
IST Semester / Assembly Programming

Chapter 1 – Information Coding
Modern computers are implemented using digital electronic technology, with basic building blocks such
as transistors and logic gates. In the machine, every piece of information (numbers, text, pictures,
programs) is encoded in terms of boolean values i.e. zeroes and ones. In other words, the computer
thinks in binary. The goal for today is to get familiar with binary.

1 Counting in base 2
You’re used to counting in base 10:

• decimal digits take their value in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• values bigger than 9 are represented by concatenating digits for successive powers of 10:
• 234 = 2 × 102 + 3 × 101 + 4 × 100

• 45678 = 4 × 104 + 5 × 103 + 6 × 102 + 7 × 101 + 8 × 100

Binary numbers are the exact same idea but in base 2:
• binary digits (bits) take their value in {0, 1}
• values bigger than 1 are represented by concatenating bits for successive powers of 2:
• binary 110 = 1 × 22 + 1 × 21 + 0 × 20 = decimal 6
• binary 1100011 = 1 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = decimal 99

When the context is not enough to distinguish “binary 110” from “decimal 110” we will use a “0b” prefix
to indicate binary numbers, e.g. 0b1010=10.

Binary-to-Decimal Conversion Let x be a sequence of n bits xn−1, xn−2, · · · , x1, x0 (warning: we
always write bits xi with descending values of i , down to zero). To interpret the value of x as a natural
number, we apply the same formula as in decimal, but with a radix of 2.

x =
n−1∑
i=0

xi · 2i

Example: 0b110010 reads as 32+16+0+0+2+0 = 50. (Please don’t learn the powers of 2 by heart ! We
provide all you need on the following page.)

Exercise 1 Convert 0b101010 to decimal. Same question with 0b111110100.

Exercise 2 (10 min max) Show that with n bits, the largest integer that can be represented is 2n − 1.

Binary numbers: bit length vs numeric range A sequence of n bits can take any one of 2n

configurations. The smallest natural number encoded on n bits is 0. The largest natural number
encoded on n bits is 2n − 1.
Examples:

• n = 4: x ∈ [0..15] =⇒ 16 different values
• n = 8: x ∈ [0..255] =⇒ 256 different values
• n = 16: x ∈ [0..65535] =⇒ 65536 different values
• n = 32: x ∈ [0..4294967295] =⇒ 4294967296 different values

(that’s about 4x109 ∼ 4 Billion ∼ 4 Giga)
• n = 64: x ∈ [0..18446744073709551615] =⇒ 18446744073709551616 different values

(that’s about 1.8x1019 ∼ 18 Quintillion)

1

Useful: Powers of 2

20 = 1 216 = 65 536 232 = 4 294 967 296 248 = 281 474 976 710 656
21 = 2 217 = 131 072 233 = 8 589 934 592 249 = 562 949 953 421 312
22 = 4 218 = 262 144 234 = 17 179 869 184 250 = 1 125 899 906 842 624
23 = 8 219 = 524 288 235 = 34 359 738 368 251 = 2 251 799 813 685 248
24 = 16 220 = 1 048 576 236 = 68 719 476 736 252 = 4 503 599 627 370 496
25 = 32 221 = 2 097 152 237 = 137 438 953 472 253 = 9 007 199 254 740 992
26 = 64 222 = 4 194 304 238 = 274 877 906 944 254 = 18 014 398 509 481 984
27 = 128 223 = 8 388 608 239 = 549 755 813 888 255 = 36 028 797 018 963 968
28 = 256 224 = 16 777 216 240 = 1 099 511 627 776 256 = 72 057 594 037 927 936
29 = 512 225 = 33 554 432 241 = 2 199 023 255 552 257 = 144 115 188 075 855 488
210 = 1024 226 = 67 108 864 242 = 4 398 046 511 104 258 = 288 230 376 151 711 744
211 = 2048 227 = 134 217 728 243 = 8 796 093 022 208 259 = 576 460 752 303 423 488
212 = 4 096 228 = 268 435 456 244 = 17 592 186 044 416 260 = 1 152 921 504 606 846 976
213 = 8 192 229 = 536 870 912 245 = 35 184 372 088 832 261 = 2 305 843 009 213 693 952
214 = 16 384 230 = 1 073 741 824 246 = 70 368 744 177 664 262 = 4 611 686 018 427 387 904
215 = 32 768 231 = 2 147 483 648 247 = 140 737 488 355 328 263 = 9 223 372 036 854 775 808

