IST-ASM Retake Exam — 1st December 2022

_

- First, write your name in the box above. Then, have a quick read through all 5 exercises.
- In the end, you will write up your answers on this paper.
 - But please make a draft elsewhere first. Only hand in something readable.
- This is an open-book open-laptop exam: you may work on scrap paper or on your screen.
- Each question is independent from others.

Question 1 Perform the binary addition -43 + 50 in two's complement on 7 bits: convert both numbers to (signed) binary, then compute the sum on 7 bits. Show the details of your work, especially carry bits.


```
au moins deux points sur le -43 correct en binaire.

1 1 1

1 0 1 0 1 0 1

+ 0 1 1 0 0 1 0

------
0 0 0 0 1 1 1 = 7
```

Question 2 The code below implements a certain mathematical function f: from two integers A and B, it computes C = f(A, B). Give a simple expression for f.

f(A,B) =

```
A: .word ...
B: .word ...
C: .word ...
main:
    load R1, [A]
    load R2, [B]
    mul R3, R1, R1
    mul R4, R2, R2
    add R3, R3, R4
    mul R4, R1, R2
    add R4, R4, R4
    add R1, R3, R4
    store [C], R1

bra +0
```

 $f(A,B) = A^2 + B^2 + 2AB = (A + B)^2$


```
bra main

A: .word 7

main:

load R1, [A]
leti R2, 0

loop:

mul R3, r1, r1
add r2, r2, r3
dec r1
bgtz r1, loop

bra +0
```

Question 4 Write a program that loops over an array of numbers and finds both the maximum and minimum values. The length of the array is a (known) constant, as illustrated below.

```
Τ:
     .word 13, 18, 5, 3, 10, 8, 20, 1, 14, 6
len: .word 10
main:
```

```
bra main

T: .word 13, 18, 5, 3, 10, 8, 20, 1, 14, 6
len: .word 10

main:
    leti R1, 0 ;; index in T
    load R2, [len]

    leti r3, 0x800000000 ;; current max: INTMIN
    leti r4, 0x7FFFFFF ;; current min: INTMAX

loop:
    muli R5, R1, 4
```

```
leti R6, T
add R5, R5, R6

load R5, [R5] ;; T[i]
bgt R3, R5, +8
mov R3, R5

blt R4, R5, +8
mov R4, R5
inc R1
blt R1, R2, loop
bra +0
```

Question 5 Definition: Given a pair of positive integers n and k such that $n \ge k \ge 0$, we define their binomial coefficient as the number of different k-element subsets of a fixed n-element set. This number is usually written $\binom{n}{k}$ and is read as "n choose k". For example, $\binom{4}{2} = 6$ because there are 6 ways to choose 2 elements from a 4-element set $\{a, b, c, d\}$: the different subsets are $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, and $\{c, d\}$.

In this exercise, we are interested in the fact that there exists a recursive formula to compute these coefficients:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

The base case of the recursion is the fact that for any integer $n \ge 0$, we have $\binom{n}{n} = \binom{n}{0} = 1$.

Your task is to write a recursive binomial function which receives n and k in R1 and R2, respectively and returns $\binom{n}{k}$ in R1.

leti SP, 0x10000000
main:
leti R1, 4
leti R2, 2
call binomial
bra +0

binomial:

```
;; output: (N choose K) in R1
                               binomial:
                                   push LR
                                   push R6
                                   push R5
                                   push R4
                                   push R3
    leti SP, 0x10000000
                                   beq R1, R2, retone; (N choose N)
                                   beq R2, R0, retone; (N choose zero)
main:
    leti R1, 4
                                   mov R3, R1 ;; save N
    leti R2, 2
                                   mov R4, R2 ;; save K
    call binomial
                                ;; (N choose K) := (N-1 choose K-1) + (N-1 choose K)
t1: ;; expect R1 == 6
                                   addi R1, R3, -1
    leti R1, 5
                                   addi R2, R4, -1
    leti R2, 3
                                   call binomial
    call binomial
                                   mov R5, R1 ;; save (N-1 choose K)
t2: ;; expect R1 == 10
                                   addi R1, R3, -1
    leti R1, 8
                                   mov R2, R4
    leti R2, 3
                                   call binomial
    call binomial
                                   mov R6, R1;; save (N-1 choose K-1)
t3: ;; expect R1 == 56
                                   add R1, R5, R6
    bra +0
                               epilogue:
                                   pop R3
                                   pop R4
                                   pop R5
                                   pop R6
                                   pop LR
                                   ret
                               retone:
```

leti R1, 1
jmp epilogue

;; input: N in R1
;; input: K in R2