
INSA INSTITUT NATIONAL
DES SCIENCES
APPLIQUÉES
LYON IST Semester / Operating Systems

Chapter 5 – Arrays and pointers

1 Pointers and Addresses

Definition A pointer is simply a variable that containts the memory address of a variable (cf K&R §5.1).
In all programs we’ve written so far, we used variables to work with numbers: loop indices, parameter
values, etc. And memory addresses are not different from ordinary numbers.

At runtime, all variables are stored in memory: a char takes one byte, an int is typically 4 bytes, etc. The
size needed to store a pointer depends on the hardware architecture. For instance, a so-called “32-bit
CPU” works with addresses encoded on 4 bytes. However, modern devices (e.g. laptop, smartphone)
are typically based on a “64-bit CPU” which means that a pointer occupies 8 bytes. In the memory
diagram below, a pointer p contains the address of an integer x. We say that p points to x.

· · ·
pointer p (8 bytes)

· · ·
int x (4 bytes)

· · ·

Syntax A variable declared with type T* is a “pointer to some T”, or just a “T pointer”. It does not store
a value of type T, but the address of a value of type T. As illustrated below, such an address can be
obtained with the address of operator (spelled &) also known as the reference to operator. For any
variable V of type T, expression &V evaluates to a pointer (of type T*) to V.

Conversely, we can “follow” a pointer with the dereference operator (spelled *). When P is a pointer of
type T*, expression *P (we say “star-P”) is of type T and denotes the variable pointed by P.

int x; // x is a non-pointer (aka ’scalar’) variable

int *p; // p is a pointer to some int

p = &x; // p now points to x

*p = 42; // x now equals 42

For more info on pointers, read K&R §5.1 again. (really: do it.)

Pointers as arguments In C, function arguments are always passed “by value”: each argument
is evaluated as an expression before the call, and only the resulting value is “copied” into the called
function. However, pointer types can be used as function parameters just like any other data type !
When used correctly, this trick enables a called function to access (and modify) variables belonging to a
calling function.

1

Exercise 1 Type in the program below, execute it, then explain in one sentence what is wrong with this
code. Then fix the type signature of swap(), rewrite its body accordingly, and adjust the call site.

#include <stdio.h>

void swap(int a, int b)
{

int temp=a;
a=b;
b=temp;

}

int main()
{

int x = 5;
int y = 7;
printf("x=%d, y=%d\n", x, y);
swap(x, y);
printf("x=%d, y=%d\n", x, y);

return 0;
}

2 Arrays
Definition An array is a block of memory storing consecutive elements of the same data type. For
instance, declaration int a[8]; allocates an array of eight integers named a[0], a[1], ..., a[7], like
illustrated below.

· · · · · ·
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

In C, arrays and pointers are closely related. Any operation that can be achieved by array subscripting
(i.e. using notation a[i]) can also be done with pointers (i.e. using the star operator). For instance, if pa
is a pointer to an integer, declared as int *pa; then the assignment pa = &a[0]; sets pa to point to
element of a at index zero.1 In other words, pa now contains the address of a[0], so notations a[0]
and *pa are synonyms.
Also, by definition, an array name without brackets evaluates to the address of its element at index zero,
so in practice the assignment above could have been written as pa=a;

Pointer arithmetic By definition, if a pointer pa points to a particular element of an array, then pa+1
points to the next element, pa+i points “i elements after pa”, and pa-i points “i elements before pa”.
In other words, if pa points to a[0], then *(pa+i) refers to element a[i], as illustrated below.

· · · · · ·
*(a+0) *(a+1) *(a+2) *(a+3) *(a+4) *(a+5) *(a+6) *(a+7)

pa

pa+5

For more details on arrays, read K&R §5.3.
1Yes, element at index zero really is the first element, but then element at address 3 really is the fourth element, and so

on. It does get confusing.

2

Exercise 2 Using the code below as a template, write short programs to:
• print all values of tab, using array subscripting
• print all values of tab, using only pointer operations
• print all the addresses of elements in tab, using array subscripting
• print all the addresses of elements in tab, using pointer operations

The length of the array is a known constant (here 10).

int tab[] = {4,-5,8,23,-15,37,89,12,1,-42};

int main()
{

for(int i=0; i<10; i++)
{

...

}
}

Exercise 3 Write a program that loops over an array of numbers and finds the maximum value. The
length of the array is a known constant.

