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Abstract 
 

Topology optimization in structural design is still a relatively new tool. Most existing research on truss and 

frame structures focuses on single material applications, and the developments of ground structure-based 

topology optimization in multi-material structures are limited. This research presents a truss topology 

optimization algorithm that designs with a mix of glue-laminated timber (GLT) and steel elements. The 

motivation behind allowing the choice of both these materials is to utilize the strengths of each material in 

both tension and compression. In addition, this work seeks to include environmental consideration, by 

incorporating in the algorithm that timber has a smaller embodied carbon coefficient (ECC) compared to 

steel.  

 

This work uses the ground structure approach to truss topology optimization and designs are generated and 

compared using (i) a minimum compliance and (ii) a stress-constrained algorithm. The algorithms are 

constructed such that both the area and a choice of material is made for each element in the ground structure. 

Both frameworks use fmincon in MATLAB as the gradient-based optimizer. The Solid Isotropic Material 

with Penalization (SIMP) interpolation is used to relate elastic modulus and embodied carbon for two 

materials with respect to normalized density variables. To demonstrate the versatility of this design 

methodology, designs obtained from different objectives and different constraints are presented and 

compared. 

 

We find that, for minimum compliance objectives, the weight-constrained problem produced all-steel truss 

solutions, while global warming potential (GWP)-constrained problem produced all-timber truss solutions. 

These results align with our expectations based on material stiffness properties. For the stress-constrained 

problem with minimum GWP objectives, the solutions obtained from two modeling assumptions were 

compared: (i) with real material stress constraints and (ii) with modified stress constraints, where timber 

was considered as a compression-only material and steel as a tension-only material. Surprisingly, we find 

that the solutions obtained with the real stress limits are more polluting than the modified stress limit 

solutions. While the modified stress solutions placed steel in tension and timber in compression for the most 

environmentally friendly design, the real stress solutions generally favored steel over timber. This is 

believed to be caused by the nonlinearities introduced through the SIMP interpolation. 
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1. Introduction 

The building and construction industry is a major source of global carbon emissions, due to a combination 

of operational carbon and embodied carbon. Operational carbon is proportional to operational energy, 

which is the energy used to light, heat, cool, ventilate, and operate the functions of the building. Embodied 

carbon accounts for carbon emissions due to “material extraction, transport to sites, construction, 

maintenance, and demolition” [1]. 

 

In 2018, residential and commercial buildings accounted for a total of 39% of U.S. energy consumptions, 

as shown in Figure 1.1 [2]. Operational carbon generally constitutes a larger fraction of building carbon 

footprints than embodied carbon (75% in a new-building housing case study [3]). Until recently, most 

research related to reducing building carbon footprints has focused on operational carbon and energy. As 

operational carbon is reduced through various energy efficient measures, the impact of embodied carbon 

becomes greater. 

 

 

Figure 1.1: Share of total U.S. energy consumption by end-use sectors, 2018 [2] 

 

In a case study of 78 office buildings, it was found that embodied carbon attributed to structural elements 

(steel, concrete, plaster and brick) accounted for 60% of total embodied carbon [4]. Hence, reducing 

structural embodied carbon can have a large impact on reducing the total embodied carbon of a building. 

Several studies have proposed tools to measure and benchmark the embodied carbon content of buildings 

[5]–[8]. A 2016 study highlights several mitigation strategies to lower building embodied carbon, including 

the selection of low embodied carbon materials, and better design practices [9]. However, since interest 

into reducing structural embodied carbon is still relatively new, there has been a lack of design methods for 
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the goal of reducing the structural embodied carbon footprint [10]. One proposed method is to use sizing 

and shape optimization for the goal of minimizing global warming potential (GWP), as presented in a 2018 

MIT thesis [11]. 

 

This paper presents a new design method, utilizing multi-material truss topology optimization for minimum 

GWP objectives. Topology optimization is a generalized type of sizing optimization, where optimized 

member sizes and connectivity are found through an iterative algorithm [12] (refer to Section 3 for more 

details). While topology optimization has been used extensively in mechanical and aerospace applications, 

its use in structural design is still a relatively new tool [13]. Most existing research on truss topology 

optimization focuses on single material applications, and the study on topology optimization in multi-

material structures is limited. 

 

We are interested in multi-material structures in order to employ different materials for their respective 

strengths. Since different materials can have relative strengths and weaknesses depending on loading 

direction (e.g. tension, compression, bending, and twisting), utilizing each material in its strongest loading 

direction produces the most structurally efficient design. For example, generally speaking, steel performs 

better in tension while timber performs better in compression [11]. Steel is more susceptible to compression 

buckling due to its slenderness, and timber is 30% weaker in tension due to non-uniformity in wood grain 

orientation [14]. Moreover, timber is a more environmentally friendly material, with an embodied carbon 

content (per unit weight) 3.5 times smaller than that of steel [15]. Example built examples of timber-steel 

trusses are shown in Figure 1.2 [16] & Figure 1.3 [17]. 

 

To demonstrate the potential of the proposed design methodology, this thesis studies the topology 

optimization of 2D and 3D truss structures, constructed with a mix of glue-laminated timber (GLT) and 

steel elements. 

 

 

 

 

 

 

 

 

  

Figure 1.2: Timber-steel roof at the 

Scottish Parliament 

(Photograph: Wikimedia Commons – 

Mogens Engelund) 

Figure 2.3: Timber-steel roof at UMass 

Amherst Design Building 

(Photograph: Albert Vecerka) 
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2. Literature Review 

This section first reviews previous research on benchmarking material embodied carbon contents and 

design methods for embodied carbon objectives. Then, previous research on truss topology optimization 

involving multiple materials is also reviewed. The final subsection discusses how this thesis will expand 

upon these previous works by proposing a new design methodology involving multi-material truss topology 

optimization. 

 

2.1 Benchmarking Embodied Carbon & Existing Design Methods for Embodied Carbon Objectives 

In recent years, there has been a growing interest in measuring and benchmarking the embodied carbon 

content of different materials and building types [5]–[8], due to the increasing impact of building embodied 

carbon on the total building carbon footprint and climate change. Since material embodied carbon 

coefficients (the ratio of mass of CO2 produced over unit mass of material) vary depends on multiple factors 

including region, sourcing choice, building lifespan, and end-of-life treatment [1], there can be different 

numbers for the embodied carbon coefficient for the same material. To select an appropriate and consistent 

measure for the embodied carbon coefficients of steel and timber, the values from University of Bath’s 

Inventory of Carbon and Energy database [15] are used in this study, which were calculated based on 

averages and specified assumptions. The material properties of 50 ksi steel [18] and Douglas Fir Grade L3 

glue-laminated timber (GLT) [14], with their respective embodied carbon coefficients, are presented and 

compared in Table 2.1. 

 

As revealed by the numbers in Table 2.1, per unit volume, steel is 18 times stiffer than timber, but only 14 

times heavier. In other words, steel is 1.3 times stiffer per unit weight than timber. On the other hand, 

(per unit volume,) steel is 18 times stiffer than timber, but 47 times more polluting. This means that timber 

is 2.6 times stiffer per unit mass of embodied carbon compared to steel, making timber the “greener” 

choice for stiffness considerations. 

