
INSA INSTITUT NATIONAL
DES SCIENCES
APPLIQUÉES
LYON IST Semester / Operating Systems

Chapter 1 – First steps on the Unix command line
As users of digital services we are all familiar with the notion of application program, a piece of
software that performs a specific task, such as writing documents, playing games, or browsing the
web. But applications are not designed to run alone on bare hardware: computers are too complex and
too diverse for every application to support every machine. Instead, computers are equipped with an
operating system, a set of utility programs that collectively form an execution platform for applications.
Example of operating systems include Microsoft Windows, MacOS, Android, etc.

1 Setting up your work environment

In this course, we will be doing all our practical work on Linux. There are several flavours of Linux
operating systems available out there, like Fedora, Ubuntu, Debian, etc. If you already have a favourite
version of Linux, then use it and skip directly to section 3 on page 2. Otherwise, please read on.

The easiest way to get started is to use INSA’s Virtual Desktop Infrastructure, as described in section 2
below. However, there are several alternatives that would work just as well (in no particular order):

• Install a Linux distribution on your laptop, possibly as a dual boot option alongside Windows.
• Create a bootable USB stick with a live version of e.g. Ubuntu or Fedora.
• Install a Linux distribution inside a virtual machine (through VirtualBox or VMWare).
• Use the Windows Subsystem for Linux (WSL).
• Work through SSH on a remote Linux host. For instance, INSA provides such machines with

names of the form 2d-linux-NNN.insa-lyon.fr (for NNN in 001 to 150).
• Not use Linux but another system from the Unix family, such as macOS. Most of this course (not

all, but most) will still apply.

You are encouraged to explore (and/or combine several of) these solutions. Please don’t hesitate to ask
us for help, even though we cannot promise to solve all your setup problems. In all cases, please do
give us feedback on your work environment of choice !

2 Using INSA’s Virtual Desktop Infrastructure (aka “Bureau Virtuel”)

Visit https://bv.insa-lyon.fr/ and login with your INSA credentials1. You get a selection page looking
like figure 1 below. Choose “2D-LINUX”. You should then see an in-browser Linux desktop (cf figure 2).

Figure 1: Selecting the Linux VM
Figure 2: INSA BV’s Linux desktop

1Note: The login form expects credentials of the form username@insa-lyon.fr (i.e. not just your username and not
email.address@insa-lyon.fr either)

1

https://bv.insa-lyon.fr/


2.1 Switching the interface to English

By default, INSA’s Bureau Virtuel is configured for French. Here is the procedure to switch the whole
interface to English. First open the main menu in the bottom-left corner, and type “langues” in the search
box and then click on “Prise en charge des langues” (see figure 3 on the next page). A small window
appears, cf figure 4.
In the first tab “Langues”, move English to the top of the list. In the “Format régionaux” tab, choose
English from the dropdown menu. Click on “Fermer”.

Now log out then reconnect to the 2D-LINUX virtual machine. A new window appears (see figure 5)
asking you to “Update standard folders to current language”. Click on “Update Names”.

Your system is now configured to show all messages (menus, help pages, etc) in English.

2.2 Configuring the keyboard

By default, INSA’s Bureau Virtuel is configured for French keyboards with AZERTY layout, which is
probably not what you want.
In the main menu, click “Preferences” then “Keyboard” and go to the third tab “Layouts”. Click “+” and
add your preferred layout, then remove “French” with “–” and close the window.

3 Through the Looking Glass: First Steps in Unix Land

Modern Linux systems such as Ubuntu come with a Graphical User Interface (GUI) similar to Windows
or MacOS. But for the purpose of this course, we will mostly interact with the system through its
Command-Line Interface (CLI). Historically, command-line interfaces emerged in the 1960s as a more
user-friendly alternative to punched cards. Sitting in front of a computer terminal (a screen+keyboard
device connected to a computer) the user would type their inputs interactively and read the results as
text in real-time.

Nowadays, most users rely on graphical user interfaces for their everyday use. However, many programs
and operating system utilities have no GUI, and are intended to be used through the command-line.
For this reason, modern systems generally include a terminal emulator program, often referred to
as just a terminal. This combination brings the benefits of both worlds: the expressive power of the
command-line and the comfort of a graphical interface.

3.1 Terminal, Shell, Commands

Exercise 1 Open a terminal window. On the Bureau Virtuel, the Terminal application can be launched
from the main menu (in “System Tools” cf figure 6) or by clicking on its icon in the task bar (cf figure 7).

