
INSA INSTITUT NATIONAL
DES SCIENCES
APPLIQUÉES
LYON IST Semester / Operating Systems

Chapter 9: Dynamic memory allocation

1 Warmup: text input/output with <stdio.h>
In this chapter we are going to write several small programs which operate on text in the form of character
strings. Let’s start by reviewing useful functions from the standard library.

Exercise 1 Implement a program llen.c which reads its standard input line by line, and counts
characters on each line, like illustrated below. Use functions fgets() from stdio.h to read input,
strlen() from string.h to count chars1, and printf() to display the results.
Like in minigrep in chapter 7, use a line buffer i.e. a single character array of fixed size (e.g. 1kB) and
assume that input will never overflow.

$ /bin/ls ∼ | ./llen
5 a.txt
7 Desktop
9 Documents
9 Downloads
5 Music
8 Pictures
6 Public

10 readme.txt
8 some dir
6 Videos
4 Work

Exercise 2 The Unix rev command reads lines from its standard input and copies them to standard
output, but reversing the order of characters in every line. Try it with e.g. /bin/ls ∼ | rev then
implement a myrev.c program which does the same, using the fputc() function to print individual
characters.

2 Recursive data structures
We learned in chapter 8 that the struct keyword can be used to define so-called composite data
types aka structures. A structure type can have several fields with various types, either scalar types
like int, float, char or reference types (i.e. pointers) like int *, char *, etc. Today we learn that it
is also possible to define recursive types by having one (or more) field be a reference to another object
of the same type:

struct node {
int value;
struct node *next;

};
value next

1note that strlen() does count the ’\n’ character at the end of the line, but not the ’\0’ marking the end of the string.

1

~
~


As illustrated on the preceding page, every object of type “struct node” has two fields: an integer,
and a pointer to another struct node. This makes it possible to build a linked list containing several
nodes:

42

head
−15

99

Remarks
• A linked list is very different from an array (cf chapter 5) because successive nodes are not

necessarily close to each other in memory.
• We generally keep track of the list head using not a struct but a pointer to a struct, declared for

example as struct node *head;
• The weird shape on the right (which looks like an electronics ground symbol) represents the list

end, encoded as a null pointer. In other words, in our last node, value is 99 and next points
to address zero. There is no universal convention for representing null pointers in a diagram, so
choose your favourite.

• An empty list would have no nodes, i.e. head = NULL.
• The K&R describes pointers to structures in §6.4 and “self-referential structures” in §6.5. Go read

those.

Exercise 3 Write a program mylist.c where you create the list illustrated above (all three nodes can
be global variables, or local to main()), including the head pointer. Then walk the list in a while loop to
print all values, like illustrated below:

$ ./mylist
42
-15
99

3 Dynamic allocation
The C language offers two ways of allocating memory space to store data: automatic and manual.
Automatic memory allocation happens implicitely, everywhere we declare a program variable. So-
called global variables are allocated just once, in a dedicated region of memory. So-called local
variables are allocated on the execution stack (cf IST-ASM chapter 8) when entering a function, and are
automatically deallocated when leaving the function.
But if we want to create a new list node at every iteration of e.g. a while loop, this is not enough: we want
to manually create a new object in memory each time. This is called dynamic allocation of memory.
The C language includes a function named malloc() which does just that: malloc(N) searches for a
free block of size N bytes and returns its address.
Compared to automatic allocation, dynamic allocation takes more effort (because we must explicitely
invoke a function) and offers slower performance (because of the execution time of the allocation
algorithms) but it is a lot more flexible.

Exercise 4 Modify your programs from section 1 to use malloc() instead of automatic allocation.
• You will need to add #include <stdlib.h> near the top of your source files.

2



Exercise 5 To help with manual allocation, C provides the compile-time unary operator sizeof()
that can be used to compute the size of any data type, including structures: sizeof(typename)
evaluates to the number of bytes occupied by one object of that type. Write a small program to display2

the memory size of types int, char, float, double, int*, char*, float*, double*, char[100],
struct fraction (from chap 8), and struct node. Try to guess the results before running your
program, and ask us for help if anything seems confusing.

4 Putting it all together
Exercise 6 The unix tac command reads all lines from its standard input, then copies them to stdout
but in reverse order.3 Try it with e.g. /bin/ls ∼ | tac then implement a mytac.c program which
does the same. Store all lines in a linked list of struct line objects, where each struct contains a
character array of fixed size. The idea is to repeatedly add new lines at the head of the list. Use function
memcpy() from string.h to copy data from your line buffer into your newly created structs.

Exercise 7 Write a second version of mytac where the struct line does not contain a full array but
only a character pointer, and use malloc() to allocate just the right amount of space for each line, as
per strlen() of your line buffer.

Exercise 8 The unix sort command reads all lines from its standard input, then prints them to stdout
but in lexicographic order according to ASCII encoding. Try it with cat mytac.c | sort . (If the sorting

order seems to ignore leading whitespace, type export LC_ALL=C and try again.)

Then implement a mysort.c program which does the same. Use function strcmp() to compare strings.
The idea is to always keep the linked list sorted, and insert each new line at the correct position.

Exercise 9 (optional) Modify your code from the previous exercise to sort by line length instead.
The resulting tool is probably not useful in itself, but command cat *.c | ./mysortbylen produces
quite nice-looking output.

2sizeof() evaluates to some exotic integer type which printf("%d") might not like. You will probably want to “convert”
(aka typecast) that value into a proper int by writing something like (int)sizeof(sometype).

3tac is the reverse of cat. hilarious, isn’t it ?

3

~

	Warmup: text input/output with <stdio.h>
	Recursive data structures
	Dynamic allocation
	Putting it all together