 

For strength considerations, per unit volume, steel is 53 times and 40 times stronger in tension and 

compression respectively (compared to timber), and 47 times more polluting. This implies steel is 1.13 

times stronger (than timber) in tension per unit mass of embodied carbon, but timber is 1.18 times 

stronger (than steel) in compression per unit mass of embodied carbon. Therefore, the best choice of 

material depends on design objectives as well as loading conditions. 
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Table 2.1: Comparison of material properties of steel and glue-laminated timber (GLT) 

Material Property Symbol Steel [18] 
Timber 

(GLT) [14] 

Per unit volume, 

steel is: 

Elastic Modulus (ksi) E 29000 1600 18 times stiffer 

Yield Stress (psi) σy 50000 -1250 / +950 
-40 / +53 times 

stronger 

Density (pcf) ⍴ 491 35.6 14 times heavier 

Embodied Carbon 

Coefficient, (lbCO2/lbmaterial) 

[15] 

ECC 1.46 0.42 
47 times more 

polluting 

Note: where specified, “-” denotes compression and “+” denotes tension. 

 

Regarding design methods for embodied carbon objectives, most existing research have focused on current 

design practices for embodied carbon at the building scale [9], [10]. To the best of the author’s knowledge, 

the only existing research on reducing embodied carbon using structural optimization is a 2018 MIT thesis 

by Stern [11]. The 2018 thesis used shape and sizing optimization to study planar truss structures of various 

spans and compared the global warming potentials (GWP) of single-material and steel-timber designs. Her 

thesis found that compared to a baseline all-steel truss, a steel-timber truss with shape and sizing 

optimization yields savings of 31% - 57% depending on span length. Stern’s research is important because 

it was the first comprehensive study on the combination of structural optimization, embodied carbon, and 

sustainability comparisons between materials; most existing works on structural optimization focused on 

weight minimization, which Stern found does not necessarily correlate to global warming potential (GWP) 

minimization. 
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2.2 Existing Research on Truss Topology Optimization 

Although there is an abundance of existing research on the design of multi-material continuum topology 

optimization [19]–[22], there has been relatively few for multi-material truss topology optimization. 

 

Most existing literature of truss topology optimization focuses on single-material examples. Truss topology 

optimization has mainly been focused on designing for compliance or weight subject to stress and local 

buckling constraints [23]–[26]. Extensions of these works have also addressed global buckling 

considerations [27], [28]. In the context of truss topology optimization for civil scale structures, most works 

have focused on the automatic generation of strut-and-tie layouts for reinforced concrete (RC) design [29], 

[30], incorporating imperfections and uncertainties [31], [32] and implementing a cost for manufacturability 

[33]. 

 

Several pieces of literature involving multi-material truss topology optimization are reviewed here. In 1996, 

a paper by Achtziger studied truss topology optimization including different bar properties for tension and 

compression for a single material [34]. Comparing the resulting structures of the studied trusses, Achtziger 

concluded that “different treatment of bars being under tension or under compression heavily influences 

the optimal design obtained.” This is significant because it showed that, for a given material with different 

tensile and compressive strengths, the final topology changes depending on the pair of strengths provided 

to the optimizer. 

 

The next piece of literature by Stolpe and Svanberg (2004) investigated the problem of simultaneously 

selecting the material and determining the area of each bar in a truss to minimize the cost of the structure, 

subject to stress constraints under a single load condition [35]. By examining the mathematical optimization 

problem, they showed that two different materials are always sufficient in an optimal truss. In the case that 

one material has a higher allowable stress in both compression and tension (compared to other materials 

considered), one material is sufficient. This conclusion may seem obvious, but note that it does not hold if 

there are several loading conditions. 

 

Lastly, a 2008 paper by Rakshit and Ananthasuresh explored simultaneous geometry design and material 

selection of statically determinate trusses [36]. The 2008 study selected the optimal material for truss 

members from an material database, but only allowed single-material trusses for the final design. Instead 

of starting from a densely meshed and connected ground structure (as in general truss topology 

optimization), they assumed a simpler geometry for the truss, and took the geometry variables (member 

areas, lengths & orientations) as design variables. 
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2.3 Problem Statement 

While existing research has benchmarked the embodied carbon of materials, reviewed current design 

practices for embodied carbon objectives on a building scale, and multi-material truss topology 

optimization (to a limited degree), to the best of the author’s knowledge, there has been no published work 

on multi-material truss topology optimization for embodied carbon objectives. 

 

Therefore, this thesis aims to bridge the knowledge gap between existing literature reviewed in Sections 

2.1 & 2.2, by presenting a new design method, utilizing multi-material truss topology optimization for 

minimum global warming potential (GWP) objectives. This method directly incorporates Pomponi and 

Mancaster’s suggested mitigation strategies on reducing embodied carbon [9] by (i) allowing the choice to 

use a more environmentally friendly material, timber, in additional to the more commonly used truss 

material, steel, and by (ii) finding an optimized truss design through topology optimization. From Stolpe 

and Svanberg [35], we know that two materials (e.g. timber & steel) are sufficient for a truss topology 

optimization problem with a single load case. This thesis builds on Stern’s thesis [11], which performed 

sizing and shape optimization on planar trusses for GWP objectives, by extending it to topology 

optimization on both 2D and 3D trusses. 

 

To demonstrate the potential of the proposed design methodology, this thesis studies the topology 

optimization of truss structures, constructed with a mix of glue-laminated timber (GLT) and steel elements. 

Section 3 introduces the reader to an overview of single-material truss topology optimization. Section 4 

explores the multi-material minimum compliance problem subject to either a weight or a GWP constraint, 

and Section 5 explores the multi-material stress-constrained problem for a minimum GWP objective. 
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3. Overview of Single-Material Truss Topology Optimization 

This section gives a brief introduction to truss topology optimization and the ground structure approach. A 

truss is a structure where each and every connection between members are pins that transfer no moments, 

and where loads are only applied at the nodes [37]. As a result, truss members only carry loads axially, in 

tension or compression. Truss topology optimization with the ground structure approach is a design problem 

where an optimized truss topology is found through iteratively solving a generalized sizing optimization 

problem [12], as explained below. 

 

To perform topology optimization on a truss structure, the design domain must first be defined. The domain 

is meshed with nodes (joints where members start and end), boundary conditions are defined, and loads are 

applied at the desired nodes. 

 

 

Figure 3.1: Design domain with nodes, boundary conditions, and loading 

 

Element connectivity of the ground structure is then defined. For example, a ground structure can be fully 

connected (Figure 3.2(a)) or X-braced (Figure 3.3(a)). 

 

 

Figure 3.2(a): Fully connected, ground structure 

 

Figure 3.3(a): X-braced, ground structure 
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Sizing optimization is performed. A common optimization objective used in topology (and sizing) 

optimization is minimum compliance, due to ease and speed of computation. Minimizing compliance (force 

multiplied by displacement) is equivalent to maximizing the elastic stiffness of the structure. 

 

(Eq. 3.1) – Problem formulation for a min compliance problem subject to a weight constraint: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐴𝑒         𝐹𝑇𝑢      Compliance 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝐾(𝐴𝑒)𝑢 = 𝐹     Static Equilibrium 

                           ∑ 𝐴𝑒𝐿𝑒𝜌𝑒  ≤  𝑊𝑒∈Ω     Weight Constraint 

                           𝐴𝑚𝑖𝑛 ≤ 𝐴𝑒  ≤ 𝐴𝑚𝑎𝑥   ∀  𝑒 ∈ Ω   Bounds on Ae 

 

where: 

 FT is the global force vector 

 u is the global displacement vector 

 K is the global stiffness matrix 

 Ae is the truss member area 

 Le is the truss member length 

 ρe is the truss member density 

 W is the specified weight constraint 

 

In Eq. 3.1, the objective function to be minimized is the compliance, with member areas Ae as the design 

variables. Ae is bounded by Amin and Amax. The problem is subject to a weight constraint and must satisfy 

static equilibrium. 

