INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

LYON IST Semester / Operating Systems

INSA

Chapter 1 — First steps on the Unix command line

As users of digital services we are all familiar with the notion of application program, a piece of
software that performs a specific task, such as writing documents, playing games, or browsing the
web. But applications are not designed to run alone on bare hardware: computers are too complex and
too diverse for every application to support every machine. Instead, computers are equipped with an
operating system, a set of utility programs that collectively form an execution platform for applications.
Example of operating systems include Microsoft Windows, MacOS, Android, etc.

1 Setting up your work environment

In this course, we will be doing all our practical work on Linux. There are several flavours of Linux
operating systems available out there, like Fedora, Ubuntu, Debian, etc. If you already have a favourite
version of Linux, then use it and skip directly to section 3 on page 2. Otherwise, please follow the
instructions below.

The easiest way to get started is to use the Ubuntu virtual machine that we provide in section 2 below.
However, there are several alternatives that would work just as well (in no particular order):

Install a Linux distribution on your laptop, possibly as a dual boot option alongside Windows.
Create a bootable USB stick with a /ive version of e.g. Ubuntu or Fedora.

Install a Linux distribution inside a virtual machine (through VirtualBox or VMWare).

Use the Windows Subsystem for Linux (WSL).

Work through SSH on a remote Linux host. For instance, INSA provides such machines with
names of the form 2d-1inux-NNN.insa-1yon.fr (for NNN in 001 to 150).

Not use Linux but another system from the Unix family, such as macOS. Most of this course (not
all, but most) will still apply.

You are encouraged to explore (and/or combine several of) these solutions. Please don’t hesitate to ask
us for help, even though we cannot promise to solve all your setup problems. In all cases, please do
give us feedback on your work environment of choice !

2 Using the provided Ubuntu Virtual Machine

We provide you with a virtual machine based on the Ubuntu distribution (version 24.04.3). To setup a
working environment, you have to:
e Install VirtualBox. Go to https://www.virtualbox.org/wiki/Downloads, and select the version
corresponding to your host system.
e Download the VM itself (an .ova file), by following the link on the course’s page on moodle:
https://moodle.insa-1lyon.fr/course/view.php?id=10208
e Launch VirtualBox. Choose “Import Appliance” from the menu. VBox will ask you to provide the
.ova file you downloaded before. This imports an VM called ubuntu-IST-OPS
e Start the VM (either double click on its name or click the green arrow. A window opens with the
ubuntu desktop, asking you to log into the ubuntu system.
e Use the following credentials to login:
Login: vboxuser — password: istops2025
You will get a complete linux (included its graphical interface) and you can follow through section 3.

1

https://www.virtualbox.org/wiki/Downloads
https://moodle.insa-lyon.fr/course/view.php?id=10208

3 Through the Looking Glass: First Steps in Unix Land

Modern Linux systems such as Ubuntu come with a Graphical User Interface (GUI) similar to Windows
or MacOS. But for the purpose of this course, we will mostly interact with the system through its
Command-Line Interface (CLI). Historically, command-line interfaces emerged in the 1960s as a more
user-friendly alternative to punched cards. Sitting in front of a computer terminal (a screen+keyboard
device connected to a computer) the user would type their inputs interactively and read the results as
text in real-time.

Nowadays, most users rely on graphical user interfaces for their everyday use. However, many programs
and operating system utilities have no GUI, and are intended to be used through the command-line.
For this reason, modern systems generally include a terminal emulator program, often referred to
as just a terminal. This combination brings the benefits of both worlds: the expressive power of the
command-line and the comfort of a graphical interface.

3.1 Terminal, Shell, Commands

Exercise 1 Open a terminal window. On the Ubuntu VM, the Terminal application can be launched
from the menu bar on the left of the screen.

Exercise 2 Any text typed in the terminal window is fed to a shell', i.e. a command-line interpreter, in
our case the bash shell. The shell presents itself as a command prompt (cf figure 1) waiting for you to
type a line of text. Start by typing your login name then press “enter”: the shell will complain that it is not
a valid command (cf figure 2). The shell only understands a finite number of command names. We will
explore some of them today.?

M vboxuser@ubuntu-IST-OPS: ~) = = = X

vboxuser@ubuntu-IST-OPS: ~

vboxuser@ubuntu-IST-0PS:~% vboxuser@ubuntu-IST-0PS:~$ lmorel
lmorel: command not found

vboxuser@ubuntu-IST-0PS:~$

Figure 1: A new terminal window, ready to accept Figure 2: An invalid command line.
commands.

