Name:

- First, write your name in the box above. Then, have a quick read through all 7 questions.
- In the end, you will write up your answers on this paper.
- But please make a draft elsewhere first. Only hand in something readable. Really.
- This is an open-book open-laptop exam: you may work on scrap paper and/or on your screen.
- Each question is independent from others, except stated otherwise.

Question 1 Perform the binary addition 53+82: convert both numbers to binary, then compute the sum entirely in binary. Show the details of your work.

Question 2 Convert the program below to ASM syntax

Explain the purpose of this code using a simple sentence:

Question 3 In the table below, encode your last name in ASCII (if some letters are missing, use the closest equivalent e.g. $\acute{E} \mapsto E$). Write each byte as a hexadecimal number (i.e. "42" will be read as 0x42, not "decimal 42").

Letter						
ASCII (hex)						

Question 4 Write a program which computes the average of four integers initially stored in R1 to R4, and stores the result in R5. For instance, if R1=50, R2=10, R3=70, and R4=30, then the program should calculate R5=40. We are not interested in fractional digits: the average of 50, 11, 71 and 31 is also 40. However the average of 51, 11, 71, and 31 is 41.

Question 5 Given two arrays A and B of the same (known) length, we define their *element-wise distance* as the array C such that for all *n*, C[n]=|A[n] - B[n]|. In other words, each element of C is defined as the absolute value of the difference between corresponding elements of A and B. The program below allocates two arrays A and B of length 10. Complete the code so that it computes their element-wise distance in array C.

start:	main										
Jmp	main										
A:	.word	13,	50,	2,	42,	27,	12,	1,	8,	37,	19
B:	.word	1,	5,	24,	42,	51,	21,	36,	2,	71,	7
C:	.word	0,	0,	0,	0,	0,	0,	0,	0,	0,	0
moin											
main:											

Question 6 Write a program that draws a pink triangle like illustrated in the pictures below. Your triangle should occupy all the screen's lines. Your entire program must not exceed 30 lines.

Question 7 Translate the pseudo-code below to assembly language. Add comments in the code to explain how you implement variables A and B.

```
integer fibo(N: non-negative integer)
{
    if(N == 0) return 0;
    if(N == 1) return 1;
    A = fibo(N-1);
    B = fibo(N-2);
    return A+B;
}
```