 

Sensitivity Analysis: 

In order to solve the design problem, a gradient-based optimizer is used. Gradient-based optimizers require 

sensitivity information of the objective and constraints as an input. Out of the three general approaches used 

to compute the sensitivities for structural optimization problems, namely finite difference, direct 

differentiation, and the adjoint method [38], the adjoint method is used here due to its speed in solving min 

compliance problems. 

 

In the adjoint method, the equilibrium constraint 𝜆𝑇(𝐾𝑢 − 𝐹) = 0 can be added to the objective without 

changing it, since it equals zero. λ is any arbitrary but real fixed vector. 
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The objective is now: 

𝑓 = 𝐹𝑇𝑢 + 𝜆𝑇(𝐾𝑢 − 𝐹)   (Eq. 3.2) 

 

And the sensitivity for the objective with respect to design variable Ae is then: 

𝜕�̃�

𝜕𝐴𝑒 = 𝐹𝑇 𝜕𝑢

𝜕𝐴𝑒 + 𝜆𝑇(
𝜕𝐾

𝜕𝐴𝑒 𝑢 + 𝐾
𝜕𝑢

𝜕𝐴𝑒)  (Eq. 3.3) 

 

Rearranging, we get: 

𝜕�̃�

𝜕𝐴𝑒 = (𝐹𝑇 + 𝜆𝑇𝐾)
𝜕𝑢

𝜕𝐴𝑒 + 𝜆𝑇 𝜕𝐾

𝜕𝐴𝑒 𝑢  (Eq. 3.4) 

 

Defining the adjoint problem as the equilibrium constraint: 

𝐹𝑇 + 𝜆𝑇𝐾 = 0,   𝜆 = −𝑢  (Eq. 3.5) 

 

And the sensitivity becomes: 

𝜕�̃�

𝜕𝐴𝑒 = −𝑢𝑇 𝜕𝐾

𝜕𝐴𝑒 𝑢    (Eq. 3.6) 

 

Defining Ke
0 as follows: 

𝐾0
𝑒 =

𝐾𝑒

𝐴𝑒𝐸𝑒    (Eq. 3.7) 

 

The partial derivative of K with respect to Ae is: 

𝜕𝐾

𝜕𝐴𝑒 = 𝐸𝑒𝐾0
𝑒     (Eq. 3.8) 

 

 

As we can see here, the adjoint method for min compliance problems is computationally inexpensive since 

it requires no additional solve, as the displacement vector u is already computed in the equilibrium 

constraint, and 
𝜕𝐾

𝜕𝐴𝑒 is a constant that does not change throughout the iterations. For more details regarding 

sensitivities, refer to Christensen and Klarbring [38]. 

 

The sensitivity for the weight constraint is simply: 

𝜕𝑔

𝜕𝐴𝑒 = 𝐿𝑒𝜌𝑒     (Eq. 3.9) 
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Solving the topology optimization problem: 

In each sizing optimization iteration, static equilibrium is satisfied. When subject to a limiting amount of 

material (or a weight constraint), the gradient-based optimizer uses the supplied sensitivities to determine 

which members are useful, and which are not (carrying zero forces). Through the iterations, the zero force 

members become reduced in size, down to Amin, the lower bound on Ae. Amin is chosen to be a positive 

number that is very close to 0, e.g. 1e-3. The remaining members become larger in size; members are sized 

so that a uniform stress distribution across all members is achieved. See Figures 3.2 and 3.3 for visuals on 

changes in member areas through iterations. When the first order optimality falls within a predetermined 

tolerance, the design problem has reached convergence and the optimizer terminates. 

 

Figure 3.2(b): Fully connected, iteration 1 

 

Figure 3.2(c): Fully connected, iteration 5

 

Figure 3.2(d): Fully connected, converged 

 

Figure 3.3(b): X-braced, iteration 1 

 

Figure 3.3(c): X-braced, iteration 5 

 

Figure 3.3(d): X-braced, converged 
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To obtain a cleaner design, members that are very small are removed from the plot. As a result, only 

members that are useful in resisting the applied load remains (Figure 3.2(e) and 3.3(e)). It can be seen that 

the fully connected ground structure produces a more free-form solution, while the X-braced ground 

structure produces a solution that is limited by a combination of vertical, horizontal and 45° diagonal 

elements. 

 

 

Figure 3.2(e): Fully connected, optimized topology 

 

Figure 3.3(e): X-braced, optimized topology 

 

Building upon this framework, the topology optimization problem of multi-material trusses is investigated 

in this thesis. MATLAB is used as the coding program, with fmincon as the gradient-based optimizer. The 

min compliance problem of multi-material trusses, subject to a weight or global warming potential (GWP) 

constraint is discussed in Section 4, and the stress constrained problem with a minimum GWP objective is 

discussed in Section 5. 
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4. Multi-Material Truss: Minimum Compliance Problem 

4.1 Problem Formulation 

The first part of this project investigates multi-material minimum compliance (maximum stiffness) 

problems subject to either (4.1a) a structural weight constraint or (4.1b) a global warming potential (GWP) 

constraint.  

 

(Eq. 4.1a) – Minimum compliance subject to weight constraint: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐴𝑒 , 𝑥𝑒         𝐹𝑇𝑢      Compliance 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝐾(𝐴, 𝑥)𝑢 = 𝐹     Static Equilibrium 

                           ∑ 𝐴𝑒𝐿𝑒𝜌𝑒  ≤  𝑊𝑒∈Ω     Weight Constraint 

                           𝐴𝑚𝑖𝑛 ≤ 𝐴𝑒  ≤ 𝐴𝑚𝑎𝑥   ∀  𝑒 ∈ Ω   Bounds on Ae 

                           0 ≤ 𝑥𝑒  ≤ 1                  ∀  𝑒 ∈ Ω     Bounds on xe 

 

(Eq. 4.1b) – Minimum compliance subject to GWP constraint: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐴𝑒 , 𝑥𝑒         𝐹𝑇𝑢      Compliance 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝐾(𝐴, 𝑥)𝑢 = 𝐹     Static Equilibrium 

                           ∑ 𝐴𝑒𝐿𝑒(𝜌𝑒𝐸𝐶𝐶𝑒)  ≤  𝐺𝑊𝑃𝑒∈Ω    GWP Constraint 

                           𝐴𝑚𝑖𝑛 ≤ 𝐴𝑒  ≤ 𝐴𝑚𝑎𝑥   ∀  𝑒 ∈ Ω   Bounds on Ae 

                           0 ≤ 𝑥𝑒  ≤ 1                  ∀  𝑒 ∈ Ω     Bounds on xe 

  

where: 

 F, u, K, Ae, Le, ρe are as defined in Eq. 3.1 

 ECCe is the material embodied carbon coefficient of the truss member 

 GWP is the specified global warming potential constraint 

xe is the material mapping variable 

 

Since continuous variables are needed for gradient based optimizers (e.g. fmincon in MATLAB), we need 

to formulate the problem in a way that makes the discrete stiffness variable Ee continuous. We can do that 

by introducing a new continuous variable, 0 ≤ xe ≤ 1, that relates to Ee and ρe (Eqs. 4.2 and 4.3) using Solid 

Isotropic Material with Penalization (SIMP) interpolation [39]. SIMP is traditionally used in continuum 

topology optimization to interpolate between voids and fully filled spaces [40]. Here, SIMP is used to 
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interpolate between the two material stiffnesses (and densities). Hence, we define xe as the material mapping 

variable. 

