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Abstract 

Amorphous solids fall into any reasonable definition of a solid. This means that it should be possible to describe 
amorphous solids in terms of an expansion in deviations from a well defined rigid microscopic reference frame - as 
in the Cauchy-Bom lattice-dynamics of periodic crystals. The continuum limit of this microscopic expansion is a field 
theory - continuum elasticity. It follows that different types of amorphous solids can differ from each other and from 
crystalline solids only because of differences in the nature of their microscopic reference states. A theory of amorphous 
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solids which implements this general point of view must satisfy two very general restrictions: (1) translation-rotation 
invariance of the expansion and (2) the reference state must be a stable equilibrium state. We construct such a general 
theory and also describe some results of its application to specific types of amorphous solids. The monograph consists of 
three parts. 

Part I. The Cauchy-Born Theory of Solids, describes a general and explicitly translation-rotation invariant formu- 
lation of the Cauchy-Born expansion. This is done by using the fact that the translation-rotation invariant energy of a 
many particle system can be regarded as a function of the interparticle distances. The resulting formalism leads to local 
expressions for the continuum limit which can be used to derive microscopic expressions for the local elastic constants 
and for the stresses from the coefficients in the microscopic expansion around a specific reference state. One finds that 
the initial stresses in the microscopic reference state lead to special stress induced terms in the harmonic expansion whose 
continuum limit is the second order strain. Their effect on the bulk stability of the reference states of tenuous solids is 
closely analogous to the role of stresses in continuum stability theory. 

Part II. The Rigidity of Floppy Bonded Networks, studies the stability of tenuous reference states. The theory developed 
in this section extends the standard considerations of the effect of stresses on the elastic stability of thin rods and shells 
to the complex internal structures which describe the bulk of solids. There is a geometric aspect. The interaction scheme 
of a physical model, the bond structure, defines a graph - the bonded network. When this network can be deformed 
continuously in d-dimensions even when all its bonded distances are fixed is geometrically floppy. A model which is 
described by such a network has a manifold of free degrees of freedom which have no rigidity for unstressed reference 
states. Mostly the free modes describe collective deformations of the reference state. We show that their number can be 
very large and that they often constitute a significant fraction of all eigenmodes. Like the bending of a thin rod these free 
modes are sensitive to stresses in the reference state around which one is expanding. When there are stresses they can 
become unstable, leading to structural buckling instabilities, or stable - depending on the sign of the relevant stresses. 
The theory of floppy networks thus allows us to study structural buckling, the bulk analog of the Euler buckling of rods 
and shells, and the stabilization of bulk shears by stretching which is the origin of the shear rigidity of most soft solids. 

Part III. The Role of Stresses in Amorphous Solids, applies these results. The emphasis is on the stability of the 
reference state. We require stability against structural buckling and on the role of stresses in stabilizing the soft modes of 
tenuous bonding structures. The shear rigidity of rubbers and wet gel-likes is that of floppy bonded networks which are 
stretched. Like the shear rigidity of stretched membranes it is that of a network of stretched springs. We show that this 
is possible only because such solids are not rigid down to the atomic level. We discuss the stability of stressed granular 
packings emphasizing the fact that the packing has to be stable against structural buckling. This gives considerable insight 
into the internal mechanics of granular packings because it not only considers the equilibrium conditions on the individual 
grains but also the collective linear stability of a stressed packing. We then describe a new model of quenched glasses 
which emphasizes the role of the internal stresses in the glass. The essence of this model is the distinction between the 
molecular configuration in the quenched liquid, the "snapshot state" and the stable equilibrium reference state of the glass 
which emerges from it even for the most rapid ideal quench. We argue that structural buckling dominates the restructuring 
in the ideal quench and show that this predicts strong correlations between the local structure of the reference state and 
the internal stresses. Some of the most striking properties of glasses appear naturally in this microscopic model. (~) 1998 
Elsevier Science B.V. 

PACS: 61.43.Fs; 62.20.-x; 63.50.+x; 64.70.Pf 
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O. Preface 

The development of the microscopic theory of amorphous solids which I describe in this mono- 
graph is the result of a prolonged effort which started about 15 years ago. The road by which 
I reached the conclusions I present was quite tortuous but I have made an effort to erase the traces 
of  this in the final version of the manuscript. I can only hope that this effort, which involved contin- 
uous rewriting, was successful and that the manuscript is reasonably clear and comprehensible. I am 
particularly worried about getting the message I am trying to convey across in view of  the fact that 
my earlier attempts to present my results on the role of stresses in rubbers and gels by publishing 
two papers (Alexander, 1984, 1985a) did not prove very successful. 

The basic ideas on which the theory I present are fairly straightforward. First, I claim that amor- 
phous solids are really solids and can be described by a Cauchy-Born expansion around a rigid 
microscopic reference states (see Section 2). This then means that any differences between amor- 
phous and crystalline solids and between different types of  amorphous solids must reflect differences 
in the nature of  their microscopic reference states which are reflected in their properties. Finally, 
the main new physical ingredient I introduce is the emphasis on the role of  initial stresses. I shall 
claim that the peculiarities of the different reference states of  amorphous solids can all be traced to 
the role of  stresses. 

