
IST Semester / Assembly Programming

Chapter 3 – The Von Neumann Architecture

1 Introduction
What does it mean for a computer to execute a program ?

Idea The hardware of a computer does not implement any built-in algorithm. Instead, the processor
reads program instructions from memory and executes them one by one.

Processor Memory
address

data

Memory is where data and program instructions are stored. Memory cells (bits) are not accessed
individually (for historical reasons) but in groups of 8 bits called bytes. Each byte is associated to (and
designated by) a unique number, its address. Memory addresses go from zero to some large number.

The memory behaves as an array of bytes, and can be accessed in two ways:
• To read from memory, we indicate the address of the target location. The memory will respond

with (a copy of) the bits stored there.
• To write to memory, we indicate both an address and a value. The memory will overwrite the bits

at that location with the new contents.

The Central Processing Unit (CPU) (sometimes just “the processor”) is the hardware component
which executes machine instructions. It comprises two important parts:
• The Arithmetic and Logic Unit (ALU) is the circuitry performing the actual computations:

additions, multiplications, logic operations, etc.
• The Registers are where all the values (i.e. operands and results) are stored. The CPU contains

a handful of registers, each designated by a number (e.g. R0, R1, R2...).

CPU

R
eg

is
te

rs

ALU

Memory
unit

Address

Data

1



The von Neumann principle (aka stored-program concept) refers to the idea of representing both
data and program instructions as bits stored in memory. The CPU implements the following behaviour
known as the von Neumann cycle:

While True do:
Fetch (aka read, load) one word from memory
Decode its bits: which operation, which operands, etc
Execute the operation and write back the results into the register file
then advance to the next instruction and repeat the cycle

One register is dedicated to tracking execution progress: the Program Counter. It always holds the
address of the current instruction. At the end of the cycle, the CPU increments its PC before going back
to the Fetch step.

2 SCAT Machine Language
Each type of computer implements a different set of instructions. In this course we use an imaginary
toy system called SCAT (Small Computer Architecture for Teaching) to learn the ropes of low-level
programming. Some technicalities will not transfer exactly to real-world computer architectures (e.g.
ARM or Intel x86) but all the ideas are the same.

CPU Registers Our CPU has 16 registers named R0 to R15. Each register holds 32 bits. Some
registers are special: for instance R0 is hardwired with all bits equal to 0. Any writes to R0 are ignored.
Register R15 is the Program Counter. Other registers (R1 to R14) are general purpose registers i.e.
they are freely available for the programmer.

Instruction format Each SCAT instruction is stored in memory as a word of 32 bits, like illustrated
below.1 For clarity, we depict the bits in groups of 4. Indeed, any combination of four bits can be
represented as single a hexadecimal digit, and it is easier for us humans to read 0x12345678 than the
same value in binary notation: 0b10010001101000101011001111000.

034781112151619202324272831

Example: Addition Within the instruction word, the most significant byte (bits 31–24) indicates which
instruction to execute. For instance to add (the contents of) two registers and write the sum into a
register, this byte should be 0x10. When the CPU recognizes this pattern at the Decode step, it then
goes on to find the operands:
• bits 23–20 indicate where the result should be stored, i.e. the destination register
• the two terms of the addition come from two registers whose numbers are given by bits 19–16

and 15–12, respectively. These are the source registers.
The remaining bits 11–0 are ignored (they’re meaningless for this type of instruction).

In other words, the binary format of the ADD instruction is:
01112151619202324272831

ignored0000000 1 rd rs1 rs2

Exercise 1 Suppose that the CPU contains the values illustrated below, and fetches this instruction
word: 0x10538123. Indicate the state of the CPU after executing the instruction (you may omit
unchanged registers).

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
0 7 0x1234 0x2A 0x10 0x24 0xF 0x43215678 0xFF −5 0x42 0x10 0xCAFE 1 0x100 8

1This means that each Fetch step will load four bytes at once. And the PC will be incremented by four after each iteration
of the cycle. But these are implementation details.

2



Exercise 2 Assuming the same initial state: what is the effect of the instruction 0x10340000 ?

Exercise 3 Assuming the same initial state: what is the effect of the instruction 0x1066D000 ?

Exercise 4 Assuming the same initial state: what is the effect of the instruction 0x10EEE000 ?

Example 2: Subtraction is also implemented in our CPU. The corresponding opcode (i.e. the first
byte of the instruction word) is 0x11. The binary format of the SUB instruction is:

01112151619202324272831
ignored1000000 1 rd rs1 rs2

The effect of this instruction is to compute rs1 − rs2 and store the resuld in rd.

Exercise 5 Again, we assume that the CPU contains the values illustrated on the preceding page.
What is the effect of the instruction 0x11261000 ?

Exercise 6 Assuming the same initial state: what is the effect of the instruction 0x11189000 ?

3 Assembly Language
Working with machine code in binary form is not convenient for us humans. For this reason we will most
often use an equivalent, textual representation called assembly language (aka assembly, ASM, asm).
Each instruction is described by a line of text, as illustrated below.

machine code (hex)
10340000
11261000
...

←→

ASM
add r3, r4, r0
sub r2, r6, r1
...

Converting an ASM file into binary form suitable for execution is called assembling the program, and is
typically performed by a software tool called an assembler. The inverse operation (decoding a binary
file into assembly) is called disassembling.