Exercise 3 Type command and observe the results. A command line is a list of words
separated by spaces: the first word is the command name and the rest are the arguments. By
convention, arguments starting with a dash are called options. Type command |date -d yesterday
and compare the results.
It is the responsibility of the shell to split the line into word arguments before running the actual command.
When needed, we can also group multiple words into a single argument, by enclosing them in quotes,
e.g. |[date -d "next month"|.

lyes, like an eggshell. cf https://en.wikipedia.org/wiki/Shell_(computing)
2Thanks to Igor Khmelnitsky for the inspiration. http://www.lsv.fr/~khmelnitsky/teaching/2019-2020/
arch_sys/tp01_eng.pdf

https://en.wikipedia.org/wiki/Shell_(computing)
http://www.lsv.fr/~khmelnitsky/teaching/2019-2020/arch_sys/tp01_eng.pdf
http://www.lsv.fr/~khmelnitsky/teaching/2019-2020/arch_sys/tp01_eng.pdf

Exercise 4 You have probably already come across other types of prompts. For instance in the Python
interpreter, the prompt looks like “>>> ”. Type python3 and play with python for a bit. Notice how our
input is not interpreted by bash anymore, until we type quit () to terminate python and go back to the
shell. What happens is, a terminal can accommodate several programs at the same time but only one
of them can be in the foreground at any point. All programs can print text on the terminal, but only the
foreground program will receive keyboard input.

Exercise 5 While in the middle of typing a command line, you can press the “TAB” key and the shell
will try to auto-complete your command. Type “dat” and then press “TAB”. Press Ctrl-C to cancel. If
there are has a multiple matches for completion, the shell will do nothing, but pressing “TAB” again will
print out all of the completion matches. Type just “da” and then press “TAB” twice. Notice how there are
several matches. Type an additional “t” and press “TAB” again.

Exercise 6 You may have noticed that in a terminal, pressing Ctrl-C does not trigger the usual copy-
and-paste mechanism?®, but instead it means “please stop the current foreground command”. However,
you can copy-and-paste with Shift-Ctrl-C and Shift-Ctrl-V.

3.2 Looking for help

Of course there are many ways to find help:
e invoke a command with option --help at the end usually shows a help screen, e.g. |date --help|,
e use a web search engine, e.g. visit https://duckduckgo . com and type “unix date command”.
e ask a fellow student or teacher,
e but when everything else fails, you might want to just RTFM.

Linux comes with a builtin documentation system that is accessible through a dedicated shell command
named man (short for “manual”) You can type man followed by the name of a command and you will see
some documentation for that command. All man pages are organized in a similar way:
1. NAME : name and purpose
SYNOPSIS : short summary of the command-line syntax
DESCRIPTION : long description, typically listing all supported options
sometimes other sections, like EXAMPLES, or KNOWN BUGS
AUTHOR : the people who developed the program
SEE ALSO : references to other docs: man pages, websites, etc

2

Exercise 7 Type and try the following: scroll with up/down arrows, advance by one screen
with “space”, and go back to the top with “g”. To search for some text, press “/” then your search query
followed by “enter”, then use keys “n” and “N” (i.e. Shift-N) to navigate between search results. Press “h”
to get some help and press “g” to exit and return to the shell.

3.3 Essential commands: Is, cd

Exercise 8 Browse the man page for 1s and answer the following questions:
1. In no more than 10 words, what is the purpose of this command ?
2. Which option will print the name of all the files, even the “hidden” ones ? (by default, filenames
starting with a dot are not shown, for instance .bashrc)
3. Which option will print the listing with a longer, more detailed format ?
4. Which option will print the size of the files in a human readable way ?
5. Which option will recursively print all the subdirectories of a given directory ?

Note the file named .bashrc is a configuration file for the bash shell (more on that later)

3this is for historical reasons: unix terminals and shells predate the idea of copy-and-paste by quite some time

3

https://duckduckgo.com

Exercise 9 Read the man page for cd and find our what this command is for. Then:
e Go to the /tmp directory at the root of the system and list its contents;

e Return to your home directory;
e What does do ? What does [cd| with no arguments do ?

