
INSA INSTITUT NATIONAL
DES SCIENCES
APPLIQUÉES
LYON IST Semester / Operating Systems

Chapter 3 – Using the Unix command line
Even though a CLI shell may look scary at first, its original purpose really is to serve as a user-friendly
everyday environment. Most shells offer a variety of quality-of-life features worth learning. Today we
take a quick look at some of them.

1 Entering shell commands in the terminal
1.1 Auto-completion
Exercise 1 Typing is boring (and slow) but the shell comes with various ways of reducing this effort. In
chap. 1, we already used TAB-completion to avoid typing command names in full. This also works
with command arguments: type ls /home/gs then press TAB instead of ENTER. Nothing happens
just yet, because there are several possible completions, we have to press TAB again to see the list of
matches. Press “a” then TAB once more, and observe that the list of candidate arguments is now reduced.
How many more letters do we need before TAB-completion correctly guesses ls /home/gsalagnac ?

1.2 In-line editing
Exercise 2 Unfortunately, the shell cursor (in the terminal window) has no interaction with the mouse
pointer (in the GUI desktop). Still, keyboard shortcuts are provided to improve our comfort when editing:
the left/right arrow keys move the cursor in the current line; Ctrl-A and Ctrl-E move to the beginning and
end of line, respectively; Ctrl-C discards the current line. Try those !
Exercise 3 (optional) If you want to become a programmer, then now is probably a good time to get
familiar with the full list of shortcuts: https://en.wikipedia.org/wiki/GNU_Readline. Most of these are
very useful in practice, especially the internal “clipboard” of the shell, available through ctrl-K (cut from
cursor to end-of-line), ctrl-Y (paste), and also key sequences like ESC then “d” (cut one word forward),
or ESC then BACKSPACE (cut one word backwards). Ask us for help !

1.3 Command history
Exercise 4 The up/down arrows navigate in your command-line history so that you can recall (and
possibly modify) a previous command without having to type it again. Type history to display the full
list, and notice the numbers in the left column. You can repeat any previous command using this “history
number”, for instance typing !5 will repeat the fifth command in your history.
Exercise 5 You can also search the history interactively: press Ctrl-R to enter “reverse-i-search
mode” then type a few letters. You can cycle through alternatives by repeatedly pressing Ctrl-R. When
you found the right command, press ENTER to run it directly, or left/right arrow to edit it first.

1.4 Wildcards
A command line consists of a command name followed by zero or more arguments. To reduce the effort
of entering long lists of arguments, the shell understands so-called wildcards, special syntax patterns
which it expands to a list of matching filenames before running the actual command:

• an asterisk “*” gets replaced by any number of characters (except the slash “/”). For instance,
“*cake” can stand for “cheesecake”, “carrotcake”, just “cake”, etc. Similarly, “doc/*.txt” will
expand to the list of all files in subdirectory “doc” with a name ending in “.txt”. You can also write
“*/*.txt” to do the same in all subdirectories (each wildcard gets expanded separately)

• a question mark “?” matches any single character (again, except the slash “/”). For instance,
command mv ?.txt shorts/ will move all files named with a single character followed by “.txt”
from the current directory to directory “shorts”, while “??.txt” would match all files whose name
consists of 2 characters followed by “.txt”.

For more info please read https://en.wikipedia.org/wiki/Glob_(programming)

1

https://en.wikipedia.org/wiki/GNU_Readline
https://en.wikipedia.org/wiki/Glob_(programming)


Exercise 6 Use wildcards to see how many header files (name ending in .h) in /usr/include have a
name beginning with “std”.

Exercise 7 How many subdirectories of /usr/include contain a file named stdio.h ?

Exercise 8 Wildcard expansion (aka filename globbing) is a feature of the shell itself, not of the
individual commands. Observe how ls /home/gs* yields many error messages (because homedirs

are private by default, so ls cannot read their contents) but we can say echo /home/gs* just fine.
Note that the echo command simply prints its command-line arguments one by one.
By the way, one can prevent wildcard expansion by enclosing the offending pattern in single quotes e.g.
echo ’/home/gs*’ , or even just echo /home/gs’*’ . The shell removes the quotes before running

the command. Try it !