 

𝐸𝑒 =  (𝑥𝑒)𝜂Δ𝐸 + 𝐸𝑡𝑖𝑚𝑏𝑒𝑟 ,  Δ𝐸 = 𝐸𝑠𝑡𝑒𝑒𝑙 − 𝐸𝑡𝑖𝑚𝑏𝑒𝑟   (Eq. 4.2) 

 

𝜌𝑒 =  (𝑥𝑒)𝜂Δ𝜌 + 𝜌𝑡𝑖𝑚𝑏𝑒𝑟 ,  Δ𝜌 = 𝜌𝑠𝑡𝑒𝑒𝑙 − 𝜌𝑡𝑖𝑚𝑏𝑒𝑟   (Eq. 4.3a) 

 

(𝜌𝑒𝐸𝐶𝐶𝑒) =  (𝑥𝑒)𝜂Δ(𝜌𝐸𝐶𝐶) + 𝜌𝑡𝑖𝑚𝑏𝑒𝑟𝐸𝐶𝐶𝑡𝑖𝑚𝑏𝑒𝑟,    

 Δ(𝜌𝐸𝐶𝐶) = 𝜌𝑠𝑡𝑒𝑒𝑙𝐸𝐶𝐶𝑠𝑡𝑒𝑒𝑙 − 𝜌𝑡𝑖𝑚𝑏𝑒𝑟𝐸𝐶𝐶𝑡𝑖𝑚𝑏𝑒𝑟  (Eq. 4.3b) 

 

In SIMP, the exponent term η (see Figure 2.1) penalizes intermediate stiffnesses and densities, encouraging 

the optimizer to converge to either Etimber or Esteel: if x
e = 0, then Eq. 4.2 yields Ee =  Etimber; if x

e = 1, then Ee 

=  Esteel. Through trial and error, it was determined that η = 3 works well for this problem. For example, for 

the 5x3 cantilever shown in Figure 4.2, η = 1, 3, 10 all yielded identical final objectives. However, η = 1 

took 371 iterations; η = 10 took 334 iterations; but η = 3 only took 129 iterations. This shows that an η that 

is 1 works, but takes longer because there is no stiffness penalty for intermediate materials. η = 10 also 

works, but takes longer because the problem becomes very non-linear and difficult to solve. η = 3 is the 

“sweet spot” that introduces a moderate stiffness penalty for intermediate materials, without making the 

problem too non-linear. 

 

 

Figure 4.1: SIMP interpolation from xe to Ee 
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4.2 Sensitivity Analysis 

The sensitivity with respect to design variable Ae for a min compliance problem has been discussed in 

Section 3 (see Eq. 3.6). Here, we derive the sensitivity with respect to design variable xe: 

 

With the adjoint method, the objective is now: 

𝑓 = 𝐹𝑇𝑢 + 𝜆𝑇(𝐾𝑢 − 𝐹)   (Eq. 4.4) 

 

And the sensitivity for the objective with respect to design variable xe is then: 

𝜕�̃�

𝜕𝑥𝑒 = 𝐹𝑇 𝜕𝑢

𝜕𝑥𝑒 + 𝜆𝑇(
𝜕𝐾

𝜕𝑥𝑒 𝑢 + 𝐾
𝜕𝑢

𝜕𝑥𝑒)  (Eq. 4.5) 

 

Rearranging, we get: 

𝜕�̃�

𝜕𝑥𝑒 = (𝐹𝑇 + 𝜆𝑇𝐾)
𝜕𝑢

𝜕𝑥𝑒 + 𝜆𝑇 𝜕𝐾

𝜕𝑥𝑒 𝑢  (Eq. 4.6) 

 

Defining the adjoint problem as the equilibrium constraint: 

𝐹𝑇 + 𝜆𝑇𝐾 = 0,   𝜆 = −𝑢  (Eq. 3.5) 

 

And the sensitivity becomes: 

𝜕�̃�

𝜕𝑥𝑒 = −𝑢𝑇 𝜕𝐾

𝜕𝑥𝑒 𝑢    (Eq. 4.7) 

 

Since 

𝐸𝑒 =  (𝑥𝑒)𝜂Δ𝐸 + 𝐸𝑡𝑖𝑚𝑏𝑒𝑟 ,  (Eq. 4.2) 

 

And defining Ke
0 as follows: 

𝐾0
𝑒 =

𝐾𝑒

𝐴𝑒𝐸𝑒    (Eq. 3.7) 

 

The partial derivatives of K with respect to Ae and xe are: 

𝜕𝐾

𝜕𝐴𝑒 = 𝐸𝑒𝐾0
𝑒     (Eq. 3.8) 

𝜕𝐾

𝜕𝑥𝑒 =
𝜕𝐾

𝜕𝐸𝑒

𝑑𝐸𝑒

𝑑𝑥𝑒 = 𝐴𝑒𝐾0
𝑒[𝜂(𝑥𝑒)𝜂−1Δ𝐸]  (Eq. 4.8) 

 

Substituting Eq. 3.8 & Eq. 4.8 into Eq. 3.6 & Eq. 4.7 respectively, we arrive at the full expressions for the 

sensitivities with respect to Ae and xe. Note that even with an additional design variable (xe), the adjoint 
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method for min compliance remains computationally inexpensive, since u is still computed in the 

equilibrium, and Ke
0 is a constant throughout the iterations. 

 

The sensitivities for the weight constraint are: 

𝜕𝑔(𝑤𝑒𝑖𝑔ℎ𝑡)

𝜕𝐴𝑒 = 𝐿𝑒𝜌𝑒     (Eq. 3.9) 

𝜕𝑔(𝑤𝑒𝑖𝑔ℎ𝑡)

𝜕𝑥𝑒 = 𝐴𝑒𝐿𝑒[𝜂(𝑥𝑒)𝜂−1Δ𝜌]   (Eq. 4.9) 

 

Similarly, sensitivities for the GWP constraint are: 

𝜕𝑔(𝐺𝑊𝑃)

𝜕𝐴𝑒 = 𝐿𝑒(𝜌𝑒𝐸𝐶𝐶𝑒)    (Eq. 4.10) 

𝜕𝑔(𝐺𝑊𝑃)

𝜕𝑥𝑒 = 𝐴𝑒𝐿𝑒[𝜂(𝑥𝑒)𝜂−1Δ(𝜌𝐸𝐶𝐶)]   (Eq. 4.11) 
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4.3 Results & Discussion 

Cantilevers (Figures 4.2, 4.3 & 4.6), simple beams (Figures 4.4, 4.5 & 4.8) and a vault (Figure 4.7) of 

different mesh densities in 2D and 3D were topology optimized, subject to (4.1a) a weight constraint or 

(4.1b) a GWP constraint. Starting with fully connected ground structures, fmincon with the interior-point 

algorithm was called to perform the optimization. Initial conditions were A0 = 1 in2 and x0 = 0.5 

(hypothetical intermediate material), with Ae bound between 1e-3 and 10, and xe bound between 0 and 1. 

 

The dimensions of each studied structure are shown in Table 4.1. For all structures except the 3D vault, the 

magnitude of the applied load is 1000 lb, the weight constraint is 1e6 lbsmaterial, and the GWP constraint is 

1e5 lbCO2. For the 3D vault, the applied load is 2000 lb, the weight constraint is 2.4e5 lbsmaterial, and the 

GWP constraint is 2.4e4 lbCO2. 