Born and Huang in their classical (1954) monograph "The Dynamical Theory of Crystal Lattices" 
"define" an "equilibrium solid" as a solid which has no stresses in its reference state. This approxi- 
mation is incorporated into the formalism they develop. It is very often justified because the effect 
of initial stresses on the linear bulk properties of  crystalline solids is usually negligible. I will claim 
that, in contrast, for amorphous solids the effect of the initial stresses is crucial. One cannot even 
begin to understand amorphous solids if one does not consider the effect of  stresses on the linear 
stability of  their reference states. The reference states of amorphous solid are stable equilibrium 
states but they are stressed and the role of stresses cannot be neglected. The Born-Huang approxi- 
mation is not justified in discussing the lattice dynamics of  amorphous solids. The reason for this is 
that the structures of  amorphous solids are determined by dynamic processes and not by minimizing 
the global interaction energy of the system. The reference states of  amorphous solids are therefore, 
almost always, rather tenuous and stresses are important both in the structural buckling processes 
which produce them and in the stability of the reference states themselves. 

I believe that anyone who reaches Part III of this monograph where I discuss the properties of 
specific amorphous solids - soft solids, packings and glasses - will concede that, at the very least, 
I make a strong case. This in spite of the fact that these specific discussions are mostly rather 
preliminary efforts. 

Most of  the results and derivations which I present are new and have not been published. This is 
of  course rather unusual considering the length of  the manuscript and the time I have spent working 
on it. The reason for this is that the structure of the theory is intrinsically complex. It is not too 
difficult to explain and summarize what I claim I am doing but to show that I can really analyze 
the properties of the expansion around an amorphous reference state I need a suitable formalism 
and some general results on the role of  stresses in bulk structures which I have to construct and 
derive first. To discuss specific types of  amorphous solids in Part III I rely on the general rotation 
invariant formalism for the Cauchy-Born expansion which is constructed in Part I and the theory of  
the rigidity of  floppy networks which is developed in Part II using this formalism. 
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I will try to explain the structure of  the whole monograph and the contents of  its various parts 
in the Introduction and also, in more detail, in the introductory paragraphs of  each of the three 
parts. 

I. Introduction 

1.1. What this monograph tries to do 

I have long felt that the fact that we have so little understanding of  the microscopic mechanical 
properties of  amorphous solids is surprising. For many reasons one expects solids to be much 
simpler than liquids and it is therefore strange that the theories of dense liquids provide much more 
information and insight than anything available for glasses. 

My purpose in this monograph is to construct a proper microscopic theory of amorphous solids 
which can explain their observed properties. We mean by this a theory of  amorphous solids as 
solids, in the Cauchy-Born tradition (Cauchy, 1827, 1828; Born and von K~irm~in, 1912, 1913) 
which derive their properties - their microscopic lattice dynamics and the continuum limit - from 
the expansion of  their mechanical energy around a rigid microscopic reference state which describes 
a stable equilibrium state of  the amorphous solid. 

Doing this has a technical side. 
One requires a formalism which makes it possible to construct, study and analyze the translation- 

rotation invariant Cauchy-Born expansion and its continuum limit when the reference state is random 
and not a periodic lattice. One also needs this formalism for a careful investigation of the character 
of  an amorphous reference state in a form in which it can be incorporated into the theory in 
a reasonably translucent way. The first requirement of  such a formalism is obviously that it assures 
both translation and rotation invariance for the energy in the most general way and, term-by-term 
for the expansion. As we will show the main technical advantage of the formalism we develop is 
that it allows one to separate out the effects of  stresses and bond tensions on the lattice dynamics 
and on the linear stability of  the reference state. 

It emerges from this analysis that initial stresses, the stresses which are properties of  the reference 
state, play a crucial role in amorphous solids. I will argue, I believe convincingly, that one cannot 
understand the bulk mechanical properties of  amorphous solids without understanding the role of the 
initial stresses in their reference states in determining them. Thinking about the reference state of  an 
amorphous solid simply as a "random medium" without worrying about the way it emerged and its 
internal structure is misleading. One has to incorporate the effects of  stresses into the theory - both 
their effect in the dynamics which determined the structure of the reference state and their effect in 
determining the properties of the Cauchy-Born expansion around it. Both structural buckling - the 
structural analogs of  Euler (1755) buckling - and the stabilization of bulk shears by stresses - as 
in the transverse rigidity of stretched strings and drumheads - are important. 

We will argue that the essential and deep origin of the many differences between the well- 
understood properties of  crystalline solids, and those observed in amorphous solids is that the initial 
stresses are important in the latter but not in the former. Specifically, this will be shown in the detailed 
discussion of three types of  amorphous solids in Part III. We discuss soft solids, in particular rubbers 
and gels in Section 14, random packings of  rigid particles in Section 15 and glasses produced by 
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a rapid quench in Section 16. For physical reasons the initial stresses are different, are correlated to 
the structure in a different way and play a different role in each case. 

1.2. Understandin9 the properties of  amorphous solids 

We want to put this in context. 
Our theoretical understanding of solids is based on a microscopic description of their reference 

states. The theory assumes rigid reference positions at the microscopic level and expands the energy 
in the deviations from these positions. In essence this goes back to Cauchy (1828) who already used 
this expansion procedure for the derivation of the equations of continuum elasticity. The modem 
formulation, the theory of Lattice Dynamics, is due to Bom and von K~irmhn (1912, 1913) and 
forms part of most undergraduate physics curricula. 