Exercise 2 Any text typed in the terminal window is fed to a shell2, i.e. a command-line interpreter, in
our case the bash shell. The shell presents itself as a command prompt (cf figure 8 on page 4) waiting
for you to type a line of text. Start by typing your login name then press “enter”: the shell will complain
that it is not a valid command (cf figure 9 on page 4). The shell only understands a finite number of
command names. We will explore some of them today.3

2yes, like an eggshell. cf https://en.wikipedia.org/wiki/Shell_(computing)
3Thanks to Igor Khmelnitsky for the inspiration. http://www.lsv.fr/∼khmelnitsky/teaching/2019-2020/

arch_sys/tp01_eng.pdf

2

https://en.wikipedia.org/wiki/Shell_(computing)
http://www.lsv.fr/~khmelnitsky/teaching/2019-2020/arch_sys/tp01_eng.pdf
http://www.lsv.fr/~khmelnitsky/teaching/2019-2020/arch_sys/tp01_eng.pdf


Figure 3: Finding the "change your language"
option.

Figure 4: The window allowing to change the
system’s language.

Figure 5: Updating standard folder names.

Figure 6: Terminal shortcut in the main menu.

Figure 7: Terminal shortcut in the taskbar.

3



Figure 8: A new terminal window, ready to accept
commands.

Figure 9: An invalid command line.

Exercise 3 Type command date and observe the results. A command line is a list of words
separated by spaces: the first word is the command name and the rest are the arguments. By
convention, arguments starting with a dash are called options. Type command date -d yesterday
and compare the results.
It is the responsibility of the shell to split the line into word arguments before running the actual command.
When needed, we can also group multiple words into a single argument, by enclosing them in quotes,
e.g. date -d "next month" .

Exercise 4 You have probably already come across other types of prompts. For instance in the Python
interpreter, the prompt looks like “>>> ”. Type python3 and play with python for a bit. Notice how our
input is not interpreted by bash anymore, until we type quit() to terminate python and go back to the
shell. What happens is, a terminal can accommodate several programs at the same time but only one
of them can be in the foreground at any point. All programs can print text on the terminal, but only the
foreground program will receive keyboard input.

Exercise 5 While in the middle of typing a command line, you can press the “TAB” key and the shell
will try to auto-complete your command. Type “dat” and then press “TAB”. Press Ctrl-C to cancel. If
there are has a multiple matches for completion, the shell will do nothing, but pressing “TAB” again will
print out all of the completion matches. Type just “da” and then press “TAB” twice. Notice how there are
several matches. Type an additional “t” and press “TAB” again.

Exercise 6 You may have noticed that in a terminal, pressing Ctrl-C does not trigger the usual copy-
and-paste mechanism4, but instead it means “please stop the current foreground command”. However,
you can copy-and-paste with Shift-Ctrl-C and Shift-Ctrl-V.

3.2 Looking for help

Of course there are many ways to find help:
• invoke a command with option --help at the end usually shows a help screen, e.g. date --help ,
• use a web search engine, e.g. visit https://duckduckgo.com and type “unix date command”.
• ask a fellow student or teacher,
• but when everything else fails, you might want to just RTFM.

Linux comes with a builtin documentation system that is accessible through a dedicated shell command
named man (short for “manual”) You can type man followed by the name of a command and you will see
some documentation for that command. All man pages are organized in a similar way:

4this is for historical reasons: unix terminals and shells predate the idea of copy-and-paste by quite some time

4

https://duckduckgo.com


1. NAME : name and purpose
2. SYNOPSIS : short summary of the command-line syntax
3. DESCRIPTION : long description, typically listing all supported options
4. sometimes other sections, like EXAMPLES, or KNOWN BUGS
5. AUTHOR : the people who developed the program
6. SEE ALSO : references to other docs: man pages, websites, etc

Exercise 7 Type man date and try the following: scroll with up/down arrows, advance by one screen
with “space”, and go back to the top with “g”. To search for some text, press “/” then your search query
followed by “enter”, then use keys “n” and “N” (i.e. Shift-N) to navigate between search results. Press “h”
to get some help and press “q” to exit and return to the shell.