2.1 Bubble Sort

Disclaimer If you took IST-ASM earlier this semester, you already have followed the instructions below.
Please move on directly to the C implementation.
In this section, you will implement a simple sorting algorithm. As stated by Wikipedia2, bubble sort
“repeatedly steps through the input list element by element, comparing the current element with the one
after it, swapping their values if needed. These passes through the list are repeated until no swaps had
to be performed during a pass, meaning that the list has become fully sorted. The algorithm, which is a
comparison sort, is named for the way the larger elements "bubble" up to the top of the list. ”

Example We start with the array T initialized as follows: (6 5 3 1 8 7 2 4). During each pass, the
algorithm iterates on all pairs T[i]/T[i+1] and swaps values if needed:
i=0: 6 > 5 so we swap them: (6 5 3 1 8 7 2 4) → (5 6 3 1 8 7 2 4)
i=1: 6 > 3 so we swap them: (5 6 3 1 8 7 2 4) → (5 3 6 1 8 7 2 4)
i=2: 6 > 1 so we swap them: (5 3 6 1 8 7 2 4) → (5 3 1 6 8 7 2 4)
i=3: 6 ⩽ 8 so we leave the 6 in place and we move on
i=4: 8 > 7 so we swap them: (5 3 1 6 8 7 2 4) → (5 3 1 6 7 8 2 4)
i=5: 8 > 2 so we swap them: (5 3 1 6 7 8 2 4) → (5 3 1 6 7 2 8 4)
i=6: 8 > 4 so we swap them: (5 3 1 6 7 2 8 4) → (5 3 1 6 7 2 4 8)

We’re now finished with the first pass, let’s start again:
i=0: 5 > 3 so we swap them: (5 3 1 6 7 2 4 8) → (3 5 1 6 7 2 4 8)
i=1: 5 > 1 so we swap them: (3 5 1 6 7 2 4 8) → (3 1 5 6 7 2 4 8)
i=2: 5 ⩽ 6 so we leave the 5 in place and we move on
i=3: 6 ⩽ 7 so we leave the 6 in place and we move on
i=4: 7 > 2 so we swap them: (3 1 5 6 7 2 4 8) → (3 5 1 6 2 7 4 8)
i=5: 7 > 4 so we swap them: (3 1 5 6 2 7 4 8) → (3 5 1 6 2 4 7 8)
i=6: 7 ⩽ 8 so we leave them in place, and we have reached the end of the array.

We’re now finished with the second pass.

2https://en.wikipedia.org/wiki/Bubble_sort

3

https://en.wikipedia.org/wiki/Bubble_sort

Exercise 4 (pen & paper) Continue unrolling the algorithm until a whole pass does no swap.

Exercise 5 Write a C program that implements bubble sort in an array of integers. Like in all similar
exercises, the length of the array is an known constant.
To make your work easier, you may want to go after simpler subgoals first, for example:

• Given an index i, swap array elements T[i] and T[i+1];
• Perform a single pass on the entire array, swapping elements as needed;
• Repeat such passes until the array is fully sorted.

3 Strings
In C, strings are implemented as arrays of characters, with no explicit indication of length. Instead, a null
byte marks the end of the string. For instance, a literal string constant written as "Hello" is an array
of 6 elements of type char. Even though we only want 5 letters, a C string is always terminated with a
byte of value zero, so that programs can find the end.

In a program, you would typically declare such a string with char s[]="Hello"; which is equivalent to
this more verbose, less elegant syntax:

char s[]={’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

This array of chars can then be manipulated just like any other array. For example, you can print
the ASCII character for the i-th element of a string s with printf("%c",s[i]); or just its numerical
value with printf("%x",s[i]); (for hex) or printf("%d",s[i]); (for decimal). The memory layout
is illustrated below:

· · · · · ·72

s[0]

101

s[1]

108

s[2]

108

s[3]

111

s[4]

0

s[5]

For more info about strings, read the first page of K&R §5.5.

Exercise 6 Write a function with signature int mystrlen(char s[]); which returns the length of
string s, excluding the terminal ’\0’.

Exercise 7 Write a function int htoi(char[] s); which converts a string of hexadecimal digits,
including an optional "0x" into its equivalent integer value. For instance, htoi("2A") will return 42.
Hint: remember that consecutive digits have consecutive ASCII codes, e.g. ’7’-’0’ == 55-48 == 7.

4 Passing command-line arguments to your programs
One first way to interact with an excecutable program is to provide it with parameters when we launch it
from the command line. You’ve already passed parameters to shell programs such as ls or mkdir.
You can also pass command-line arguments to a C program of your own. From the program’s point
of view, CLI arguments become the parameters of the main function. Go and have a look at https:
//www.gnu.org/software/libc/manual/html_node/Program-Arguments.html. It says, among
other interesting things: “command line arguments are the whitespace-separated tokens given in the
shell command used to invoke the program”. Look at the program below.

#include <stdio.h>
int main(int argc, char* argv[]) {

printf("hello!\n");
return 0;

}

4

https://www.gnu.org/software/libc/manual/html_node/Program-Arguments.html
https://www.gnu.org/software/libc/manual/html_node/Program-Arguments.html

Notice the change in signature: the main function now has 2 arguments:
• argc in an integer indicating the number of arguments given to the command line;
• argv is an array (of size argc) of null-terminated character strings. Argument argv[0] will always

be the name of the executable.

Exercise 8 Write a new C program with a main() function that follows the new signature:

int main(int argc, char *argv[]) .

Using the printf() function, print the number of arguments passed to your program at the command
line. To test your program, execute it with different numbers of arguments.

Exercise 9 Write a new C program that prints all the command line arguments it receives when you
launch it from the command line.

5

	Pointers and Addresses
	Arrays
	Bubble Sort

	Strings
	Passing command-line arguments to your programs