There is no obvious reason why, in principle, a Cauchy-Bom expansion should not be used to 
describe amorphous solids - in terms of an expansion around a suitable random reference state. 
In practice the procedure one actually uses and teaches in standard "lattice dynamics" relies very 
heavily on the periodicity of the lattice and also makes some other implicit and less obvious as- 
sumptions which will become clear later. For this reason one cannot construct a useful theory of 
amorphous solids by simply applying the Bom-von Kfirrn~in algorithms to amorphous solids. This 
is not simply a question of expanding around a random reference state. It remains true even if one 
is willing to compute the eigenfunctions numerically or finds some way to handle the expansion 
around a realization of a random reference state. Attempts to do this explicitly - e.g., by applying 
replica techniques (John et al., 1983), or by simulations (Webman and Grest, 1985) - lead to defi- 
nite results, but these results are very different from the properties observed in any real amorphous 
system. 

Something is clearly missing. 
The result of these theoretical difficulties is that very little is known about the microscopics of 

amorphous solids. Even dynamic modes which definitely exist and distinguish amorphous solids like 
two-level systems (Anderson et al., 1972; Phillips, 1972) and the soft "Bose peak" modes are to 
this day interpreted by phenomenological models which do not even attempt to relate them to the 
microscopic structure, e.g. the "soft potential theories of Karpov et al. (1983), Karpov and Parshin 
(1983), II'in et al. (1987), Buchenau et al. (1991), Buchenau et al. (1992), Parshin et al. (1993), 
Gurevich et al. (1993). 

This is the situation for almost all amorphous solids. The only exception we are aware of are the 
polymeric network theories of rubbers and gels originally proposed by Flory (Flory, 1953, 1976; 
Graessly, 1975; Deam and Edwards, 1976; Pearson 1977). These are detailed and very powerful 
microscopic theories which, undoubtedly, contain the essential physics of the systems they describe. 
They also predict the results of experiments very well. Polymeric network theories are however 
constructed along very different lines from the general Cauchy-Born (CB) theory of solids. They 
do not use an expansion around a reference state and do not determine macroscopic response from a 
formal continuum limit. This is very strange because the CB theory is the only systematic approach 
to the description of solids one has. 

The discrepancy with the standard theories of solids becomes even more striking when one notes 
that the networks of  springs used in the theories of rubbers and gels do not satisfy the standard criteria 
for the shear rigidity of such networks. Nevertheless they calculate the shear rigidity correctly. How 
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can it be true, e.g., that shear rigidity appears at the gel-point - as soon as an infinitely connected 
network is formed? (Stockmayer, 1943, 1944; Zimm and Stockmayer, 1949). 

Is this an accident? Is it an accident that the only systematic theory of  an amorphous material 
one has, is not a CB theory and has these strange consistency problems? 

1.3. The shear rigidity o f  stressed networks 

My initial motivation in starting the work which I describe below was an attempt to understand 
these discrepancies. I tried to find a way to formulate the network theories of  gellation and rubber 
elasticity in the framework of  the general CB theory of the mechanical properties of  solids. The hope 
was that this would then explain why the theories work and, in particular, how such very tenuous 
networks of  springs can have shear rigidity. 

As a motivation for a research program this is a somewhat unconventional point of view. The 
question one is asking is primarily a question of  theoretical consistency between two theoretical 
approaches and not a question of  agreement between theory and experiment. The theories of rubbers 
and gels are, of  course, not perfect in all details but this is irrelevant. There is certainly no reason 
to doubt their essential correctness. The polymeric-network and percolation models which they use 
describe the essence of the underlying physical situations and they also "work" extremely well. To 
argue that the models miss essential physical ingredients, e.g., explicit angular bending forces, simply 
does not make sense. 

In two papers (Alexander, 1984, 1985a) I showed that one can quite easily reformulate the network 
theories of rubbers and gels as a CB expansion. One then finds that polymeric networks have shear 
rigidity only because they are stressed. They have shear rigidity because the polymeric springs which 
constitute them are stretched by the osmotic pressure. One finds that the term in the elastic energy 
which is responsible for the shear rigidity of polymeric networks is 

p .  . (1.1) 

The shear rigidity is completely due to the fact that the network is stressed. The shear rigidity, 
Eq. (1.1), vanishes with the osmotic pressure, p. One also finds that when identical networks are 
constructed from springs which are not stretched they have no shear rigidity at all. The result for 
unstretched springs is thus in full agreement with the standard rigidity criteria (see, e.g., Dewdney, 
1991). 

One also notes that the expression (1.1) for the dependence of  the elastic energy on the shears 
0~ufl is anomalous. It does not vanish when 

0~u~ = -0~u~ (1.2) 

as for a rotation even though the symmetric linear strain - (O~ua+O~u~) - vanishes. This demonstrates 
that p in Eq. (1.1) does not play the role of  a proper shear modulus and that the shear rigidity of  
rubbers and gels is qualitatively different from that of  the "ordinary" solids discussed in texts on 
elasticity. 