264 = 18 446 744 073 709 551 616

Exercise 3 (hands-on) Open a terminal window and type python (or maybe python3 ; ask for help
until you get to the standard prompt i.e. “>>>”). Type a binary number e.g. 0b110010 then press Return.
Observe how python prints numbers in decimal by default (it can be changed, as we’ll see later)

Exercise 4 (hands-on) Besides usual arithmetic operations (+, –, × etc) python also offers a built-in
exponentiation operator: writing x**y will compute xy i.e. x to the power of y . Try computing a few
examples of powers of two e.g. 2**10, or 2**32 etc. (btw, this is how we generated the table above !)

2 Decimal-to-Binary Conversion

Method A: divide by two, repeatedly Given a number x, the remainder of the euclidean division of x
by 2 gives the right-most digit of its binary representation (in other words x0 = x mod 2):

x = xn−1·2n−1 + xn−2·2n−2 + · · · + x2·22 + x1·21 + x0

=
(
xn−1·2n−2 + xp−2·2n−3 + · · · + x2·21 + x1

)︸ ︷︷ ︸
quotient

· 2 + x0︸︷︷︸
remainder

If we repeat this procedure to the quotient until we reach 0, then we get all successive digits x1, x2 and
so on (from right to left). Example with x = 423:

423 = 211 × 2 + 1
211 = 105 × 2 + 1
105 = 52 × 2 + 1
52 = 26 × 2 + 0
26 = 13 × 2 + 0
13 = 6 × 2 + 1
6 = 3 × 2 + 0
3 = 1 × 2 + 1
1 = 0 × 2 + 1

From this we conclude that: 423 = 0b110100111

2

Method B: subtract powers of two Given a number x, we search the biggest i such that 2i < x . This
tells us that bit xi = 1. Then we subtract 2i from x and repeat until x reaches one or zero, which tells us
our final bit x0.

Example with x = 423 again:
• what’s the biggest power of 2 smaller than 423 ?

• that’s 256 = 28

• 423 − 256 = 167
• what’s the biggest power of 2 smaller than 167 ?

• that’s 128 = 27

• 167 − 128 = 39
• what’s the biggest power of 2 smaller than 39 ?

• that’s 32 = 25

• 39 − 32 = 7
• what’s the biggest power of 2 smaller than 7 ?

• that’s 4 = 22

• 7 − 4 = 3
• what’s the biggest power of 2 smaller than 3 ?

• that’s 2 = 21

• 3 − 2 = 1
In conclusion, we find that 423 = 28 + 27 + 25 + 22 + 21 + 1 = 0b110100111

Exercise 5 (pen & paper) Convert 23 to binary. Same question with 200.

Exercise 6 (hands-on) Play with the bin() function of python to convert a few numbers to binary
notation. For instance, bin(423) returns 0b110100111.

Remark Throughout this course, you should never hesitate to “cheat” (by using a computer) to save
time and/or to check your results. But you should still be able to do things by hand when required !

3 Hexadecimal Notation

Significant Digits On paper we usually only write significant digits (i.e. 0011 really is the same as 11)
but within the computer, bits are stored in bundles of 8 bits called bytes. A byte can take 256 distinct
values, from 00000000 to 11111111. Larger numbers are usually represented on 32 bits (4 bytes aka a
word) or sometimes on 16 bits (2 bytes).

Counting in base 16 is actually easier than it sounds. Indeed 16=24, so one digit in base 16 represents
4 digits in base 2. This means that we can represent each bundle of 4 bits with one hexadecimal digit,
as illustrated below.

Dec Hex Bin
0 0 0
1 1 1
2 2 10
3 3 11
4 4 100

Dec Hex Bin
5 5 101
6 6 110
7 7 111
8 8 1000
9 9 1001

Dec Hex Bin
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110

Dec Hex Bin
15 F 1111
16 10 10000
17 11 10001
18 12 10010
19 13 10011

Hexadecimal is very useful as a compact notation for binary numbers, but we will never compute in
base 16, or do direct conversions. To avoid confusion, hexadecimal notation uses the “0x” prefix, e.g.
423=0x1A7.

