
IST Semester / Assembly Programming

Chapter 9 – Recursion

1 Writing recursive functions
In chapter 8 we learned how to add a prologue and epilogue to our functions. This makes it possible
to write (and think about) each function separately. Because all functions follow the same calling
convention, we can combine them together into a program which will always execute correctly. We
picked the simplest convention possible: a called function preserves all its callers’ registers.

However, we must adjust this convention to allow our functions to return something. Just like some
registers are used to pass input parameters (aka arguments), a calling convention designates one or
more registers to pass output parameters (aka return values) from the callee to the caller. Typically, a
calling convention uses the same registers for both directions.

Exercise 1 Write a recursive factorial function which receives a positive integer N in R1 and
returns N! also in R1. Use the fact that 1! = 1 and N! = (N − 1)! × N for N > 1.

Reminder: Given a positive integer N, its factorial N! is defined as the product of all the positive integers
up to N. In other words, N! = N × (N − 1) × ... × 2 × 1. For example, 5! = 5 × 4 × 3 × 2 × 1 = 120.

Exercise 2 Write a recursive fibonacci function which receives a positive integer N in R1 and returns
the Nth Fibonacci number FN also in R1. Use the fact that F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n > 1.

2 Passing parameters on the stack
There are situations where it is not possible to assign each parameter of a function to a register. For
instance, if there are more parameters than the CPU has registers. Or if the function is variadic, i.e.
when the number of arguments is not known in advance, like printf() in C or in Java. In these cases,
we have to use a different calling convention and pass parameters in memory instead.

As illustrated on the diagram below, the idea is to push each argument on the stack before actually
calling (jumping to) the function. The prologue of the called function now has two roles:

• save the context of the caller on the stack
• unwrap the arguments using SP-relative indirect addressing.

These two operations are closely related: the stack offset of each argument depends on how many
context registers were just saved.

After the function call has returned, it is the responsibility of the caller to clean up the arguments from
the stack. Instead of popping multiple useless values, the usual practice is to simply move the stack
pointer beyond the arguments without actually touching them.

1



main:
push argC
push argB
push argA

call func

addi SP, 12

func: push LR
push R1
push R2
push R3
load R1, [SP+16]
load R2, [SP+20]

...

pop R3
pop R2
pop R1
pop LR
ret

argA

argB

argC

SP

argA

argB

argC

SP

old LR

old R1

old R2

old R3 [SP]

[SP+4]

[SP+8]

[SP+12]

[SP+16]

[SP+20]

[SP+24]

stack contents at the time
of the function call

stack contents after the
prologue of func

SP

stack contents after cleanup

 pr
ol

og
ue

 ep
ilo

gu
e

Exercise 3 Write a new version of your fibonacci function which uses the stack for parameter
passing.

Exercise 4 Write a non-recursive, variadic function named sum function which receives multiple values
on the stack and adds them all up. A “first” argument (i.e. pushed after all the others, see code below)
indicates how many values there are. To transfer the return value back to the caller you may use either
R1 or the first argument slot in the stack.

main:
;; value arguments
leti R1, 42
push R1
leti R1, 36
push R1
leti R1, 15
push R1
leti R1, -5
push R1
leti R1, 1
push R1
leti R1, 23
push R1

;; number of values
leti R1, 6
push R1

call sum

addi SP, SP, 28 ;; cleanup 7 stack words

halt

2


	1 Writing recursive functions
	2 Passing parameters on the stack