Thus the results I presented in 1984/1985 fully solved my initial problem. 
They showed that when one uses a suitable formalism the Flory theory can be reformulated as 

a CB expansion - as expected. They also show that "rubber elasticity" is qualitatively different from 
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the elasticity of  crystals. The elasticity of  rubbers and gels is the elasticity of stressed networks, 
its origin is in the "scalar elasticity" terms in the harmonic expansion of  the energy of  a stretched 
spring which are proportional to 

u ~ = ( u ,  - uj) 2 . (1.3) 

Such terms do not show up when the spring is not stretched. This means that the bulk shear rigidity 
of  rubbers and gels falls into the same category as the transverse rigidity of  stretched strings and 
drumheads and is therefore qualitatively different from the bulk rigidity of most solids. 

1.4. Why  this monograph was written? 

I returned to these problems a decade later for two reasons: 
One concerned the theory of rubbers and gels. It became evident that the message I had tried 

to convey in 1984 did not get across - this in spite of  considerable efforts I made. I thought, and 
still think that this is a pity. The implications of  this difference are usually not dramatic but they 
are real and observable. It was also frustrating to realize that I was unable to explain something 
which seemed perfectly straightforward to me - so much so that I was even suspected of  ignoring 
rotational invariance - presumably because the expressions in Eqs. (1.1) and (1.3) do not "look" 
right. Anyway I felt that I should try once more. 

The second reason for trying to work out the theory fully and in detail was the hope that it would 
turn out that the theory of  rubbers and gels provided a clue to the understanding of  other amorphous 
solids - in particular glasses. I knew I could handle rubbers and gels so there was a chance that one 
would also be able to handle glasses in the same way. If initial stresses were so important in rubbers 
and gels they could also be important in understanding the properties of  other types of  amorphous 
solids like glasses. This was of  course just a hope but it was also a challenge. 

For these reasons I decided to go back and work out the implications of  using a completely 
general translation-rotation invariant formalism in the CB expansion - in full detail. 

1.5. The structure 

This work consists of  three parts. 
Part I, the Cauchy-Bom theory of  solids, describes a general and explicitly translation-rotation 

invariant formulation of  the Cauchy-Born theory. The configuration of a system of particles relative 
to each other can always be regarded as determined by the distances between them. Because of  this 
the translation-rotation invariance, energy of  a many particle system can be regarded as a general 
function of  the interparticle distances. Using this we derive the most general CB expansion. The 
formalism allows a local derivation of  the continuum limit which is convenient for calculating the 
elastic constants and the initial stresses from the microscopic expansion around a specific reference 
state. This brings out the specific role of  the initial stresses in the reference state of  the solid. 

In Part II - the rigidity of  floppy bonded networks - we study rigidity using the formalism 
developed in Part I. The theory developed in this section extends the standard considerations of  the 
effect of  stresses on the elastic stability of  solids with anisotropic shapes (see, e.g., Landau and 
Lifshitz, 1970, ch. II) to the complex internal structures which describe the bulk of  solids. 
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The interaction scheme of a physical model, the bond structure of its energy, defines a graph - 
the bonded network of  the model. A network in d-dimensions which does not become rigid when 
all its bonded distances are fixed is geometrically floppy and can be deformed continuously. We 
show that a model which is described by a floppy bonded network has a manifold of free degrees 
of freedom which have no restoring force constants in the expansion around unstressed reference 
states. When the reference state around which one is expanding is stressed these modes become either 
unstable, leading to structural buckling instabilities, or stable - depending on the sign of the relevant 
stresses. ~ The theory of floppy networks allows us to study structural buckling, the bulk analogs 
of  Euler (1755) buckling, and the stabilization of  bulk shears by stretching which is particularly 
important in soft solids like rubbers and gels. 

In Part III - the role of stresses in amorphous solids - we apply these results to specific physical 
situations. The emphasis is on the linear stability of  the reference state - stability against structural 
buckling - and on the role of stresses in stabilizing the soft modes of tenuous bonding structures. 

Rubbers and wet gels are described by floppy bonded networks and their shear rigidity is then that 
of stretched networks which, like stretched membranes, exert forces on their external boundaries. We 
show that this is consistent with mechanical equilibrium only because such solids are not rigid down 
to the atomic level. Their properties as solids are described by partially averaged thermodynamic 
potentials, parametrized free energies, and not by the atomic Born-Oppenheimer energies. 

We discuss the stability of  stressed granular packings emphasizing the fact that the packing has to 
be stable against structural buckling. This gives considerable insight into the internal mechanics of  
granular packings because it not only considers the equilibrium conditions on the individual grains 
but also the collective linear stability of a stressed packing. 

We then describe a new model of  quenched glasses which emphasizes the role of the internal 
stresses in the glass. The essence of  this model is the distinction between the molecular configuration 
in the quenched liquid, the "snapshot state" and the stable equilibrium reference state of the glass 
which emerges from it even for the most rapid ideal quench. We argue that structural buckling 
dominates the restructuring in the ideal quench and show that this predicts strong correlations between 
the local structure of the reference state and the internal stresses. Some of the most striking properties 
of  glasses appear naturally in this microscopic model. 

2. The definition of a solid 

2.1. The macroscopic definition 

Our intuitive concept of a solid is macroscopic. A solid has shear rigidity. It retains its shape 
when external forces are applied to it or rather returns to it when the external forces are removed. 
This can be regarded as a macroscopic definition of a solid. 

