Nom :	note :
Prénor	n :
	Micro-Mécanique (A. Tanguy)
R	épondre sur la feuille, en rédigeant une réponse, ou en entourant la (les) bonnes réponses.
,,	
	Joindre les calculs en annexe s'il y a lieu.
	Notes non autorisées.
1)	Combien de modules d'élasticité indépendants sont nécessaires pour caractériser un matériau possédant une symétrie par rapport à un plan ? Réponse 1 : 2
	Réponse 2 : 15 Réponse 3 : 13 Réponse 4 : a priori 21
2)	Dans un contact de Hertz, la force nécessaire pour provoquer un déplacement relatif des 2 corps est proportionnelle à l'enfoncement relatif Réponse 1 : Vrai Réponse 2 : Faux
3)	L'approximation JKR est meilleure lorsque les forces d'adhésion sont de courte portée et les matériaux faiblement rigides Réponse 1 : Vrai Réponse 2 : Faux Justifier votre réponse :
4)	L'approximation DMT est meilleure lorsque les forces d'adhésion sont de longue portée, et les matériaux faiblement rigides Réponse 1 : Vrai Réponse 2 : Faux Justifier votre réponse :
5)	Dans un calcul d'adhésion entre une particule isolée et un solide semi-infini indéformable de surface plane, lorsque les énergies d'interaction interatomiques sont en B/d^m (où d est la distance interatomique), pour quelles valeurs de m peut-on négliger les effets de taille finie ?
	Réponse 1 : pour des valeurs de m dépendant de la distance entre la particule et la surface Réponse 2 : pour $m > 2$ Réponse 3 : pour $m > 3$

Réponse 4 : pour m > 5

6) A des échelles nanométriques, l'énergie d'adhésion domine en général sur l'énergie de déformation élastique

Réponse 1 : Vrai Réponse 2 : Faux

7) En 1926, Erwin Schrödinger a proposé de remplacer l'équation fondamentale de la dynamique par l'équation dite « de Schrödinger » pour décrire l'évolution d'une particule quantique dans l'espace et dans le temps. Cette équation d'évolution est une équation d'onde dans l'espace complexe que nous rappelons ci-dessous dans le cas 1D:

$$-\frac{\hbar^{2}}{2m}\Delta\Psi(x,t)+V(x,t)\Psi(x,t)=E\Psi(x,t)$$

où V(x,t) est une énergie potentielle à laquelle le système est soumis, x sa potision, t le temps, et E représente l'énergie cinétique du système. $\Psi(x,t)$ est une fonction d'onde complexe dont le module au carré représente une densité de probabilité de présence en x de la particule de masse m (la particule elle-même n'est identifiée que par une loi de probabilité de présence dans la théorie quantique).

Dans le cas où V(x,t) est une barrière de potentiel, c'est-à-dire pour V(x,t) =0 lorsque x<0 et V(x,t) =Vo lorsque x>0, calculer la densité de probabilité de présence de la particule en x>0 lorsque l'énergie cinétique E < Vo.

Réponse et calcul détaillé :