3.3 Essential commands: ls, cd

Exercise 8 Browse the man page for ls and answer the following questions:
1. In no more than 10 words, what is the purpose of this command ?
2. Which option will print the name of all the files, even the “hidden” ones ? (by default, filenames

starting with a dot are not shown, for instance .bashrc)
3. Which option will print the listing with a longer, more detailed format ?
4. Which option will print the size of the files in a human readable way ?
5. Which option will recursively print all the subdirectories of a given directory ?

Note the file named .bashrc is a configuration file for the bash shell (more on that later)

Exercise 9 Read the man page for cd and find our what this command is for. Then:
• Go to the /tmp directory at the root of the system and list its contents;
• Return to your home directory;
• What does cd - do ? What does cd with no arguments do ?

5



4 Working With Files

4.1 File system organisation

One of the key principles of the Unix philosophy is that “everything is a file”. To keep things organized,
all files in the system are structured as a giant tree, where every node has an associated name, like
illustrated in figure 10. Internal tree nodes are called directories (aka folders) and they contain other
directories as well as ordinary files. The topmost node is called the root directory and is denoted by “/”.
Every node can be denoted by its path from the root (e.g. /home/lmorel/.bashrc). Some important
directories:

• /bin is where most of the shell commands are stored, e.g. /bin/date or /bin/ls
• /home contains all the users’ personal directories
• /home/yourlogin is your personal home directory. In the shell, you can type “∼” as a shortcut

for this path, e.g. ls ∼

• /tmp is for temporary files. It is emptied every time the system reboots

/

homebinetcdev usr

ls gcc include lib share

math.h

lmorel gsalagnac

syscall.h

firefox

OPS Work vivado.log .bashrc

Figure 10: Typical directory hierarchy of a Linux filesystem.

A command-line shell provides basically the same features as a graphical file manager. In the following
exercises you will learn how to create new files and directories (sections 4.2 and 4.3), how to copy
and move things around (section 4.4), how to look into files (section 4.5), and also how to delete them
permanently (section 4.6).

Warning A CLI shell is a powerful tool and it will blindly obey your commands. However, what you type
may or may not be what you wanted. Compared to a typical GUI system, there are fewer safety nets
and some actions cannot be “undone”. This can feel intimidating at first, but having such a powerful tool
under your belt will often prove very useful.

4.2 Creating directories: mkdir

Exercise 10 Type man mkdir and read the manual page. Within your home directory, create a
directory named “ops”.
Now we want to create a directory with path “∼/a/b/c/d”. Look in the mkdir man page for the option to
create this entire directory hierarchy in just one command.

6

~
~
~


Exercise 11 Try to create a directory under the /usr folder. What error message do you get in
response? Explanation: an ordinary user is allowed to read/write everything under their homedir, but
the rest of the filesystem is only accessible read-only, to protect the system against (accidental or
intentional) damage. You would need administrator (aka super-user, aka root5) privileges to modify
these files (cf section 4.7 on the following page).

4.3 Creating empty files: touch

Exercise 12 Read the first lines of the touch man page. Create an empty file named readme.txt
inside the ops folder. Using cd and ls, make sure your file has been created.

4.4 Copying and moving things around: cp and mv

Exercise 13 Browse the man page for the cp command.
Use it to create a copy of your readme.txt file named readme_new.txt.
Try to copy the readme_new.txt to a file that has the same name. What happens?
The cp command can also be used to copy folders. Look at the man page again and read the description
of the -r option.

Exercise 14 Copy the whole the ops folder to a new location e.g. ops_new. Enter that folder, and
check that all the original contents has been duplicated here.

The mv command lets you move files and directories around. Now instead of duplicating things, we can
change their location anywhere in the file system. Anywhere? well, only in places we have write-access
to, of course. But we’ll cover this later.

Exercise 15 Create a new directory named work inside your home folder. Note that you can do that
from anywhere in the file system, by specifying the full path, e.g mkdir /home/yourlogin/work or
even better, by using the “∼” shortcut.
Now move your original ops folder to place it under your work directory.

4.5 Looking at files

Many files in the system are so-called plain text documents i.e. they just contain ASCII characters with
no formatting. Plain text files are important for the rest of the course, and for programming in general,
because all tools in the programming universe (compilers, editors, etc) work with those.

Exercise 16 Go into the ∼/work/ops directory, and type code readme.txt . This opens Visual
Studio Code, a simple IDE that you will use to write your programs.
Modify the file by adding some lines, save it.