On a more sophisticated level the macroscopic behavior of  a solid is described by a continuum 
field theory, the theory of elasticity, which describes the way a solid deforms when external forces 
are applied. The deformation of  the solid is described by a vectorial field, u(r), which describes 

1 This has a long history. The stabilization of  shears by stresses is important in musical instruments and destabilization, 
buckling goes back at least to Euler (1755). 
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the distortion of  a continuum space - the reference frame of  the solid. The derivatives of  this 
displacement field O,u~, describe the infinitesimal local distortions of  the solid - the volume changes 
and the shears - or, equivalently, the changes in the metric (Landau and Lifshitz, 1970, ch. 1). 
These dimensionless variables and their conjugate stresses are the basic variables in the continuum 
theory of  the elasticity of  solids. 

The field theory constructed in this way is specific to solids. It is not just that fluids have no 
shear modulus. One cannot define a rigid reference space for a fluid and therefore also no deviation 
field, u( r ). 

This shows up clearly when one considers the description of relative density changes, 6p/p, which 
appear in the description of the response of  both fluids and solids. The density change of  a solid 
can be computed from the deviation field, u(r) 

6p/p = div u + h.o.t. 

The density change of  a fluid cannot be described in this way because a fluid has no rigid reference 
frame. 

One can therefore generalize the intuitive concept of  a solid and regard the existence of a rigid 
reference frame as definition. A solid has a rigid reference frame and can therefore be described by 
the theory of  elasticity. This is a macroscopic definition of  a solid. But the rigid reference frame must 
have a microscopic meaning on the atomic level. There is therefore also a microscopic definition. 

2.2. The microscopic definition 

The rigid reference frame assumed in the theory of  elasticity must have some physical meaning. 
In most cases this means a rigid underlying arrangement of  microscopic particles. The microscopic 
description of  the solid then starts with the definition of  a rigid reference configuration of the 
constituent particles: 

{R} = {R1,Rz,. . . ,Ri . . . .  } .  (2.1) 

The requirement that one can define such a microscopic reference state consistently - as a rigid 
reference state for the deformations of the solid - amounts to a microscopic definition which is 
distinct from the macroscopic definition of a solid. The two intuitive definitions of  a solid are 
connected by the CB theory of solids. 

2.2.1. Non-atomic solids 
One tends to think of  the particles in this microscopic description as well defined particles - 

atoms, molecules, etc. We will assume this implicitly in most of  our discussion below. It is however 
obvious that there are other possibilities. 

Some solids - rubbers, gels, foams, etc. - are not rigid at the elementary molecular level. One 
can define a rigid framework - of  the type (2.1) - but only at scales considerably larger than the 
elementary atomic scales. We shall discuss this in detail when we discuss soft solids in Section 14. 

For completeness we also note that when one discusses solidification in a Landau symmetry 
breaking form - as the breaking of continuous translational-rotation symmetry (Landau, 1937b; 
Alexander and Mctague, 1978; Alexander, 1981, 1985b; Baym et al., 1971; Brazovskii et al., 1975, 
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1978; Lebedev et al., 1995) - one gets a continuum description of a solid phase with no explicit 
microscopic building blocks. The most obvious realizations of this are mesophases, and in particular 
the "blue phases" of Cholesteric liquid crystals (Brazovskii et al., 1975, 1978; Alexander, 1981). 

2.3. Consistency of  the Cauchy-Born theory 

2.3.1. The CB expansion 
The CB theory of solids is well known and is described in all standard texts on the physics of 

solids. 2 
Within the CB scheme the mechanical energy of a solid is regarded as a function of the positions 

of the particles which constitute the solid 

= e({rl,  r2,..., ri,. . .}). (2.2) 

One expands this energy around the many-particle reference state, {R}, in the deviations of the 
positions of the particles from their equilibrium values: 

Igi = ri - -  R i  . (2.3) 

This gives a microscopic description of the mechanical properties of the solid - its "Lattice 
Dynamics". One then derives the continuum field equations of elasticity from the continuum limit 
of the CB expansion. 

This procedure is quite old. 3 Navier (1827) and Cauchy (1828b, c) have already used such micro- 
scopic models in their derivation of the concepts and of the general field equations of continuum 
elasticity. The more general modern version of the microscopic expansion procedure, the theory of 
Lattice Dynamics, was developed by Born (Born and von Kfirmfin, 1912, 1913; Born, 1915, 1923, 
1943). 

2.3.2. Consistency - the Lindemann rigidity criteria 
The Cauchy-Born expansion procedure assumes that the reference state {R}, Eq. (2.1), is suf- 

ficiently rigid so that the expansion makes sense. The theory requires that one can define a rigid 
microscopic reference state {R} around which one can expand consistently. One can write down 
a many particle energy, Eq. (2.2), for any collection of N particles. The requirement that it has 
a rigid reference state {R}, Eq. (2.1), is then a physical requirement which depends on the condi- 
tions imposed on the system. 

It is natural to express this as a consistency condition on the CB expansion itself by calculating 
the fluctuations and comparing them to the equilibrium separations. Consistency requires 

(~r2)c~ < 1 (2.4) 

for any pair of particles i,j, where Rij(= I R i - R  j I) is the equilibrium distance and (6r2)cB the mean 
square deviation calculated from the CB expansion. 

2 We only mention some of the more classical texts and monographs - Peierls (1955) ch. I and II, Kittel (1963) ch. 2, 
Born and Huang (1954) and the discussion in Landau and Lifshitz (1980), ch. VI. 

