
page 1/9

IST-ASM Final Exam — Fall 2024

Name:

• First, write your name in the box above. Then, have a quick read through all 7 questions.
• In the end, you will write up your answers on this paper.

– But please make a draft elsewhere first. Only hand in something readable. Really.
• This is an open-book open-laptop exam: you may work on scrap paper and/or on your screen.
• Each question is independent from others, except stated otherwise.

Question 1 Perform the addition 100 + 50 in binary notation: convert both numbers to binary, then
compute the sum entirely in binary. Show the details of your work.

decimal 100 as binary: decimal 50 as binary: addition:

1100100
+ 110010
11

10010110 = 128 + 16 + 4 + 2 = 150

page 2/9

Question 2 Write number −37 in two’s complement on eight bits. Show the details of your work.

37 = 32 + 4 + 1
= 0010 0101

~37 = 1101 1010

+1 = 1101 1011

Question 3 Disassemble word 3120fff8 into ASM syntax.

3 type=3 : conditional jump
1 comparison code=3 : Branch if not equal
2 rd=2 : destination register is R2
0 rs=0 : source register is R0
fff8 jump offset= -8

final answer: bnez R2, -8

page 3/9

Question 4 Write a program which uses a loop to compute the sum of all positive integers up to N.
For instance with N = 5 you should find 1 + 2 + 3 + 4 + 5 = 15. Initially N is stored in R1, and at the end
the result should be in R2.

leti R1, 5

leti R1, 5
leti R2, 0

loop:
add R2, R2, R1
dec R1
bnez r1, loop
halt

page 4/9

Question 5 Write a program which loops over an array of integers and computes their average value,
rounded down to the nearest integer (e.g. the “average” of 9, 15, 10 and 17 is 12). The length of the
array is also given in memory, as illustrated below. At the end the result should be in R1.

bra main

A: .word 9, 15, 10, 17
len: .word 4

main:

page 5/9

bra main

A: .word 9, 15, 10, 17
len: .word 4

main: leti R1, 0 ; partial sum
leti R2, A ; data ptr
load R3, [len] ; remaining values counter

loop: load R4, [R2]
add R1, R1, R4 ; accumulate
addi R2, R2, 4 ; advance ptr
dec R3
bnez R3, loop

load R3, [len]
div R1, R1, R3
halt

page 6/9

Question 6 In 30 lines or less, write a pro-
gram that draws two diagonal red lines like
illustrated on the right. The lines should start
from the top left and bottom left corners of the
screen, respectively, and they should end at
mid-height i.e. where they cross each other.

leti R1, 0xB0000000 ; VRAM address

page 7/9

leti R2, 0xFF000000 ; color RED

mov R3, R1 ; R1 is top-line ptr, R3 is bottom-line ptr
leti R4, 320
muli R5, r4, 59 ; advance R3 to bottom-left of screen
add R3, R3, R5

loop:
store [R1], R2 ; draw one top-line pixel
store [R3], R2 ; draw one bottom-line pixel

add R1, R1, R4 ; move 1px down
addi R1, R1, 4 ; move 1px right

sub R3, R3, R4 ; move 1px up
addi R3, r3, 4 ; move 1px right

blt R1, R3, loop ; are we there yet ?

halt

page 8/9

Question 7 Exponentiation is defined as repeated multiplication. In other words, expression an

denotes “a multiplied by itself n times” i.e. a × a × ... × a. Obviously, we could compute all these
multiplications iteratively. But to optimize execution time, we can leverage the fact ak × ak = a2k , which
leads to this recursive formulation (with base case a0 = 1):

an =

{
(a2)n/2, if n is even
a (a2)(n−1)/2, if n is odd

In other words, exponentiation can be implemented by the following algorithm:

integer fast_exp(a: non-negative integer,
n: non-negative integer)

{
if (n == 0) return 1
if (n is even) return fast_exp(a*a, n/2)
if (n is odd) return a * fast_exp(a*a, (n-1)/2)

}

Your task is to translate this pseudo-code to assembly language. Please add comments to help us
understand your answer. You can test your implementation with obvious examples like 107 = 10000000
or 220 = 1048576.

leti SP, 0x1000000
leti R1, 10 ; base A
leti R2, 7 ; exponent N
call fast_exp
; expected result: R1 == A**N
halt

fast_exp:

page 9/9

leti SP, 0x1000000

leti R1, 10 ; base X
leti R2, 7 ; exponent N

;; leti R1, 2 ; base X
;; leti R2, 20 ; exponent N

call fast_exp

halt

fast_exp:
push LR
push R4

beqz R2, ret_one

modi R3, R2, 2 ; parity of N ?
beqz R3, even ; note: R3 is scratch
bra odd

even:
mul R1, R1, R1 ; X squared
divi R2, R2, 2 ; N/2
call fast_exp
bra end

odd:
mov R4, R1 ; save X
mul R1, R1, R1 ; X squared
dec R2 ; N-1
divi R2, R2, 2 ; (N-1)/2
call fast_exp ; result comes back in R1
mul R1, R1, R4
bra end

ret_one:
leti R1, 1 ; fall-through to epilogue for simplicity

end:
pop R4
pop LR
ret