4 Working With Files

4.1 File system organisation

One of the key principles of the Unix philosophy is that “everything is a file”. To keep things organized,
all files in the system are structured as a giant tree, where every node has an associated name, like
illustrated in figure 3. Internal tree nodes are called directories (aka folders) and they contain other
directories as well as ordinary files. The topmost node is called the root directory and is denoted by “/”.
Every node can be denoted by its path from the root (e.g. /home/vboxuser/.bashrc). Some important
directories:

e /bin is where most of the shell commands are stored, e.g. /bin/date or /bin/1s

e /home contains all the users’ personal directories

e /home/yourlogin is your personal home directory. In the shell, you can type “~” as a shortcut

for this path, e.g.
e /tmp is for temporary files. It is emptied every time the system reboots

dev etc bin home usr

N AN

. - - —
ls gcc firefox tmorel gsalagnac include] | lib share

—\ —\ b A
OPS Work vivado.log .bashq math. syscall.h

Figure 3: Typical directory hierarchy of a Linux filesystem.

A command-line shell provides basically the same features as a graphical file manager. In the following
exercises you will learn how to create new files and directories (sections 4.2 and 4.3), how to copy
and move things around (section 4.4), how to look into files (section 4.5), and also how to delete them
permanently (section 4.6).

Warning A CLlI shell is a powerful tool and it will blindly obey your commands. However, what you type
may or may not be what you wanted. Compared to a typical GUI system, there are fewer safety nets
and some actions cannot be “undone”. This can feel intimidating at first, but having such a powerful tool
under your belt will often prove very useful.

~
~

4.2 Creating directories: mkdir

Exercise 10 Type and read the manual page. Within your home directory, create a
directory named “ops”.

Now we want to create a directory with path “~/a/b/c/d”. Look in the mkdir man page for the option to
create this entire directory hierarchy in just one command.

Exercise 11 Try to create a directory under the /usr folder. What error message do you get in
response? Explanation: an ordinary user is allowed to read/write everything under their homedir, but
the rest of the filesystem is only accessible read-only, to protect the system against (accidental or
intentional) damage. You would need administrator (aka super-user, aka root*) privileges to modify
these files (cf section 4.7 on the following page).

4.3 Creating empty files: touch

Exercise 12 Read the first lines of the touch man page. Create an empty file named readme. txt
inside the ops folder. Using cd and 1s, make sure your file has been created.

4.4 Copying and moving things around: cp and mv

Exercise 13 Browse the man page for the cp command.

Use it to create a copy of your readme. txt file named readme new. txt.

Try to copy the readme new. txt to a file that has the same name. What happens?

The cp command can also be used to copy folders. Look at the man page again and read the description
of the -r option.

Exercise 14 Copy the whole the ops folder to a new location e.g. ops_new. Enter that folder, and
check that all the original contents has been duplicated here.

The mv command lets you move files and directories around. Now instead of duplicating things, we can
change their location anywhere in the file system. Anywhere? well, only in places we have write-access
to, of course. But we'll cover this later.

Exercise 15 Create a new directory named work inside your home folder. Note that you can do that
from anywhere in the file system, by specifying the full path, e.g |mkdir /home/yourlogin/work |or

even better, by using the “~” shortcut.
Now move your original ops folder to place it under your work directory.

4.5 Looking at files

Many files in the system are so-called plain text documents i.e. they just contain ASCII characters with
no formatting. Plain text files are important for the rest of the course, and for programming in general,
because all tools in the programming universe (compilers, editors, etc) work with those.

Exercise 16 Go into the ~/work/ops directory, and type |code readme.txt| This opens Visual
Studio Code, a simple IDE that you will use to write your programs.
Modify the file by adding some lines, save it.

Exercise 17 We can edit files with a graphical editor. But we can also display their content from the
command line directly. This is often interesting for quickly checking some info (configurations of system
variables, quick tour of a program, etc).

Back in the shell, use commands cat and less to observe the content of the readme . txt file.

What is the difference between these two commands ? Browse their respective man pages to find out.

“Warning: Don't get confused, there are two different concepts involving that same word: “root directory” https:
//en.wikipedia.org/wiki/Root_directory vs “root user” https://en.wikipedia.org/wiki/Superuser

5

~
~
~
https://en.wikipedia.org/wiki/Root_directory
https://en.wikipedia.org/wiki/Root_directory
https://en.wikipedia.org/wiki/Superuser

4.6 Deleting stuff: rm and rmdir

Exercise 18 Browse the man pages for commands rm and rmdir.
Navigate to your ~/work/ops/ folder and type [rm readme.txt |to remove the file. Go back to the
parent folder with [cd . . | From there, we now want to delete the whole ops folder.