3 A fascinating and very illuminating description of the history of the theory of elasticity is given by Love (1927b). 
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We will call this the L&demann rigidity criterion (LRC). 4 
Within the CB scheme macroscopic shear rigidity, Section 2.1, is assured by the long range limit 

of the Lindemann rigidity criterion 

lim ~ ( r )  = 0,  (2.5) 
r ----+ O C  

where 

~q~(r)= ( (rrZ)cB I (2.6) 
R2 R~j =r " 

Eq. (2.5) assures that one can calculate a finite shear modulus, #, from the CB expansion because 

~ ( r )  (x (pt rd )  -1 

for large r - a very general and familiar result. 
But the consistency of  the CB expansion also requires consistency at the local level down to the 

smallest separations 'a ':  

5e(a) < 1 (2.7) 

which is obviously a necessary condition for the rigidity of  the reference state. 

2.3.3. Long range order 
In discussing crystals one usually requires "long range order" which can be expressed as 

lira (6r~)cB ~ lira ~ ( R )  < 1 (2.8) 
Rij--*~ a ~ R - ~  ~-  " 

This is, obviously, a much stronger condition than the long range LRC (2.5) which we required 
for the definition of a macroscopic shear modulus. In particular, one and two dimensional solids are 
solids according to (2.5), and one can define a shear modulus, but have no long range order. 

In three-dimensions long range order is usually assured automatically - throughout the solid range 
- by the empirical Lindemann melting criterion 

(u/2) <0.1 (2.9) a 2 

(Lindemann, 1910) which predicts melting quite accurately for periodic crystals and apparently also 
for amorphous glasses. 

Because 

2 (u2) l im (rri~.) CB 
a2 = % _ , ~  a2 "> ~V(a) (2.10) 

it follows that the microscopic Lindemann consistency criterion (2.7) is obeyed as a strong inequality 
throughout the solid range, at least in 3-D. 

Evidently our simple consistency argument cannot tell how small the left-hand side of the 
inequality (2.7) has to be. 

4We will discuss this criterion and its implications in detail in Section 14.1. 
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2.4. Crystals versus amorphous solids - periodicity and solidification 

According to any reasonable criterion for defining a solid an amorphous glass is just as solid as 
a crystal. 

On the theoretical side this is shown by our discussion above. None of the consistency criteria for 
the CB theory seem to make any sharp distinction between crystalline solids - with periodic reference 
states - and amorphous solids with reference states which are random. Even long range order is 
defined in Eq. (2.8) in a most natural way which applies equally to amorphous and crystalline 
materials. There is simply no valid reason why the low temperature properties of an amorphous 
glass should not be described by a CB expansion just as well as the low temperature properties of 
a crystal are described by such an expansion around its periodic reference state. 

This agrees with the empirical experimental situation. There are differences between crystalline and 
amorphous solids which are important and intriguing but they are much smaller than the differences 
between solids of either type and liquids. Amorphous solids do not "flow" more than crystals and 
both the real and the imaginary parts of  the shear modulus are comparable. There is no way one 
could justify classifying SiO2 window glass as a liquid. 

When a liquid crystallizes continuous translation-rotation symmetry is broken and only the discrete 
space group symmetry of the periodic crystal remains. This is a dramatic symmetry change - certainly 
the most obvious example of symmetry breaking in our everyday experience. Nothing like this 
occurs at the glass transition. Translation-rotation (TR) symmetry is not brokeh. Thus if one wants 
to classify amorphous solids as solids one cannot associate solidification with the breaking of TR 
symmetry as is often done. 

We will argue that there is nevertheless a universal symmetry which is broken by solidification 
and that this is permutation symmetry which is broken by quenching. Permutations of equivalent 
particles are a real active symmetry in the fluid and this symmetry is always broken on solidification. 
The solid is described by a unique state which realizes one special permutation of  the constituent 
atoms on the lattice sites - out of  N! possible ones. 5 

2.5. In the CB theory the particles are labeled 

The CB expansion labels the particles in a solid by their respective equilibrium positions. On a 
deeper and more formal level this means that they are treated by the theory as distinguishable even 
when they are equivalent. Their permutation symmetry is quenched. States related by the exchange 
of equivalent particles are treated by the CB theory as separate states. 

The quenching of permutation symmetry is the reason why the theoretical description of  solids 
is much simpler than that of  the corresponding liquids. Even an amorphous solid can be described 
by expanding around a specific, rigid and well defined atomic arrangement - its specific random 
reference state. The CB theory does not allow the particles to interchange their equilibrium positions. 
This means that most of  the complex averaging between different configurations which is essential in 
the theory of  real fluids - and the corresponding complex entropy considerations - disappear when 
one is considering the solid. 

5 Obviously this assumes that the solids can be described as consisting of some sort of identifiable "particles" whose 
positions can be permuted. 
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This simplification is illustrated by the dramatic difference in the description of the phase transition 
between the two phases. Melting, the solid-to-liquid transition is predicted quite accurately and almost 
quantitatively by the simple and very intuitive Lindemann melting criterion (Lindemann, 1910). 
On the other hand, even the best microscopic descriptions of freezing, the liquid-to-solid transition, 
are complicated, controversial and inaccurate. 