ASM syntax For register-register operations like addition and subtraction, the syntax is straightforward:
we write op rd, rs1, rs2 where “op” is the opcode mnemonic, e.g. add, sub, etc.

Type 1 – Arithmetic and Logic Register-Register Operations Our CPU offers many instructions
similar to addition and subtraction, for instance multiplication, division (two instructions: one for the
quotient, another one for the remainder) as well as bitwise (i.e. column-by-column) logic operations:

asm Name opcode Description
add Addition 0x10 rd = rs1 + rs2
sub Subtraction 0x11 rd = rs1 - rs2
mul Multiplication 0x12 rd = rs1 * rs2
div Integer Division 0x13 rd = rs1 / rs2
mod Modulo 0x14 rd = rs1 % rs2
or Bitwise OR 0x15 rd = rs1 | rs2
and Bitwise AND 0x16 rd = rs1 & rs2
xor Bitwise exclusive OR 0x17 rd = rs1 ^ rs2

Exercise 7 Give the machine code for instruction xor r3, r8, r1.

4 Immediate Operands
Idea SCAT arithmetic and logic instructions exist in two variants: register-register operations (as we’ve
seen so far) and register-immediate operations, where the second operand is a constant value. These
constants are called immediates, because their values are immediately available from the instruction
word and do not require a register or memory access.
In assembly code, register-immediate instructions have distinct mnemonics. For example writing
addi r1, r2, 4 will add 4 to the value of r2 and store the result in r1.
Note: only the second operand can be an immediate constant: addi r1, 4, r2 is a syntax error.

3



Binary format In machine code, register-immediate instructions are encoded in a similar way to
register-register instructions:
• bits 31–28 encode the type of instruction. Type 1 (0b0001) is for register-register, while register-

immediate is type 2 (0b0010).
• bits 27–24 indicate the ALU operation. The encoding is the same as for type 1 instructions.
• bits 23–20 and 19–16 indicate the destination and source registers, respectively.
• the value of the second operand is taken from bits 16–0.

0151619202324272831

imm0 0 01 op rd rs1

The example from above (addi r1, r2, 4) is encoded as 0x20120004.

Exercise 8 Remember that register R0 is hardwired to value zero. Give an instruction which will set
register R1 to value 7. Then assemble it to machine code.

Sign Extension When executing a type 2 instruction, the 16-bits immediate constant must be sign-
extented to a 32-bits value before being fed to the ALU. For that, the CPU duplicates its sign bit (i.e. bit
15) all the way to bit 31. In other words, immediate constants are encoded in the instruction word as
16-bits signed numbers, like illustrated below.

decimal value 4 2020 32767 −32768 −7 −1
16 bits encoding 0x0004 0x07e4 0x7fff 0x8000 0xfff9 0xffff

Type 2 – Arithmetic and Logic Register-Immediate Operations The various instructions available
are listed below. In assembly you may either write the constant as a decimal number (between -32768
and 32767) or a hexadecimal number (between 0 and 0xFFFF). You can even use binary notation e.g.
0b111 if it makes your code more readable.

asm Name opcode Description
addi Addition 0x20 rd = rs1 + sxt(imm)
subi Subtraction 0x21 rd = rs1 - sxt(imm)
muli Multiplication 0x22 rd = rs1 * sxt(imm)
divi Integer Division 0x23 rd = rs1 / sxt(imm)
modi Modulo 0x24 rd = rs1 % sxt(imm)
ori Bitwise OR 0x25 rd = rs1 | sxt(imm)
andi Bitwise AND 0x26 rd = rs1 & sxt(imm)
xori Bitwise exclusive OR 0x27 rd = rs1 ^ sxt(imm)

Exercise 9 Give two different instructions that will each set register R9 to value −5. Then assemble
these instructions to machine code.

5 Practice
Download scat.zip from Moodle and extract it in the directory of your choice. Open a terminal
window and navigate to that directory. From now on everything will happen there. You should be able
to type python3 scat/asm.py --help and python3 scat/sim.py --help to get the corresponding
help screens. Otherwise ask us for help.

Exercise 10 In your favorite text editor, create a file named first.s and type in the following lines:

addi r1, r0, 6
addi r2, r0, 7
mul r3, r1, r2

Type python3 scat/asm.py first.s to invoke the assembler. This produces two files, as illustrated
below. Obviously, the assembler creates an executable file which will run on the (simulated) processor.
But as machine code is not friendly to work with, our assembler also creates a more readable annotated
listing for you to follow along.

4



ASM source code .s
addi r1, r0, 6
addi r2, r0, 7
mul r3, r1, r2

Annotated listing .lst
00: 20 10 00 06 addi r1, r0, 6
04: 20 20 00 07 addi r2, r0, 7
08: 12 31 20 00 mul r3, r1, r2

memory
address

machine code original asm

Executable .exe
20100006
20200007
12312000

machine code

asm.py
interactive
execution

sim.py

Exercise 11 Type python3 scat/sim.py first.exe to invoke the simulator. By default, the simulator
shows the contents of every CPU register, as well as an exerpt from the annotated listing with the next
instructions that will be executed. Type step to execute just one instruction. Observe that this changes
the values of registers, and that we “advance” in the program. Continue execution until the program is
finished (try to predict the effect of each instruction).

Exercise 12 Write a program that sets all registers to the values illustrated on page 2.

5


	1 Introduction
	2 SCAT Machine Language
	3 Assembly Language
	4 Immediate Operands
	5 Practice