 

Table 4.1: Dimensions of each structure 

Structure Height (in) Length (in) Depth (in) 

2D cantilever 

(Figs. 4.2 & 4.3) 
100 200 N/A 

2D simple beam 

(Figs. 4.4 & 4.5) 
100 500 N/A 

3D cantilever 

(Fig. 4.6) 
100 200 100 

3D vault 

(Fig. 4.7) 
100 100 100 

3D simple beam 

(Fig. 4.8) 
100 500 100 

 

The topologies of the ground structure, weight constrained solution, and GWP constrained solution for each 

examined structure are reported in Tables 4.2 & 4.3. In Table 4.2, the same types of structures modeled 

with different mesh densities (cantilever: 5x3 vs. 9x5, simple beam: 7x3 vs. 13x5) are compared, revealing 

that denser meshes yield more complex and free-form solutions, leading to lower compliance objectives. 
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Table 4.2: Ground structures and optimized solutions for minimum compliance problems (4.1a) & (4.1b), 

2D 

Ground Structure (4.1a) Weight Constraint (4.1b) GWP Constraint 

 

Figure 4.2(a): 

5x3 mesh ground structure, 

cantilever 

 

Figure 4.2(b): 

Final structure with weight 

constraint, cantilever 

Compliance: 9.58 

 

Figure 4.2(c): 

Final structure with GWP 

constraint, cantilever 

Compliance: 52.6 

 

Figure 4.3(a): 

9x5 mesh ground structure, 

cantilever 

 

Figure 4.3(b): 

Final structure with weight 

constraint, cantilever 

Compliance: 9.26 

 

Figure 4.3(c): 

Final structure with GWP 

constraint, cantilever 

Compliance: 51.0 

 

Figure 4.4(a): 

7x3 mesh ground structure, simple 

beam 

 

Figure 4.4(b): 

Final structure with weight 

constraint, simple beam 

Compliance: 22.1 

 

Figure 4.4(c): 

Final structure with GWP 

constraint, simple beam 

Compliance: 121.9 
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Figure 4.5(a): 

13x5 mesh ground structure, simple 

beam 

 

Figure 4.5(b): 

Final structure with weight 

constraint, simple beam 

Compliance: 21.4 

 

Figure 4.5(c): 

Final structure with GWP 

constraint, simple beam 

Compliance: 116.0 

Colorbar: 0 = Timber, 1 = Steel 

 

Table 4.3: Ground structures and optimized solutions for minimum compliance problems (4.1a) & (4.1b), 

3D 

Ground Structure (4.1a) Weight Constraint (4.1b) GWP Constraint 

 

Figure 4.6(a): 

5x3x3 mesh ground structure, 

cantilever 

 

Figure 4.6(b): 

Final structure with weight 

constraint, cantilever 

Compliance: 12.4 

 

Figure 4.6(c): 

Final structure with GWP 

constraint, cantilever 

Compliance: 66.3 

 

Figure 4.7(a): 

3x3x3 mesh ground structure, vault 

 

Figure 4.7(b): 

Final structure with weight 

constraint, vault 

Compliance: 17.9 

 

Figure 4.7(c): 

Final structure with GWP 

constraint, vault 

Compliance: 98.9 
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Figure 4.8(a): 

7x3x3 mesh ground structure, 

simple beam 

 

Figure 4.8(b): 

Final structure with weight 

constraint, simple beam 

Compliance: 24.1 

 

Figure 4.8(c): 

Final structure with GWP 

constraint, simple beam 

Compliance: 130.7 

Colorbar: 0 = Timber, 1 = Steel 

 

For each structure subject to a weight constraint (middle columns of Tables 4.2 & 4.3), the final solution 

was an all-steel truss. This makes sense because per unit volume, steel is 18 times stiffer than timber, but 

only 14 times heavier. In other words, steel is 1.3 times stiffer per unit weight than timber. Steel is therefore 

the preferred material in a maximum stiffness (min compliance) problem subject to a weight constraint. 

 

On the other hand, when each of these structures were subject to a GWP constraint (right columns of Tables 

4.2 & 4.3), the final solution was an all-timber truss. This also makes sense because per unit volume, steel 

is 18 times stiffer than timber, but 47 times more polluting. In other words, timber is 2.6 times stiffer per 

unit mass of embodied carbon compared to steel. Timber is therefore the preferred material in a maximum 

stiffness problem subject to a GWP constraint. 

 

The fact that the solution produced by the optimizer agrees with our intuition suggests that the MATLAB 

script and the fmincon optimizer is working as intended, across a variety of 2D and 3D meshes and 

structures. Note that for the 3D vault (Figures 4.7(b)(c)), the timber structure is more redundant than its 

steel counterpart. This is not caused by timber elements hitting the upper bound Amax. Possible reasons 

behind the timber structure being more redundant include (i) timber is less stiff, and (ii) the 3D vault 

problem might be less stable than other structures; further investigation is needed to fully understand this 

phenomenon, which is out of the scope of this project.  
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5. Multi-Material Truss: Stress-Constrained Problem 

5.1 Problem Formulation 

Since a minimum compliance problem in (4.1a) and (4.1b) only takes the stiffness but not the strength of 

each material into account, an alternative problem formulation that takes material strength into account is 

needed to create trusses composed of multiple materials. A minimum GWP problem in (5.1a) and (5.1b) 

subject to stress constraints satisfies this requirement. 

 

The first problem formulation (5.1a) uses real material stress constraints, while the second formulation 

(5.1b) models steel as a tension-only material and timber as a compression-only material. These two 

formulations are defined to explore the differences between (i) allowing the optimizer freedom to choose 

which material to use in tension or compression, and (ii) enforcing the optimizer to choose only timber for 

compression and steel for tension. For instance, in real-world design, formulation (5.1b) would be useful 

for avoiding the limit state of compression buckling in steel. (Note that buckling is not considered in this 

study.) 

 

(Eq. 5.1a) – Minimum GWP subject to real stress constraints 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐴𝑒 , 𝑥𝑒         ∑ 𝐴𝑒𝐿𝑒𝜌𝑒𝐸𝐶𝐶𝑒

𝑒∈Ω     GWP 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝐾(𝐴, 𝑥)𝑢 = 𝐹     Static Equilibrium 

                           𝜎𝑚𝑖𝑛 ≤ 𝜎𝑒  ≤ 𝜎𝑚𝑎𝑥    ∀  𝑒 ∈ Ω   Stress Constraints 

                           𝐴𝑚𝑖𝑛 ≤ 𝐴𝑒  ≤ 𝐴𝑚𝑎𝑥   ∀  𝑒 ∈ Ω   Bounds on Ae 

                           0 ≤ 𝑥𝑒  ≤ 1                  ∀  𝑒 ∈ Ω     Bounds on xe 

 

where: 

𝐸𝑒 =  𝑥𝑒Δ𝐸 + 𝐸𝑡𝑖𝑚𝑏𝑒𝑟 ,   Δ𝐸 = 𝐸𝑠𝑡𝑒𝑒𝑙 − 𝐸𝑡𝑖𝑚𝑏𝑒𝑟  (Eq. 5.2) 

𝜌𝑒𝐸𝐶𝐶𝑒 =  𝑥𝑒Δ(𝜌𝐸𝐶𝐶) + 𝜌𝑡𝑖𝑚𝑏𝑒𝑟𝐸𝐶𝐶𝑡𝑖𝑚𝑏𝑒𝑟 ,  

Δ(𝜌𝐸𝐶𝐶) = 𝜌𝑠𝑡𝑒𝑒𝑙𝐸𝐶𝐶𝑠𝑡𝑒𝑒𝑙 − 𝜌𝑡𝑖𝑚𝑏𝑒𝑟𝐸𝐶𝐶𝑡𝑖𝑚𝑏𝑒𝑟   (Eq. 5.3) 

𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟 = −1250 𝑝𝑠𝑖 ,  𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟 = +950 𝑝𝑠𝑖 (Eq. 5.4) 

𝜎𝑚𝑖𝑛,𝑠𝑡𝑒𝑒𝑙 = −50000 𝑝𝑠𝑖 ,  𝜎𝑚𝑎𝑥,𝑠𝑡𝑒𝑒𝑙 = +50000 𝑝𝑠𝑖 (Eq. 5.5) 

𝜎𝑚𝑖𝑛 = (𝑥𝑒)𝜂(𝜎𝑚𝑖𝑛,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟) + 𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟    (Eq. 5.6) 

𝜎𝑚𝑎𝑥 = (𝑥𝑒)𝜂(𝜎𝑚𝑎𝑥,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟) + 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟    (Eq. 5.7) 
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(Eq. 5.1b) – Minimum GWP subject to modified stress constraints 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐴𝑒 , 𝑥𝑒         ∑ 𝐴𝑒𝐿𝑒𝜌𝑒𝐸𝐶𝐶𝑒

𝑒∈Ω     GWP 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝐾(𝑥)𝑢 = 𝐹     Static Equilibrium 

                           𝜎𝑚𝑖𝑛 ≤ 𝜎𝑒  ≤ 𝜎𝑚𝑎𝑥    ∀  𝑒 ∈ Ω   Stress Constraints 

                           𝐴𝑚𝑖𝑛 ≤ 𝐴𝑒  ≤ 𝐴𝑚𝑎𝑥   ∀  𝑒 ∈ Ω   Bounds on Ae 

                           0 ≤ 𝑥𝑒  ≤ 1                  ∀  𝑒 ∈ Ω     Bounds on xe 

 

where: 

𝐸𝑒 and 𝜌𝑒𝐸𝐶𝐶𝑒 are as defined in Eqs. 5.2 & 5.3, 

but the stress limits are modified to Eqs. 5.8 & 5.9: 

𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟 = −1250 𝑝𝑠𝑖 ,  𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟 = +0 𝑝𝑠𝑖   (Eq. 5.8) 

𝜎𝑚𝑖𝑛,𝑠𝑡𝑒𝑒𝑙 = −0 𝑝𝑠𝑖 ,   𝜎𝑚𝑎𝑥,𝑠𝑡𝑒𝑒𝑙 = +50000 𝑝𝑠𝑖 (Eq. 5.9) 

 σmin and σmax remain as defined in Eqs. 5.6 & 5.7. 

  

Notice that, for a stress-constrained problem, SIMP interpolation is no longer used for Ee and ρe. Instead, Ee 

and ρe (or ρeECCe in the context of min GWP) are interpolated linearly from xe. Instead of penalizing the 

intermediate stiffnesses and densities, the intermediate stress constraints are penalized (Eqs. 5.6 & 5.7) to 

encourage the optimizer to converge to either timber (xe = 0) or steel (xe = 1) for all elements. For this study, 

SIMP interpolation is used with η = 3 in the stress constraints. 

 

5.2 Sensitivity Analysis 

The sensitivities for the stress constraints can be derived using direct differentiation. Here, we derive the 

sensitivities with respect to design variables Ae and xe: 

 

For a hypothetical design problem with n = 2 truss elements, the constraint function is: 

𝑔 = |

𝜎𝑚𝑖𝑛,1 − 𝜎1

𝜎𝑚𝑖𝑛,2 − 𝜎2

𝜎1 − 𝜎𝑚𝑎𝑥,1

𝜎2 − 𝜎𝑚𝑎𝑥,2

| = |
|

(𝑥1)𝜂(𝜎𝑚𝑖𝑛,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟) + 𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟 − 𝜎1

(𝑥2)𝜂(𝜎𝑚𝑖𝑛,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟) + 𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟 − 𝜎2

𝜎1 − [(𝑥1)𝜂(𝜎𝑚𝑎𝑥,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟) + 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟]

𝜎2 − [(𝑥2)𝜂(𝜎𝑚𝑎𝑥,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟) + 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟]

|
|  (Eq. 5.10) 

 

The stress for each element is: 

𝜎𝑒 =
𝐴𝑥𝑖𝑎𝑙 𝐿𝑜𝑎𝑑

𝐴𝑒
=

𝑇𝑒𝐾𝑒𝑑𝑒

𝐴𝑒
=

𝐸𝑒𝐴𝑒𝑇𝑒𝐾𝑒,0𝑑𝑒

𝐴𝑒
= 𝐸𝑒𝑇𝑒𝐾𝑒,0𝑑𝑒    (Eq. 5.11) 
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where Te, Ke, and de are the element transformation matrix, element stiffness matrix, and element 

displacement vector, respectively [37]. 

 

The derivative of the stress function with respect to Aj is: 

𝜕𝜎𝑒

𝜕𝐴𝑗
= 𝐸𝑒𝑇𝑒𝐾𝑒,0

𝜕𝑑𝑒

𝜕𝐴𝑗
    (Eq. 5.12) 

 

By direct differentiation on the equilibrium constraint, the derivative of de with respect to Aj can be 

extracted from the derivative of d with respect to Aj: 

𝐾𝑑 − 𝐹 = 0    (Eq. 5.13)  

𝜕𝐾

𝜕𝐴𝑗
𝑑 + 𝐾

𝜕𝑑

𝜕𝐴𝑗
= 0   (Eq. 5.14) 

𝜕𝑑

𝜕𝐴𝑗
= −𝐾−1(

𝜕𝐾

𝜕𝐴𝑗
𝑑)   (Eq. 5.15) 

𝜕𝑑𝑒

𝜕𝐴𝑗
= 𝑔𝑒𝑡_𝑑𝑒_𝑓𝑟𝑜𝑚_𝑑(

𝜕𝑑

𝜕𝐴𝑗
)  (Eq. 5.16) 

 

Hence, the sensitivities of the constraint g with respect to Aj are: 

𝜕𝑔𝑒

𝜕𝐴𝑗
= −𝐸𝑒𝑇𝑒𝐾𝑒,0

𝜕𝑑𝑒

𝜕𝐴𝑗
   (Eq. 5.17) 

𝜕𝑔𝑒+𝑛

𝜕𝐴𝑗
= 𝐸𝑒𝑇𝑒𝐾𝑒,0

𝜕𝑑𝑒

𝜕𝐴𝑗
   (Eq. 5.18) 

 

Now, for the derivative of stress (Eq. 5.11) with respect to Ej: 

𝜕𝜎𝑒

𝜕𝐸𝑗
= 𝑇𝑒𝐾𝑒,0𝑑𝑒 + 𝐸𝑒𝑇𝑒𝐾𝑒,0

𝜕𝑑𝑒

𝜕𝐸𝑗
    if e = j   (Eq. 5.19) 

𝜕𝜎𝑒

𝜕𝐸𝑗
= 𝐸𝑒𝑇𝑒𝐾𝑒,0

𝜕𝑑𝑒

𝜕𝐸𝑗
     if e ≠ j  (Eq. 5.20) 

 

Where 
𝜕𝑑𝑒

𝜕𝐸𝑗
 is derived similar to Eq. 5.13 – Eq. 5.16: 

𝜕𝑑

𝜕𝐸𝑗
= −𝐾−1(

𝜕𝐾

𝜕𝐸𝑗
𝑑)   (Eq. 5.21) 

𝜕𝑑𝑒

𝜕𝐸𝑗
= 𝑔𝑒𝑡_𝑑𝑒_𝑓𝑟𝑜𝑚_𝑑(

𝜕𝑑

𝜕𝐸𝑗
)  (Eq. 5.22) 

 