2.5.1. The correlation functions o f  solids 
The quenching of permutation symmetry in solids is clearly seen in the correlation functions one 

calculates and which dominate the theory. 
The Cauchy-Born expansion is a many body expansion. One does not expand in the deviation of 

one specific particle, ui, but in the deviations of many essentially equivalent but distinct particles 

{ u }  = {u,,u2 . . . . .  u , ,u ,+ l , . . . ,u j , . . .  ,uN} .  (2.11) 

Expanding in the deviation ui(t) follows the particle "i", the specific particle whose equilibrium 
position is Ri, along its path. The calculation keeps track of particle "i" without confusing it with 
some other particle, "j". This labeling of the particles by their separate equilibrium positions is 
an essential ingredient of the Cauchy-Born theory of solids. The essence of the microscopic CB 
description of a solid is that it is possible to describe the properties of the solid in this way. The CB 
theory assumes that the particles in the solid can be treated as distinguishable and can be labeled 
by their equilibrium positions. 

In the CB theory the solid is described by the labeled positional correlation functions: 

Sij(z) = (ri(t) * rj(t + ~)) = Ri * Rj + (ui(t) * uj(t + ~)} (2.12) 

where the asterisk implies the dyadic external product of two vectors. S,-j(z) are correlation functions 
between particles labeled by their equilibrium positions. 

The CB procedure treats the two particles "i" and "j" as separate even when they are indistin- 
guishable particles. The calculation follows the particle i in time and, separately, the particle j and 
labels the particles by their respective equilibrium positions - 'i ' means "the particle with equilib- 
rium position Ri". The possibility that at some time the particles may interchange their positions so 
that Rj will become the new equilibrium position of the particle labeled i, and Ri that of particle j 
is not taken into account by the CB theory which, nevertheless, describes the properties of the solid 
correctly. Thus the Cauchy-Born theory of solids treats the microscopic particles as labeled and 
distinguishable - and this was not changed by the discovery of quantum mechanics and quantum 
statistics. The CB theory of the solid disregards the "N!" permutation symmetry of classical statistics 
and deals only with one specific permutation of the constituent particles. 

The long-time average of the correlation function of the average positions of two labeled particles 
is treated by the CB theory as a constant. 

(ri(t) * rj(t + ~)) = Ri * Rj + (ui(t) * uj(t + ,)) ,,~ Ri * R j .  (2.13) 

One can treat the solid in this way because the fluctuations in the relative positions of the con- 
stituent particles are small even when they are close neighbours, (2.7). The physical processes which 
exchange particle positions, single particle diffusion and tunneling, are slow and relatively unimpor- 
tant in the solid and can therefore be neglected in the CB theory. The correlation in the average 
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positions of labeled particles, the r.h.s of  (2.13), decays by single particle diffusion and, in the solid, 
this happens very slowly - on time scales relevant to the rapidly fluctuating part, (us(t)* uj(t + z)). 
For this reason the CB theory can neglect these processes and can treat the particles as labeled. 

2.5.2. Labeled correlation functions & fluids 
It is instructive to compare this to the situation in fluids - gases or liquids. 
Formally one can of course also label the particles in a fluid and use this to define labeled 

correlation functions 

Sij(z) = (ri(t) * r/(t + z)) (2.14) 

as in (2.12). Just as in the solid these are the correlation functions one obtains directly from the 
solution of  Newton's equations of motion for the many particle system. But in a fluid such corre- 
lations decay very rapidly - in microscopic times. Two particles, i and j which were close to each 
other at time to loose all memory of this fact after a short time - when they are separated by a few 
interatomic distances. 

The correlation functions which are important and dominate the theory of both classical and 
quantum liquids are density-density correlation functions: 

g([r - r'[, r )=  (p(r(t) )p(r'(t + z))) (2.15) 

whose definition already assumes averaging over the permutations of equivalent particles. 
Since the density can be regarded as a sum over the positions of labeled particles 

p(r) = ~ 6 ( r -  r,) (2.16) 
i 

the density correlation functions (2.15) can, in principle, be computed from labeled correlation 
functions (2.14). This would however be an extremely laborious and cumbersome procedure because 
it is very difficult to keep track of  the complex movement of labeled particles in the time evolution 
of  fluids. Even in a simulation it is prohibitively difficult to keep track of  the distinction between 
the states related by permutations. 

In a fluid the particle dynamics is such that the theory does not and cannot distinguish between 
identical particles and the physically important correlation functions have to be computed as averages 
over their permutations. 

2.5.3. Quantum statistics in solids 
The CB theory treats the particles as distinguishable and therefore as classical particles. In a 

quantum mechanical description one can say that exchange can be neglected. The labeled N-particle 
"wave function" which describes the solid 

~( r l , . . . , r i  . . . .  ,rj, . . . ,rN) 

is orthogonal to the wave function related to it by a permutation 

~ ( r l , . . . , r j , . . . , r i , . . . , r N ) .  

Because of this the particles can be treated as distinguishable and labeled even in a fully quantum 
mechanical description because permutations have (almost) no physical effect. Quantum fluids are 
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very different from classical fluids but quantum solids are very rare and, moreover, not really very 
different from classical solids. This includes even the most extreme cases of  quantum solids - the 
Wigner lattice and solid helium. Anderson (1984) discusses this in somewhat greater detail. 

