we finished yet ?

andi R3, R1, 1
beqz R3, shift ; skip the increment
addi R2, R2, 1 ; increment weight

shift:
lsri r1, r1, 1
jmp loop

done:
halt ;;comment: result is in R2



page 4/7

Question 6 Given two arrays A and B of the same (known) length, we define their element-wise distance as
the array C such that for all n, C[n]=

∣∣∣A[n] − B[n]
∣∣∣. In other words, each element of C is defined as the absolute

value of the difference between corresponding elements of A and B.

The program below allocates two arrays A and B of length 10. Complete the code so that it computes their
element-wise distance in array C.

start:
jmp main

A: .word 13, 50, 2, 42, 27, 12, 1, 8, 37, 19
B: .word 1, 5, 24, 42, 51, 21, 36, 2, 71, 7
C: .word 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

main:



page 5/7

start:
jmp main

T1: .word 13, 50, 2, 43, 27, 12, 1, 8, 37, 19
T2: .word 1, 5, 24, 4, 72, 21, 36, 2, 71, 7
T3: .word 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

;; should be
;; 12, 45, 22, 39, 45, 9, 35, 6, 34, 12
;; c, 2d, 16, 27, 2d, 9, 23, 6, 22, c

main:
leti r1, T1 ; pointer to T1
leti r2, T2 ; pointer to T2
leti r3, T3 ; pointer to T3

leti r9, 0 ; i
leti r10, 10

loop:
load r4, [r1] ; r4 contains T1[i]
load r5, [r2] ; r5 contains T2[i]
ble r4, r5, first ; if T1[i] <= T2[i] ... goto first ...
sub r6, r4, r5 ; otherwise compute T1[i]-T2[i]
jmp store_result

first:
sub r6, r5, r4 ; ... and compute T2[i]-T1[i]

store_result:
store [r3], r6

advance:
addi r1, r1, 4
addi r2, r2, 4
addi r3, r3, 4
addi r9, r9, 1
blt r9, r10, loop

halt



page 6/7

Question 7 In 25 lines or less, write a program which fills the bottom right quarter of the screen in cyan, like
illustrated below.



page 7/7

leti R9, 0xB0000000 ; framebuffer address
leti R8, 0x00FFFF00 ; cyan color

leti R7, 30 ; line number in pixels (we start halfway)
vloop:

muli R6, R7, 320 ; vert offset in bytes
leti R5, 160 ; horz offset in bytes (we start halfway)

hloop:
add R4, R5, R6 ; add vert and horz offsets
add R4, R4, R9 ; add framebuffer base address
store [R4], R8 ; draw pixel

addi R5, R5, 4 ; move right by one pixel (4 bytes)
leti R1, 320
blt R5, R1, hloop ; end-of-line test

addi R7, R7, 1 ; move down by one pixel
leti R1, 60
blt R7, R1, vloop ; bottom-of-screen test

halt