To convert 
𝜕𝜎𝑒

𝜕𝐸𝑗
 to 

𝜕𝜎𝑒

𝜕𝑥𝑗
: 

𝜕𝜎𝑒

𝜕𝑥𝑗
=

𝜕𝜎𝑒

𝜕𝐸𝑗

𝜕𝐸𝑗

𝜕𝑥𝑗
=

𝜕𝜎𝑒

𝜕𝐸𝑗
(Δ𝐸)  (Eq. 5.23) 
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The derivatives of 𝜎𝑚𝑖𝑛,𝑒 and 𝜎𝑚𝑎𝑥,𝑒 with respect to xj (only when e = j; zero if e ≠ j) are: 

𝜕𝜎𝑚𝑖𝑛,𝑒

𝜕𝑥𝑒
= 𝜂(𝑥𝑒)𝜂−1(𝜎𝑚𝑖𝑛,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑖𝑛,𝑡𝑖𝑚𝑏𝑒𝑟)   (Eq. 5.24) 

𝜕𝜎𝑚𝑎𝑥,𝑒

𝜕𝑥𝑒
= 𝜂(𝑥𝑒)𝜂−1(𝜎𝑚𝑎𝑥,𝑠𝑡𝑒𝑒𝑙 − 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟)   (Eq. 5.25) 

 

Hence, the sensitivities of the constraint g with respect to xj are: 

𝜕𝑔𝑒

𝜕𝑥𝑗
=

𝜕𝜎𝑚𝑖𝑛,𝑒

𝜕𝑥𝑒
−

𝜕𝜎𝑒

𝜕𝑥𝑗
   (Eq. 5.26) 

𝜕𝑔𝑒+𝑛

𝜕𝑥𝑗
=

𝜕𝜎𝑒

𝜕𝑥𝑗
−

𝜕𝜎𝑚𝑎𝑥,𝑒

𝜕𝑥𝑒
   (Eq. 5.27)  
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5.3 Results & Discussion 

Cantilevers (Figures 5.1 & 5.2), a simple beam (Figure 5.3), and a vault (Figure 5.4) of different mesh 

densities in 2D and 3D were topology optimized subject to stress constraints, with a minimum GWP 

objective. Starting with fully connected ground structures, fmincon with the interior-point algorithm was 

called to perform the optimization. Initial conditions were A0 = 5 in2 and x0 = 0.5 (hypothetical intermediate 

material), with Ae bound between 1e-3 and 15, and xe bound between 0 and 1. 

 

The dimensions of each studied structure are shown in Table 5.1. For all structures except the 3D vault, the 

magnitude of the applied load is 10,000 lb. For the 3D vault, the applied load is 20,000 lb. 

 

Table 5.1: Dimensions of each structure 

Structure Height (in) Length (in) Depth (in) 

2D cantilever 

(Figs. 5.1 & 5.2) 
100 200 N/A 

2D simple beam 

(Fig. 5.3) 
100 500 N/A 

3D vault 

(Fig. 5.4) 
100 100 100 

 

Ground structures are shown in the left columns of Tables 5.2 & 5.3. Optimized solutions using real stress 

constraints (problem formulation 5.1a) are shown in the middle columns of Tables 5.2 & 5.3, and optimized 

solutions using modified stress constraints (problem formulation 5.1b) are shown in the right columns. In 

general, the real stress limit formulation yielded all-steel trusses (with one exception), and the modified 

stress limit formulation yielded steel-timber trusses. 

 

Note that while the sensitivities derived in Section 5.2 (using direct differentiation) gave excellent solutions 

for 2D trusses, its solutions for 3D structures sometimes included an odd, unhelpful “floating” element. 

Therefore, finite difference sensitivities were used for the 3D vault shown in Figure 5.4, which eliminated 

the “floating” elements. It is not immediately apparent why direct differentiation sensitivities works well 

for 2D trusses but not 3D trusses; further investigation is needed to fully understand this phenomenon, 

which is out of the scope of this project. 
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Table 5.2: Ground structures and optimized solutions 

for multi-material stress constrained problems (5.1a) and (5.1b), 2D 

Ground Structure (5.1a) Min GWP with Real 

Stress Constraints 

(5.1b) Min GWP with 

Modified Stress Constraints 

 

Figure 5.1(a): 

5x3 mesh ground structure, 

cantilever 

 

Figure 5.1(b): 

Final structure with real stress 

constraint, cantilever 

Objective = 62.9 

 

Figure 5.1(c): 

Final structure with modified stress 

constraint, cantilever 

Objective = 57.5 

 

Figure 5.2(a): 

9x5 mesh, cantilever 

 

Figure 5.2(b): 

Final structure with real stress 

constraint, cantilever 

Objective = 70.7 

 

Figure 5.2(c): 

Final structure with modified stress 

constraint, cantilever 

Objective = 60.6 

 

Figure 5.3(a): 

7x3 mesh, simple beam 

 

Figure 5.3(b): 

Final structure with real stress 

constraint, simple beam 

Objective = 99.9 

 

Figure 5.3(c): 

Final structure with modified stress 

constraint, simple beam 

Objective = 90.2 

Colorbar: 0 = Timber, 1 = Steel  
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Table 5.3: Ground structures and optimized solutions 

for multi-material stress constrained problems (5.1a) and (5.1b), 3D 

Ground Structure (5.1a) Min GWP with Real 

Stress Constraints 

(5.1b) Min GWP with 

Modified Stress Constraints 

 

Figure 5.4(a): 

3x3x3 mesh, vault 

 

Figure 5.4(b): 

Final structure with real stress 

constraint, vault 

Objective = 44.8 

 

Figure 5.4(c): 

Final structure with modified stress 

constraint, vault 

Objective = 39.4 

Colorbar: 0 = Timber, 1 = Steel 

 

In each of the four studied structures, the solution obtained using real stress constraints (“real stress 

solution”) was less optimal than the one obtained using modified stress constraints (“modified stress 

solution”). For the 5x3 cantilever, the real stress solution (Figure 5.1(b)) was 9.4% more polluting than the 

modified stress solution (Figure 5.1(c)). Similarly, the real stress solutions of the 9x5 cantilever (Figure 

5.2(b)), 7x3 simple beam (Figure 5.3(b)), and the 3x3x3 vault (Figure 5.4(b)) were 16.7%, 10.8%, and 

13.7% more polluting than their respective modified stress counterparts (Figures 5.2(c), 5.3(c) & 5.4(c)). 

 

Examining the middle columns of Tables 5.2 & 5.3, the real stress solutions favored all-steel trusses, except 

for the 9x5 cantilever, where 3 timber members were used (2 in tension and 1 in compression). This is in 

contrast with the right columns of Tables 5.2 & 5.3, where both steel and timber members were employed 

in the trusses, with steel carrying tensile loads and timber resisting compressive loads. From an embodied 

carbon perspective, this arrangement of steel and timber members is ideal since timber is stronger in 

compression per unit CO2 and steel is stronger in tension per unit CO2 (see Table 2.1). This is evidenced 

by the lower GWP objectives of the modified stress solutions compared to those of the real stress solutions. 

 

Again, we observe two different topologies for the 3x3x3 vault solution (Figures 5.4(b)(c)), like its min 

compliance counterparts in Section 4.3. Here, the real stress solution, featuring an all-steel truss, appears to 

be more redundant. The variety of optimized topologies observed for the 3x3x3 vault suggests that many 
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solutions (local minima) may be more or less equally viable, perhaps owing to its square, symmetric design 

domain. 

