Name:

- First, write your name in the box above. Then, have a quick read through all 7 questions.
- In the end, you will write up your answers on this paper.
 But please make a draft elsewhere first. Only hand in something readable. Really.
- This is an open-book open-laptop exam: you may work on scrap paper and/or on your screen.
- Each question is independent from others, except stated otherwise.

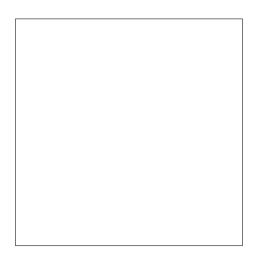
Question 1 For each acronym below, give the full unabbreviated expression.

INSA	Institut National des Sciences Appliquées
CPU	
LR	
PC	
SP	

Central Processing Unit, Link Register, Program Counter, Stack Pointer

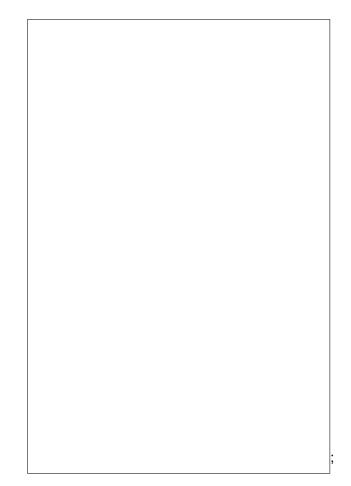
Question 2 Fill in the following table by converting each value to all notations.

Decimal	Binary	Hexadecimal		
99				
		F1		
		42		
	11111010			


99	110 0011	63
241	1111 0001	F1
66	100 0010	42
250	1111 1010	FA

Question 3 In the boxes below, give the full machine language encoding for intruction blt r6, r7, -8.

;	31 28	24	20	16	12	8	4	0

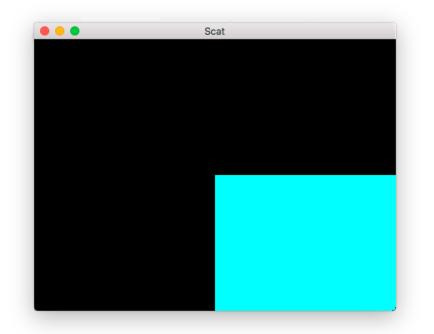

Question 4 Write a program which sets register 4 to the value OxCAFE. You cannot use the leti instruction.

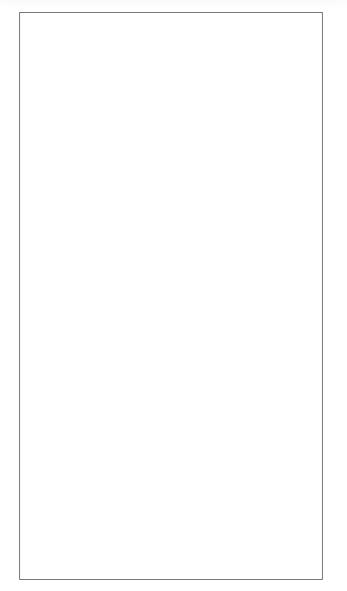
leti is forbidden because it would be too confusing: leti R5, 0xCAFE would leave the immediate untouched, which triggers a sext at runtime. this is probably not what you want. (Our assembler assumes that 0xFFFF really is a -1, the programmer has to write leti Rn, 0x0FFFF if they really want a positive number. yes this is confusing)

\$ python
>>> hex(0xcafe >> 1)
'0x657f'

addi R4, R0, 0x657F add R4, R4, R4 **Question 5** The Hamming weight of an integer is defined as the number of bits equal to one in its binary representation. For instance, the Hamming weight of 42 = 0b101010 is three, and the Hamming weight of 0xFFFFFFF is 32. Write a program which computes the Hamming weight of any number (initially stored in R1) then halts. In a comment, indicate which register holds the result.

Question 6 Given two arrays A and B of the same (known) length, we define their *element-wise distance* as the array C such that for all n, C[n] = |A[n] - B[n]|. In other words, each element of C is defined as the absolute value of the difference between corresponding elements of A and B.


The program below allocates two arrays A and B of length 10. Complete the code so that it computes their element-wise distance in array C.


start: jmp main A: .word 13, 50, 2, 42, 27, 12, 1, 8, 37, 19 B: .word 1, 5, 24, 42, 51, 21, 36, 2, 71, 7 C: .word 0, 0, 0, 0, 0, 0, 0, 0, 0

main:

```
start:
   jmp main
T1:
       .word 13, 50, 2, 43, 27, 12, 1, 8, 37, 19
       .word 1, 5, 24, 4, 72, 21, 36, 2, 71, 7
T2:
       .word 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T3:
   ;; should be
    ;; 12, 45, 22, 39, 45, 9, 35, 6, 34, 12
   ;; c, 2d, 16, 27, 2d, 9, 23, 6, 22, c
main:
   leti r1, T1
                                        ; pointer to T1
                                        ; pointer to T2
   leti r2, T2
   leti r3, T3
                                        ; pointer to T3
   leti r9, 0
                                        ; i
   leti r10, 10
loop:
   load r4, [r1]
                                        ; r4 contains T1[i]
   load r5, [r2]
                                       ; r5 contains T2[i]
   ble r4, r5, first
                                       ; if T1[i] <= T2[i] ... goto first ...
   sub r6, r4, r5
                                        ; otherwise compute T1[i]-T2[i]
   jmp store_result
first:
   sub r6, r5, r4
                                        ; ... and compute T2[i]-T1[i]
store_result:
   store [r3], r6
advance:
   addi r1, r1, 4
   addi r2, r2, 4
   addi r3, r3, 4
   addi r9, r9, 1
   blt r9, r10, loop
   halt
```

Question 7 In 25 lines or less, write a program which fills the bottom right quarter of the screen in cyan, like illustrated below.

leti R9, 0xB0000000 ; framebuffer address leti R8, 0x00FFFF00 ; cyan color leti R7, 30 ; line number in pixels (we start halfway) vloop: muli R6, R7, 320 ; vert offset in bytes leti R5, 160 ; horz offset in bytes (we start halfway) hloop: add R4, R5, R6 ; add vert and horz offsets add R4, R4, R9 ; add framebuffer base address store [R4], R8 ; draw pixel addi R5, R5, 4 ; move right by one pixel (4 bytes) leti R1, 320 blt R5, R1, hloop ; end-of-line test addi R7, R7, 1 ; move down by one pixel leti R1, 60 blt R7, R1, vloop ; bottom-of-screen test halt