Exercise 17 We can edit files with a graphical editor. But we can also display their content from the
command line directly. This is often interesting for quickly checking some info (configurations of system
variables, quick tour of a program, etc).
Back in the shell, use commands cat and less to observe the content of the readme.txt file.
What is the difference between these two commands ? Browse their respective man pages to find out.

5Warning: Don’t get confused, there are two different concepts involving that same word: “root directory” https:
//en.wikipedia.org/wiki/Root_directory vs “root user” https://en.wikipedia.org/wiki/Superuser

7

~
~
https://en.wikipedia.org/wiki/Root_directory
https://en.wikipedia.org/wiki/Root_directory
https://en.wikipedia.org/wiki/Superuser


4.6 Deleting stuff: rm and rmdir
Exercise 18 Browse the man pages for commands rm and rmdir.
Navigate to your ∼/work/ops/ folder and type rm readme.txt to remove the file. Go back to the
parent folder with cd .. . From there, we now want to delete the whole ops folder.
Try command rm ops and watch it fail:

$ rm ops
rm: cannot remove ’ops’: Is a directory

Now try and type rmdir ops , which fails too:
$ rmdir ops
rmdir: failed to remove ’ops’: Directory not empty

Indeed, the ops folder still contains the readme_new.txt file.

There are two ways to actually delete the entire ops directory:
• First remove everything inside, i.e. go into the folder, and remove the readme_new.txt file. Then,

remove the (now empty) directory itself with rmdir.
• Force the removal of the whole ops hierarchy by typing rm -rf ops . Go read the rm man page

again to learn more about these options.

Warning! Saying rm -rf asks for deletion of a whole directory tree, without further confirmation. Use
this command with extreme caution or you will lose precious data.

Exercise 19 To make these commands less error-prone, open your ∼/.bashrc file in VSCode and
add the following lines at the bottom:
alias rm="rm -i"
alias cp="cp -i"
alias mv="mv -i"

What does this -i option do ?

4.7 File ownership and access rights
In the shell, go back to your home directory and type ls -l You will see something comparable to
figure 11.

Let’s go through all columns, from right to left. For each file, we have: its name, its timestamp of last
modification (aka mtime),6 its size (in bytes)7 , then some ownership info (login and group names), then
its link count (let’s ignore that for now), and finally a series of rwx letters.

The leftmost column describes the access rights to the file, in a sequence of characters similar to e.g.
“-rw-r--r-” or “drwxr-xr-x”. You should read this sequence in four groups of 1, 3, 3, and 3 boolean
flags, respectively:

• The very first character is “-” for an ordinary file or “d” for a directory.8

• The first rwx trigram indicates the access rights (read, write, execute) for the file’s owner
• The second rwx trigram indicates the access rights for the members of the file’s owning group

(let’s ignore groups for now)
• The last rwx trigram indicates the access rights for everyone else.

The x flag means execute: for an ordinary file, it means that the file contains an executable program,
which we can run from the the shell by typing its name. For directories, it means that one is allowed to
navigate (e.g. with cd) to that directory.

6Try to touch a file and observe that it changes its mtime
7Warning: a directory’s size info has nothing to do with the total size of files in that directory.
8Or it can be “l” for a symbolic link to another path, but we’ll ignore that for now

8

~
~


Figure 11: Output of the ls -l command.

Exercise 20 Use ls -l to explain why you can create new files and directories under /tmp but not
under /usr.

Exercise 21 If you want to know more about access rights, read the man page of command chmod
and try it out on a few examples. Otherwise you can probably forget about it.

Exercise 22 Even without the -l option, command ls can tell us some details about the file with
the -F option. Try it out, then find it in the ls man page. Open your ∼/.bashrc once more and add the
aliases below. Then play with them in your home directory.

alias ls="ls -hF"
alias ll="ls -l"
alias la="ls -la"
alias lat="ls -lat"
alias lart="ls -lart"
alias larS="ls -larS"

9

~

	Setting up your work environment
	Using INSA's Virtual Desktop Infrastructure (aka ``Bureau Virtuel'')
	Switching the interface to English
	Configuring the keyboard

	Through the Looking Glass: First Steps in Unix Land
	Terminal, Shell, Commands
	Looking for help
	Essential commands: ls, cd

	Working With Files
	File system organisation
	Creating directories: mkdir
	Creating empty files: touch
	Copying and moving things around: cp and mv
	Looking at files
	Deleting stuff: rm and rmdir
	File ownership and access rights