 

It is somewhat surprising that the global optimum for each structure could not achieved with real stress 

limits. This phenomenon is most likely due to the non-linearity of the stress-constrained problem, which is 

further explored in Section 5.4. This non-linearity also manifests itself in producing asymmetric solutions 

(Figures 5.1(c) & 5.2(b)(c)).  
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5.4 Objective Landscape 

In order to understand why the best optimized design for minimizing global warming potential can only by 

using modified stress constraints (Eq. 5.1b), a simplified truss topology optimization problem of a single 

bar subject to an axial load is studied. 

 

Table 5.4: Ground and optimized structures using real or modified stress limits for a single-bar problem 

Ground Structure Optimized Structure Using 

Real Stress Constraints (5.1a) 

Optimized Structure Using 

Modified Stress Constraints 

(5.1b) 

 

Figure 5.6(a): Single bar in tension 

 

Figure 5.6(b): Steel bar in tension 

Objective = 1.87 

 

Figure 5.6(c): Steel bar in tension 

Objective = 1.87 

 

Figure 5.7(a): Single bar in 

compression 

 

Figure 5.7(b): Steel bar in 

compression 

Objective = 1.87 

 

Figure 5.7(c): Timber bar in 

compression 

Objective = 1.56 

A0 = 5; Amin = 1e-3; Amax = 15; Colorbar: 0 = Timber, 1 = Steel 
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As shown in Table 5.4, a single bar subjected to either a tensile load (Figure 5.6(a)) or a compressive load 

(Figure 5.7(a)) of magnitude P = 15 kips is topology optimized, starting with a ground structure of A0 = 5 

in2 and x0 = 0.5 (hypothetical material in between timber and steel). The length of the member was 15 in. 

The obtained solutions with real stress constraints are shown in Figures 5.6(b) & 5.7(b). In Figures 5.6(c) 

& 5.7(c) shows the results obtained when the stress constraints are modified so that 𝜎𝑚𝑎𝑥,𝑡𝑖𝑚𝑏𝑒𝑟 = +0, 

𝜎𝑚𝑖𝑛,𝑠𝑡𝑒𝑒𝑙 = −0. 

 

Under real stress constraints (Eq. 5.1a), the tensile bar converges to a steel bar in Figure 5.6(b), as expected, 

since steel is stronger in tension per unit embodied carbon. However, the compressed bar also converges to 

a steel bar in Figure 5.7(b), which is unexpected since timber is stronger in compression per unit embodied 

carbon (see discussion in Section 5.3). Modified stress constraints (Eq. 5.1b) are needed to guide the 

optimizer to choose timber for a compressed bar, as shown in Figure 5.7(c). The global warming potential 

for the timber bar in compression is f = 1.56, which is lower than that of the steel bar in compression (f = 

1.87). A timber bar is hence the most optimal solution for compression. 

 

To investigate why modified stress constraints are necessary to reach the global minimum, the objective 

landscape for the single bar is plotted using graphical optimization (in Table 5.5) and studied. 
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Table 5.5: Objective landscapes for a single-bar problem with real or modified stress constraints 

 Real Stress Constraints (5.1a) Modified Stress Constraints (5.1b) 

Tension 

 

Figure 5.8(a): Objective landscape for a 

tensile bar with real stress constraints 

 

Figure 5.8(b): Objective landscape for a 

tensile bar with modified stress constraints 

Compression 

 

Figure 5.9(a): Objective landscape for a 

compressed bar with real stress constraints 

 

Figure 5.9(b): Objective landscape for a 

compressed bar with modified stress 

constraints 

*Colorbars and contour lines represent objective values 

 

Using information about the optimized structures in Table 5.4, the direction of convergence is indicated 

with blue arrows on Figures 5.8 & 5.9. In Figure 5.8(a), for a single bar in tension, the problem correctly 

converges to the global minimum (steel) under real stress constraints. In Figure 5.8(b), modifying the stress 

constraints (such that timber takes no load in tension) removes the local minimum at x = 0 (timber), which 

does not affect the direction of convergence, since the optimizer was already choosing the optimal material 

(steel) correctly. 



38 

 

 

In Figure 5.9(a), for a single bar in compression, the problem converges to a local minimum (steel) under 

real stress constraints, instead of the global minimum (timber). Studying the objective landscape, we 

conclude that this is most likely due to nonlinearities in the problem, in both the stress-constraint function 

(the curve dividing the feasible and infeasible regions) and the objective function (the contour lines). 

Nonlinearity in the stress-constraint function is caused by the SIMP power factor η, and nonlinearity in the 

objective function is caused by multiplying multiple design variables (Ae and xe) together. Increasing 

nonlinearities causes the optimization problem to become harder to solve, which increases the likelihood 

that a local minimum, instead of a global minimum, is reached. 

 

As shown in Figure 5.9(b), the problem of being “stuck” in a local minimum is resolved by eliminating the 

local minimum itself. Modifying the stress constraints (such that steel takes no load in tension) removes the 

local minimum at x = 1 (steel), encouraging the optimizer to converge to the only minimum remaining, at 

x = 0 (timber). 
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6. Conclusions 

In the first part of this project, min compliance problems subject to either a structural weight constraint or 

global warming potential (GWP) constraint are studied for multi-material trusses. We find that the weight-

constrained problems produced all-steel truss solutions, while GWP-constrained problems produced all-

timber truss solutions. These results agree with our initial expectations, since steel is stiffer per unit weight 

and timber is stiffer per unit CO2. While these results may seem trivial, it verified that our MATLAB code 

is working as intended. Moreover, these results highlight that, in the context of multi-material structures, 

the weight-constrained solution may be different than the GWP-constrained solution. This contrasts with 

single-material structures, where the weight-constrained solution is always equal to the GWP-constrained 

solution. 

 

To take material strength into account, the stress-constrained problem with a minimum GWP objective is 

investigated. Two problem formulations are studied and compared: one with real material stress constraints; 

and one with modified stress constraints, where timber was considered as a compression-only material and 

steel as a tension-only material. Across all studied structures, the real stress solutions are more polluting 

than the modified stress solutions by 9.4% – 16.7%. This is because the real stress solutions tended to favor 

steel over timber, regardless of whether the truss element was in tension or compression. The designs 

produced by real stress constraints are somewhat surprising to us; since steel is stronger in tension (per unit 

CO2) and timber is stronger in compression (per unit CO2), we expected both materials to be utilized in 

their respective strengths. On the other hand, the modified stress solutions chose timber for compressive 

struts and steel for tensile bars, resulting in the lower GWP designs as expected. 

 

To investigate why the real stress formulation could not achieve the better, “greener” designs, the objective 

landscape of a single bar in either tension or compression is studied. We find that, due to non-linearities in 

the stress-constrained problem and the SIMP interpolation, the real stress objective landscape favored a 

convergence towards the steel minimum in both compressive and tensile cases. While the steel minimum 

is the global minimum for the tensile case, the timber minimum is the global minimum for the compressive 

case. To encourage the optimizer to choose the global minimum every time, modified stress constraints are 

introduced, which eliminates the local minima. The modified stress-constrained formulation successfully 

produced hybrid trusses with timber and steel placed in their most efficient arrangements for embodied 

carbon objectives. 

 

The field of topology optimization for structural design and embodied carbon objectives remains largely 

unexplored. Possible future works related to this thesis include (i) incorporating buckling stress into the 
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stress-constrained problem, (ii) performing a similar simulation with other pairs of materials, (iii) extending 

truss topology optimization to frame topology optimization, (iv) investigating the reasons behind the 

instability of the 3D vault problem, and (v) exploring why the direct differentiation sensitivities work well 

for 2D trusses but not 3D trusses. 
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