
IST Semester / Assembly Programming
Chapter 4 – Control Flow
1 Introduction
With the instructions we have seen so far, we can only write programs as purely linear sequences of
instructions. However most algorithms need to break this sequential pattern in order to make choices
during execution. For example the programmer might want to do one thing or another, depending on
some condition. To express such choices, general-purpose programming languages offer various syntax
constructs known as control structures, like if-then-else statements, “for” loops, or “while” loops.

Our goal for today is to understand how control structures are implemented at the assembly level.

2 Branch instructions
Idea To implement control structures, the SCAT processor provides branch (aka jump) instructions.
Instead of incrementing the PC to advance to the next instruction, a branch instruction overwrites the
PC with a well-chosen value. As a result, the CPU will appear to jump to that location and continue
executing from there.

Syntax The simplest of these jumps is called “branch always”. Its syntax is the mnemonic bra followed
by an offset e.g. “bra +8” or “bra -12”. Its effect is to add the offset to the PC, instead of adding 4 like
ordinary instructions. For instance, “bra +8” will skip the following instruction, and jump to the one after
that. Similarly, “bra -12” will rewind execution by three instructions.
Note 1: “bra +0” is effectively an infinite loop that will jump to itself forever. When this happens, our
simulator stops executing.
Note 2: in practice, the CPU itself does not know about bra, it is an example of a pseudo-instruction.
What happens is the assembler translates every bra into an addi with PC as destination register.
Note 3: speaking of pseudo-instructions, “bra +0” can also be spelled as “halt”.

Conditional jump instructions are useful to implement choices: the jump is either taken or ignored,
depending on some condition on the values of registers. For instance “beq ri, rj, offset” jumps if
and only if the values of Ri and Rj are equal. The other possible conditions are listed below.

asm Name comp code Description
beq Branch if equal 0000 if (rd == rs1) PC += sxt(imm)
bne Branch if not equal 0001 if (rd != rs1) PC += sxt(imm)
blt Branch if lower than 0010 if (rd < rs1) PC += sxt(imm)
bge Branch if greater or equal 0011 if (rd >= rs1) PC += sxt(imm)

In machine code, conditional jumps are encoded as follows:
• bits 31–28 are always 0b0011 to indicate a type 3 instruction.
• bits 27–24 indicate the desired comparison.
• bits 23–20 and 19–16 indicate which registers to compare.
• the remaining 16 bits encode the offset i.e. the desired jump distance, should the jump be taken.

0151619202324272831

imm0 0 1 1 comp rd rs1

Exercise 1 Choose two numbers A and B between 0 and 1000. Write a program that uses the
leti pseudo-instruction to assign these numbers to R3 and R4 (syntax: leti rd, imm). Then, using
conditional and/or mandatory jump(s), set register R5 to the maximum of A and B. Use bra +0 to halt
execution afterwards.
Reminder: in the simulator, the step command executes just one instruction.

1



3 Symbolic labels
As you may have noticed, calculating jump offsets by hand is not practical. Fortunately with most
assemblers (ours included) the programmer can freely associate a label name to any program location,
and use that name as a jump destination. When generating machine code, the assembler keeps track
of where each label is located in memory, and computes all offsets accordingly.
The syntax is illustrated below. Observe how both leti and bra pseudo-instructions get translated into
addi (opcode 0x20). To help with debugging, the annotated listing shows both label names and numeric
addresses.

Assembly code
leti R1, 0

loop:
addi R1, R1, 1
bra loop

Annotated listing
00: 20 10 00 00 leti R1, 0

<loop>:
04: 20 11 00 01 addi R1, R1, 1
08: 20 ff ff fc bra loop

Executable
20100000
20110001
20fffffc

asm.py

Exercise 2 Given a positive integer N, its factorial N! is defined as the product of all the positive
integers up to N. In other words, N! = N × (N −1)× ...×2×1. For example, 5! = 5×4×3×2×1 = 120.
Write a program that uses a loop to compute the factorial of an integer initially stored in R1.
You may find these simulator commands useful:

• step to execute one instruction
• continue to execute the program until it stops by itself
• breakpoint addr_or_label to place a new break point at some location
• help cmd_name to get help on another command

4 Putting it all together: Euclid’s GCD Algorithm
In this part you’re going to write a program involving both an if-then-else construct and a while loop. Our
excuse is compute the greatest common divisor of two integers i.e. to find out the largest integer that
divides both numbers. But instead of performing repeated divisions, we will follow Euclid’s algorithm. To
quote Wikipedia1:

“The method introduced by Euclid for computing greatest common divisors is based on the fact
that, given two positive integers a and b such that a > b, the common divisors of a and b are the
same as the common divisors of a − b and b.
So, Euclid’s method for computing the greatest common divisor of two positive integers consists
of replacing the larger number by the difference of the numbers, and repeating this until the two
numbers are equal: that is their greatest common divisor. ”

Example Let’s unroll the algorithm on a=12 and b=8.
• As stated above, gcd(12, 8) is the same as gcd(12 − 8, 8) i.e. gcd(4, 8).
• We then repeat this step: gcd(4, 8) is the same as gcd(4, 8 − 4) i.e. gcd(4, 4).
• In conclusion, we find that gcd(12, 8) = gcd(4, 4) = 4

Exercise 3 (pen & paper) With the same technique, compute gcd(48, 18) and gcd(1071, 462).
1https://en.wikipedia.org/wiki/Greatest_common_divisor. Go look it up !

2

https://en.wikipedia.org/wiki/Greatest_common_divisor


Exercise 4 (assembly) Write a program to compute gcd(a, b) for any values of a and b. Your code
will start by initializing two registers, as illustrated below:

leti R1, 48 ; argument a
leti R2, 18 ; argument b
...

Don’t hesitate to reuse some of the code you wrote for the previous exercises (maximum, factorial).

3


	1 Introduction
	2 Branch instructions
	3 Symbolic labels
	4 Putting it all together: Euclid's GCD Algorithm

