
page 1/9

IST-ASM Final Exam — Fall 2023

Name:

• First, write your name in the box above. Then, have a quick read through all 7 questions.
• In the end, you will write up your answers on this paper.

– But please make a draft elsewhere first. Only hand in something readable. Really.
• This is an open-book open-laptop exam: you may work on scrap paper and/or on your screen.
• Each question is independent from others, except stated otherwise.

Question 1 Perform the binary addition 53+82: convert both numbers to binary, then compute the
sum entirely in binary. Show the details of your work.

53 in binary 82 in binary addition

110101
+ 1010010
----------

10000111 = 128 + 7 = 135

Question 2 Convert the program below to ASM syntax

machine code (hex)

00 2030003a
04 204001f4
08 3243000c
0C 10504000
10 20ff0000
14 10503000
18 20ff0000

←→

source program (asm)



page 2/9

leti R3, 58
leti R4, 500
blt R4, R3, +12
add R5, R0, R4
halt
add R5, R0, R3
halt

Explain the purpose of this code using a simple sentence:

R5 := MAX(R3, R4)

Question 3 In the table below, encode your last name in ASCII (if some letters are missing, use the
closest equivalent e.g. É 7→E). Write each byte as a hexadecimal number (i.e. “42” will be read as 0x42,
not “decimal 42”).

Letter

ASCII (hex)

SALAGNAC = 53 41 4C 41 47 4E 41 43
MOREL = 4D 4F 52 45 4C



page 3/9

Question 4 Write a program which computes the average of four integers initially stored in R1 to R4,
and stores the result in R5. For instance, if R1=50, R2=10, R3=70, and R4=30, then the program should
calculate R5=40. We are not interested in fractional digits: the average of 50, 11, 71 and 31 is also 40.
However the average of 51, 11, 71, and 31 is 41.

leti R1, 50
leti R2, 11
leti R3, 71
leti R4, 31

add R1, R1, R2
add R1, R1, R3
add R1, R1, R4
divi R5, R1, 4

halt



page 4/9

Question 5 Given two arrays A and B of the same (known) length, we define their element-wise
distance as the array C such that for all n, C[n ]=

∣∣A[n]− B[n]
∣∣. In other words, each element of C is

defined as the absolute value of the difference between corresponding elements of A and B.
The program below allocates two arrays A and B of length 10. Complete the code so that it computes
their element-wise distance in array C.

start:
jmp main

A: .word 13, 50, 2, 42, 27, 12, 1, 8, 37, 19
B: .word 1, 5, 24, 42, 51, 21, 36, 2, 71, 7
C: .word 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

main:



page 5/9

start:
jmp main

T1: .word 13, 50, 2, 43, 27, 12, 1, 8, 37, 19
T2: .word 1, 5, 24, 4, 72, 21, 36, 2, 71, 7
T3: .word 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

;; should be
;; 12, 45, 22, 39, 45, 9, 35, 6, 34, 12
;; c, 2d, 16, 27, 2d, 9, 23, 6, 22, c

main:
leti r1, T1 ; pointer to T1
leti r2, T2 ; pointer to T2
leti r3, T3 ; pointer to T3

leti r9, 0 ; i
leti r10, 10

loop:
load r4, [r1] ; r4 contains T1[i]
load r5, [r2] ; r5 contains T2[i]
ble r4, r5, first ; if T1[i] <= T2[i] ... goto first ...
sub r6, r4, r5 ; otherwise compute T1[i]-T2[i]
jmp store_result

first:
sub r6, r5, r4 ; ... and compute T2[i]-T1[i]

store_result:
store [r3], r6

advance:
addi r1, r1, 4
addi r2, r2, 4
addi r3, r3, 4
addi r9, r9, 1
blt r9, r10, loop

halt



page 6/9

Question 6 Write a program that draws a pink triangle like illustrated in the pictures below. Your
triangle should occupy all the screen’s lines. Your entire program must not exceed 30 lines.

0 1 2 3 ...
x

0

1

2

3

...

y



page 7/9

leti R11, 0xB0000000 ; base address of BRAM buffset
leti R12, 0xFF00FF00 ; RGB for pink

leti R6, 1 ; number of pixel per line
leti R1, 0 ; Y offset

y_loop:
leti R2, 0 ; X offset
add R10, R11, R1 ; base address of our line of pixels

x_loop:
add R9, R10, R2 ; address of pixel
store [R9], R12

addi R2, R2, 4 ; move on to the pixel on the right
ble R2, R6, x_loop ; if we’re not over drawing the current line’s pixels, continue

addi R1, R1, 320 ; move on to the next line ...
leti R3, 19200
addi R6, R6, 4 ; ... that will be one pixel more in width
blt R1, R3, y_loop ; stop whenever we’ve reach the window’s

; lower border

done:
bra +0



page 8/9

Question 7 Translate the pseudo-code below to assembly language. Add comments in the code to
explain how you implement variables A and B.

integer fibo(N: non-negative integer)
{

if(N == 0) return 0;
if(N == 1) return 1;

A = fibo(N-1);
B = fibo(N-2);

return A+B;
}

leti SP, 0x1000000
leti R1, 7
call fibo
halt

fibo:



page 9/9

leti SP, 0x10000000

main:
leti R1, 10

call fibo
bra +0

fibo:
push LR
push R2
push R3

; when N <= 1 we have F(N)=N
leti R2, 1
ble R1, R2, fibo_epilogue

mov R2, r1 ; save N

dec r1 ; N-1
call fibo
mov R3, r1 ; A = F(N-1)

subi r1, r2, 2 ; N-2
call fibo ; returns with B in R1

add R1, R1, R3

fibo_epilogue:
pop R3
pop R2
pop LR
ret