3

Exercise 7 (pen & paper) Fill in the following table by converting each value to all notations.

Decimal Binary Hexadecimal
218

AB
40

87
1 0 1 1 1 1 1 0

Exercise 8 (hands-on) Use python to check your answers to the previous exercise. Play with the
hex() function to convert a number to hexadecimal: hex(423) will return 0x1A7.

4 Representing text with ASCII
Binary encoding is also useful to represent text. There are several standards in use today (e.g. unicode,
ISO-latin, windows-125x, etc) most of which are extensions of ASCII, the “American Standard Code for
Information Interchange” created in the 60s. Originally based on the English alphabet, ASCII encodes
128 “characters” into seven-bit integers, from 0 to 0x7F. In practice today we store each character on
one eight-bit byte.

The majority of ASCII characters are ordinary letters, digits and punctuation (codes 0x20 to 0x7E).
Code 0x20 represents the space between words. Codes 0x21 to 0x7E are known as the printable
characters. In addition, the standard defines so-called control characters (codes 0 to 0x1F, and 0x7F)
which originated with electromechanical teletypewriter machines, but most of these values are obsolete
nowadays and you can safely ignore them.

ASCII table (binary) In the chart below, the line position indicates bits 6–5 and the column position
indicates bits 4–0. For instance letter “A” is encoded as 0b1000001 (line 0b10, column 0b00001).

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0

11
11

1

00 N
U

L
S

O
H

S
TX

E
TX

E
O

T
E

N
Q

A
C

K
B

E
L

B
S

TA
B

LF V
T

FF C
R

S
O

S
I

D
LE

D
C

1
D

C
2

D
C

3
D

C
4

N
A

K
S

Y
N

E
TB

C
A

N
E

M
S

U
B

E
S

C
FS G

S
R

S

U
S

01 ! " # $ % & ’ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
10 @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ˆ _
11 ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ∼ DEL

ASCII table (hex) The chart below shows the exact same information but with hexadecimal numbers:
the (half-)line position indicates the first hex digit, and the column position indicates the second hex digit.

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0- N
U

L
S

O
H

S
TX

E
TX

E
O

T
E

N
Q

A
C

K
B

E
L

B
S

TA
B

LF V
T

FF C
R

S
O

S
I

2- ! " # $ % & ’ () * + , - . /
4- @ A B C D E F G H I J K L M N O
6- ` a b c d e f g h i j k l m n o

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

1- D
LE

D
C

1
D

C
2

D
C

3
D

C
4

N
A

K
S

Y
N

E
TB

C
A

N
E

M
S

U
B

E
S

C
FS G

S
R

S

U
S

3- 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
5- P Q R S T U V W X Y Z [\] ˆ _
7- p q r s t u v w x y z { | } ∼ DEL

Exercise 9 (pen & paper) What is the ASCII code of digit “7” ?

Exercise 10 (pen & paper) Decode the message below:

Byte (hex) 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 20 21
Text

4

Exercise 11 (pen & paper) Encode your first name in ASCII.

Exercise 12 (hands-on) Use python to play with ASCII encoding and decoding. The relevant functions
are chr() to go from integers to characters, and ord() to go the other way.

5 RGB
Binary numbers can also represent colors. In the RGB model, a color is described by indicating how
much of each of the red, green, and blue light is included. The color is expressed as an RGB triplet
(r,g,b), where each component can vary from zero to a defined maximum value. If all the components
are at zero the result is black; if all are at maximum, the result is the brightest representable white.

Exercise 13 (hands-on) Download rgb.py from Moodle, and type python3 rgb.py FFFFFF to
execute it. The last argument on the command-line is a hex triplet describing the desired color
with three byte values (from 00 to FF in hexadecimal). In other words 000000 means “black” and FFFFFF
means “white”. Try both. Then, using trial and error, find out the hex triplets corresponding to standard
colors like yellow, purple, orange, cyan, etc.

5

	1 Counting in base 2
	2 Decimal-to-Binary Conversion
	3 Hexadecimal Notation
	4 Representing text with ASCII
	5 RGB