Try command [rm ops|and watch it fail:

$ rm ops
rm: cannot remove ’ops’: Is a directory

Now try and type | rmdir ops |, which fails too:

$ rmdir ops
rmdir: failed to remove ’ops’: Directory not empty

Indeed, the ops folder still contains the readme_new. txt file.

There are two ways to actually delete the entire ops directory:
e First remove everything inside, i.e. go into the folder, and remove the readme_new.txt file. Then,
remove the (now empty) directory itself with rmdir.

e Force the removal of the whole ops hierarchy by typing |rm -rf ops|. Go read the rm man page
again to learn more about these options.

Warning! Saying rm -rf asks for deletion of a whole directory tree, without further confirmation. Use
this command with extreme caution or you will lose precious data.

Exercise 19 To make these commands less error-prone, open your ~/ .bashrc file in VSCode and
add the following lines at the bottom:

alias rm="rm —-¢"
alias cp="cp -<"
alias mv="mv -"

What does this -i option do ?

4.7 File ownership and access rights

In the shell, go back to your home directory and type 1s -1 You will see something comparable to
figure 4.

Let’s go through all columns, from right to left. For each file, we have: its name, its timestamp of last
modification (aka mtime),’ its size (in bytes)® , then some ownership info (login and group names), then
its link count (let’s ignore that for now), and finally a series of rwx letters.

The leftmost column describes the access rights to the file, in a sequence of characters similar to e.g.
“~rw-r--r-" or “druxr-xr-x”. You should read this sequence in four groups of 1, 3, 3, and 3 boolean
flags, respectively:

e The very first character is “-” for an ordinary file or “d” for a directory.”

e The first rwx trigram indicates the access rights (read, write, execute) for the file’s owner

e The second rwx trigram indicates the access rights for the members of the file’s owning group

(let’s ignore groups for now)
e The last rwx trigram indicates the access rights for everyone else.

The x flag means execute: for an ordinary file, it means that the file contains an executable program,
which we can run from the the shell by typing its name. For directories, it means that one is allowed to
navigate (e.g. with cd) to that directory.

5Try to touch a file and observe that it changes its mtime
8Warning: a directory’s size info has nothing to do with the total size of files in that directory.
’Or it can be “1” for a symbolic link to another path, but we’ll ignore that for now

6

~
~

Exercise 20 Use 1s -1 to explain why you can create new files and directories under /tmp but not

under /usr.

Exercise 21

Exercise 22 Even without the -1 option, command 1s can tell us some details about the file with
the -F option. Try it out, then find it in the 1s man page. Open your ~/ .bashrc once more and add the

File Edit View

lmorel@2D-LINUX-144:

total 32
drwxr-xr-x

2

2

2
drwxr-xr-x 2
drwxr-xr-x 4
drwxr-xr-x 2
drwxr-xr-x 2
drwxr-xr-x 2
drwxr-xr-x 2
drwxr-xr-x 2
“P=r==r-- 1

W

-TWXT-Xr-X
-TW-T--T--
drwxr-xr-x
drwxr-xr-x

HENGNNE -

6

Lmorel@2D-LINUX-144:

Search

lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
lmorel
Imorel
root

lmorel
Imorel
lmorel
lmorel

Imorel@2D-LINUX-122: ~

Terminal Help

~$ 1s -1

dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin
root

dsiuseradmin
dsiuseradmin
dsiuseradmin
dsiuseradmin

Bureau
Desktop
Documents
Downloads
hpeesof
Music
ops
OPS
Pictures
Public
skip du check insa
snap
tabstat
tabstat.c
Templates
tp
tsclient
Videos
vivado.jou
vivado.log
14:28 Work

Figure 4: Output of the 1s -1 command.

If you want to know more about access rights, read the man page of command chmod
and try it out on a few examples. Otherwise you can probably forget about it.

aliases below. Then play with them in your home directory.

alias
alias
alias
alias
alias
alias

1s="1s
11="1s
la="1s
lat="1s
lart="1s
larS="1s

_hFII
_II n
-la
-lat"

-lart"”
-larS"

n

~

	Setting up your work environment
	Using the provided Ubuntu Virtual Machine
	Through the Looking Glass: First Steps in Unix Land
	Terminal, Shell, Commands
	Looking for help
	Essential commands: ls, cd

	Working With Files
	File system organisation
	Creating directories: mkdir
	Creating empty files: touch
	Copying and moving things around: cp and mv
	Looking at files
	Deleting stuff: rm and rmdir
	File ownership and access rights

