
IST Semester / Assembly Programming

Chapter 2 – Binary Arithmetics

1 Adding Binary Numbers

How can we perform arithmetic operations in binary ?

Idea just like in decimal, we compute the sum column by column, from right to left.

Addition table:
• 0 + 0 = 0
• 1 + 0 = 0 + 1 = 1
• 1 + 1 = 10: first we write the zero and then we carry the one to the next column.

Exercise 1 Convert both numbers to binary, perform addition, then convert sum back to decimal.
• 6 + 5
• 7 + 13
• 25 + 25

Idea On paper we write as many digits as is necessary, but computers store numbers on a fixed
number of bits. During an addition, it may happen that a carry bit reaches a position beyond the leftmost
column. In that case the computer will simply ignore the carry, and produce an “incorrect” result. This
situation is called an arithmetic overflow.

Exercise 2 Write both numbers in binary on 8 bits, and perform addition on 8 bits.
• 150 + 150
• 127 + 129

2 Encoding Negative Numbers in Two’s Complement

How can we represent negative numbers just with bits ?

Idea Analogy with how we read time: “8:40” may be read “eight fourty” or “twenty to nine”. In other
words, if we discard the “hour” column and only keep the “minutes”, then “+40” and “−20” are the same.

Most importantly, addition still works (if we keep discarding the “hour” column)
• example 1: adding +10 to +40 aka −20 yields +50 aka −10
• example 2: adding +30 to +40 aka −20 yields 1h10 aka +10

The same idea works in binary: one byte can either represent numbers from 0 to 255, or from −128 to
127, depending on how we (humans) decide to interpret the bit pattern. These conventions are known
as unsigned and signed interpretations.

1



Example with numbers encoded on four bits:

bit
pattern

signed
decimal

unsigned
decimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 −8 8
1001 −7 9
1010 −6 10
1011 −5 11
1100 −4 12
1101 −3 13
1110 −2 14
1111 −1 15

Remarks
• Many properties of binary numbers remain true in two’s complement. For instance the addition

algorithm only cares about bits (not number values) and it works just as well for signed numbers.
• However, in two’s complement, “writing a zero on the left” of a number may change its value, so

we must always specify how many bits we’re working with.

Exercise 3 Perform these additions in two’s complement on 4 bits (remember that you have only 4
columns to work with: any bits that would be carried to the fifth column are simply discarded)

• 5 + 2
• 5 + 5
• −3 + 5
• −1 + 1
• −2 + 2
• −7 + 7

3 Sign Extension

How to add two numbers represented on different widths ?

Idea We can increase the number of bits of number while preserving its sign and value: this is done
by duplicating its sign bit (i.e. leftmost bit in two’s complement representation) enough times.

For instance, on 4 bits −3 is encoded as 1101 (sign bit in bold). To get the 8 bit encoding of −3 we just
have to duplicate this “1” bit four times: 11111101 (new bits in bold).

Positive numbers have a sign bit of “0”, so extending those is just writing more zeroes on the left.

Exercise 4 Work out the two’s complement representation of −1 on 4 bits, then on 8 bits, then on 32
bits.

2



4 Subtraction: going from positive to negative and vice versa
“Subtracting x” is the same thing as “adding −x”, but how to get one from the other ?

Idea In two’s complement, it is possible to flip the sign of a number while keeping its (absolute) value.
There are two methods, which (obviously) produce the same result. For example, working with eight
bits, let’s start with number 44 = 0b00101100 and work out −44.
Method A:

• Starting from the right, find the first “1”, for instance: 00101100
• Invert all the bits to the left of that “1”, for instance: 11010100

Method B:
• Perform a bitwise negation i.e. invert each bit, for instance: 00101100 → 11010011
• Then add one, discarding any carry bit beyond the nth column: 11010011 + 1 → 11010100

Exercise 5 Work out the two’s complement encoding of −1 on 8 bits using method A, then method B.

Exercise 6 Using your favorite method, write the two’s complement encoding on 8 bits of “−0”.

Exercise 7 Compute 112 − 54

Exercise 8 Still in two’s complement on 8 bits, compute 127 − 127.

5 Multiplication
Addition and subtraction are cool, but how about other operations ?

Idea Arithmetic operations work the same in binary as they do in decimal. We just have to restrict
everything to base 2.

Below is an example multiplication of two (unsigned) numbers A and B encoded on 4 bits:

A3 A2 A1 A0 first operand A
× B3 B2 B1 B0 second operand B

A3B0 A2B0 A1B0 A0B0 partial product A×B0

+ A3B1 A2B1 A1B1 A0B1 A×B1 shifted left
+ A3B2 A2B2 A1B2 A0B2 A×B2 shifted left twice
+ A3B3 A2B3 A1B3 A0B3 A×B3 shifted by three columns

= R7 R6 R5 R4 R3 R2 R1 R0 result = sum of partial products

Remarks
• Just like in decimal, multiplying two n digits numbers may produce a result on 2n digits.
• The standard algorithm is actually simpler in binary than in decimal, as it involves no “multiplication

table”. Each partial product Pi is either zero, or just A shifted by i positions.
• Multiplying negative numbers is slightly more complicated as it requires a few tweaks (like sign

extensions for partial products) but the idea is the same.

Exercise 9 In decimal, compute the multiplication of 1337 by 42.

Exercise 10 In binary, compute these multiplications: 6 × 7, 12 × 12.

3


	Adding Binary Numbers
	Encoding Negative Numbers in Two's Complement
	Sign Extension
	Subtraction: going from positive to negative and vice versa
	Multiplication