2 Paths and files

One of the genius ideas of Unix is that “everything is a file”1. More precisely, a lot of system features
offer an interface that can be treated like a file, i.e. a stream of bytes associated with a path in the
filesystem. This is true of reading and writing ordinary files on disk, of course, but also of network
communications (aka sockets), inter-process communications, hardware peripherals (e.g. keyboard,
screen) and many more.
Every process starts executing with three of these communication channels known as the standard
streams2: standard input (stdin), standard output (stdout) and standard error (stderr). By default
all these streams are connected to the terminal: stdin reads text from the keyboard (this is how we type
commands in the shell), and stdout/stderr both print text on the screen.

2.1 File redirection

Command-line shells fully embrace this “everything is a file” philosophy and provide many features to
help us work with files. One of the most obvious is stream redirection operators, which let us control
where standard streams are connected for a particular command:

• writing command < filename will run command with no arguments but with its standard input
reading from filename instead of the keyboard.

• similarly, command > filename redirects the standard output of the process into some file.
• finally, the “>>” operator is similar to “>” but it preserves the previous contents of the file and just

appends new lines at the end.

Exercise 9 Play with these operators in simple commands and ask us questions until you feel
comfortable with them. Remember: we used that in chapter 2 already !

2.2 Pipes

Even more powerful, Unix shells allow for writing complex commands involving several programs
cooperating together in a so-called command pipeline.3 Writing command1 | command2 will run both
programs with command1’s stdout “connected” to command2’s stdin. This is useful because many unix
programs are designed to operate on lines of text within such a pipeline. Here are a few examples:

• grep STRING acts as a filter: it reads lines from stdin and prints (on stdout) all lines containing
the given string.

• grep -v STRING does the reverse: it only prints lines which do not contain the string.

1https://en.wikipedia.org/wiki/Everything_is_a_file
2https://en.wikipedia.org/wiki/Standard_streams
3https://en.wikipedia.org/wiki/Pipeline_(Unix)#Pipelines_in_command_line_interfaces

2

https://en.wikipedia.org/wiki/Everything_is_a_file
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Pipeline_(Unix)#Pipelines_in_command_line_interfaces


• find PATH searches all files and subdirectories recursively under a given path and prints their
paths.

• find PATH -name PATTERN does the same but only prints filenames matching the given
pattern. Warning: the pattern syntax is almost the same as shell wildcards, so you should
use single quotes to tell the shell that it should not interpret the pattern, for instance
find /usr/include/ -name ’std*.h’ (try it !)

• sort reads all lines from stdin then prints them out in alphabetical order.
• head -n 42 prints only the first 42 lines of input. Similarly, tail -n 15 only prints the last 15

lines of stdin.
• wc -l reads all lines from stdin then prints a line count.

Exercise 10 Try each of the commands above once, and open their man page. Ask us for help if
you’re struggling.

Exercise 11 How many header files are there in total under /usr/include ?

Exercise 12 Still starting from there, how many files in total have the name stdio.h ?

2.3 Special files

You’re already familiar with the ls command which displays the contents of a directory, i.e. its files
and subdirectories. But by default, ls omits entries whose name starts with a dot, like .bashrc in your
homedir. By convention, those are called hidden files aka dotfiles4.

Exercise 13 In the man page of ls, find which option causes the listing to show everyting, even the
dotfiles. Try it on your homedir.

Exercise 14 By default, the “*” wildcard omits hidden files too: type ls ∼/* and observe that file
.bashrc is not listed. Compare with ls ∼/.* which shows only dotfiles. What ls command line
should we type to list everything in a directory without using any option ?

Exercise 15 While doing the previous exercises, you may have noticed two hidden directories with
names “.” (pronounced “dot”) and “..” (pronounced “dot dot”). These names exist in every single
directory: “.” refers to the directory itself, and “..” refers to its parent directory. This is why we can
type cd .. (cf chap 1) to move up the tree, and why we can type ./myprog (cf chap 2) to run an
executable from the current directory.
Guess what is the effect of command cd /../../../../ then run it to verify your hypothesis.

2.4 Miscellaneous

Exercise 16 Every process has its own current working directory aka CWD, which can be modified
through the appropriate system call (this is what the shell does when we use the cd command). When a
new process is created, it inherits the CWD from its parent process. This is how ls knows what to
show when given no explicit argument. Try command pwd to print your current working directory, then
read its manual page.

Exercise 17 Type ls /dev and observe that the kernel exposes many devices as file-like objects.
You can ignore most of those for everyday use. Most useful, however is the /dev/null special file5,
which acts as a data sink: all writes to /dev/null are simply discarded. Thus, we can redirect the
standard output of any command to hide it from the terminal.

4https://en.wikipedia.org/wiki/dotfile
5https://en.wikipedia.org/wiki/Null_device

3

~
~
https://en.wikipedia.org/wiki/dotfile
https://en.wikipedia.org/wiki/Null_device


3 Process control

3.1 Basic process manipulation

Commands we have seen so far generally perform a simple task and terminate quickly. But commands
can be used to start any type of program in the system, including long-term ones (e.g. a web brower, a
text editor, etc.).
When we say that commands typed in the shell actually start programs, the exact term is process. A
process is an instance of a program that is currently being executed by system. It generally includes,
the program binary code and a region of the memory for the running program to store its data. Chapter 6
will further delve into the topic of processes. For now, suffice it to say that when typing the name of
a program we want to execute, you actually ask the system to create a process for this program and
execute that process.
One first observation when asking to run a program from the shell, is that, if this program does not
terminate right away, you “loose control” over the shell.

Exercise 18 Type xeyes . This lauches a useless, yet funny, graphical program. In that state, we say
that xeyes is running in the foreground, preventing any interaction with the shell.
You can regain control over the shell, by pressing Ctrl-C in the terminal window, which will kill the
foreground process.

Exercise 19 Restart xeyes, and in the shell window, now press Ctrl-Z to suspend the xeyes
program. The shell then says something like ‘‘[3] + 286397 suspended xeyes’’. By doing so,
you get control over the shell back, but the xeyes is not responsive anymore. You can resume it (and
loose again control over the shell) by typing fg . Alternatively, you can force it to execute in the
background by typing bg . the shell now says ‘‘[3] - 286397 continued xeyes’’. You get your
cake and eat it too: the xeyes now runs normally and you can still use your shell.

Exercise 20 We could have directly launched the xeyes program in the background by appending an
ampersand symbol & to its name. Try typing xeyes & in the shell, and observe that this both launches
the xeyes program and directly gives you control over the shell back.

3.2 Process identification

You may wonder what is the large number (in our case 286397) that appears alongside the xeyes name.
It actually is the Process Identifier, or PID. It’s a unique number that identifies every running process in
the system.

Exercise 21 Type command ps (process snapshot) to get a list of processes currently running on
your system. This list is incomplete, but you can see your xeyes program there, associated with its PID.

Exercise 22 Another view of running processes is available through the top command. It displays
a real-time of all processes in the system, ordered by CPU usage (cf figure 1 on the facing page) For
each process, top gives its PID, USER, then a few numbers we won’t get into now, then the fraction of
CPU time (%CPU) and memory space (%MEM) consumed by the process. The name of the command that
started the process is given at the far right of the line.

As mentionned above, processes can be killed on demand. Alongside Ctrl-C that can only be used
to kill a process running in the foreground, you can use the kill command, which takes a PID as
argument.

Exercise 23 Try it on the xeyes program.

4



Figure 1: top: displaying the real-time view of the running system.

4 Optional: shell scripting
Learn about shell scripting at https://www.shellscript.sh/

5 Optional: build automation with make
Learn about the make tool at https://makefiletutorial.com/

5

https://www.shellscript.sh/
https://makefiletutorial.com/

	Entering shell commands in the terminal
	Auto-completion
	In-line editing
	Command history
	Wildcards

	Paths and files
	File redirection
	Pipes
	Special files
	Miscellaneous

	Process control
	Basic process manipulation
	Process identification

	Optional: shell scripting
	Optional: build automation with make