We note that a related physical quenching of  permutation symmetry by physical barriers occurs in 
molecular physics. The quantum statistics of  the nuclei is important in the classification of the states 
of  polyatomic molecules (Breit and Wilson, 1935) but only permutations which can be realized 
without overcoming high potential barriers have to be considered. Thus, e.g., only the symmetric 
permutations of the protons appear in the classification of the rotation spectrum of  methane (CH4). 
These permutations can be realized by rotations. The antisymmetric permutations can only be realized 
by breaking the chemical C-H bonds and are therefore quenched. 6 

2.6. Permutation entropy 

The role of  the permutations of the atoms in a solid is in essence a classical problem. One should 
therefore understand and interpret it within the framework of classical Boltzmann statistics. The 
natural way for doing this is to consider the "permutation entropy" as a classical missing entropy 

- in the same category as the missing entropy one observes when the low temperature state is 
disordered. 

We shall discuss this interpretation here briefly even though it is not relevant to our argument in 
the rest of  this article. 

Quenched disorder in the low temperature state shows up as a missing entropy in thermodynamic 
measurements. 

When the low temperature phase is disordered only one out of  a very large number of  possible 
arrangements which are essentially equivalent is actually realized. Transitions between the different 
possible realizations are non-ergodic - they are very slow and do not occur on the time scales 
relevant to the measurements. Because of this the entropy associated with the multiplicity of possible 
realizations of  the disorder is quenched and does not show up in specific heat measurements: 

ST=~ -- fo ~ c(T)T dT=Smiss (x l og~y~0 ,  (2.17) 

where m is the number of  possible states. Nemst's third law of thermodynamics is violated. This is 
observed in many situations - e.g., for ice, 7 for glasses and for spin glasses. 

The quenched missing entropy, Smiss, has a purely classical origin. Quantum statistics and quantum 
mechanics play no role in the understanding of the disorder in the low temperature state. We believe 
that one should interpret the role of  "permutation entropy" in the same way - as a purely classical 
missing entropy. A "real" entropy which is not observed because the N! multiplicity is quenched. 

2.6.1. Permutation entropy is a missing entropy 
One relates Statistical Mechanics to Thermodynamics by Gibbs ensemble averages. This involves 

counting the states of the system. For an N particle state the only way one can do this counting in 

6A somewhat more detailed discussion can be found in Alexander and Lerner Naor (1972) and Wong et al. (1969). 
7I believe the first observation of a missing entropy was by Giauque, in the 1930s, in experiments on ice. The missing 

entropy there is due to the many arrangements of the hydrogen bonds consistent with the ice rules. 
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practice is by treating identical particles as distinguishable. One labels the particles and counts what 
Gibbs calls "specific phases" (Gibbs, 1901, ch. XV). The number of  states one gets in this way, 
~sp~o, contains a factor N! - the number of  permutations of  N identical particles. 

In classical statistical mechanics this N! degeneracy cannot be removed by any physical mecha- 
nism. Gibbs therefore concludes that all the "specific phases" which only differ in such permutations 
should be counted as one state, a "generic phase" (Gibbs, loc. cit.) 

~¢gen = ~spec/N! • (2.18) 

Counting generic phases recovers Nemst 's  third law of  thermodynamics from the statistical defi- 
nition of  the entropy 

lim S cx lim In ~ge. = 0  (2.19a) 
T---*0 T---*0 

while 

lim In ~sp~c = In N! ¢ 0. (2.19b) 
T---*0 

Within classical mechanics this is purely formal. It obviously cannot make any difference to 
experimental predictions if  one chooses to count "specific phases" or "generic phases". The only 
difference is in the interpretation. 

If the "correct" states are the "specific phases" then there is a permutation entropy but it cannot 
be observed. The low temperature phase is then solid and, as we explained above, permutation 
symmetry is quenched. A solid realizes one specific permutation of  the labeled particles - out of  
the N! possibilities. From this point of  view the "missing" permutation entropy is not different from 
any other missing entropy. 

Alternatively one can count "generic phases". This is the procedure favored in most modern 
discussions. This means that there is no permutation entropy at all. It is not a missing entropy but 
simply does not exist. As a practical device for obtaining the correct answer this is of  course an 
equivalent procedure. As Gibbs suggested 8 there are also practical considerations for describing a 
fluid in terms of  "generic phases" as we indicated above in Section 2.5.2. But this is quite different 
from attributing some deep meaning to this procedure. 

The obvious explanation as to why it is adequate to count "generic phases" in classical physics 
is that this symmetry cannot be broken and is therefore never observed. To argue that counting 
"generic phases" is correct because of  some deep connection to quantum statistics is simply not 
correct. The classical states related by permutations are not one state. Counting "generic phases" 
means that states which are obviously distinct in the dynamic evolution of  the system and are 
represented by N! different points in phase space - are counted as one state. Claiming that they are 
"really" one seems highly mysterious to students, and not only to students. 

To see how strange this interpretation is, consider the implications for solids. At T----0 there are 
obviously N! different realizations of  the classical solid. One can even transform them into each other 

8 One notes that in contrast to most modem texts Gibbs (loc. cit.) was quite cautious in his discussion of the relative 
merits of using the two types of "phases". It is evident from Gibbs' discussion that he was aware of the fact that there 
are situations where the specific phase is more natural and that the choice of "phase" is really a matter of convenience. 
Even for classical Boltzman statistics it should, and does, depend on the actual physical situation which is a better choice. 
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by suitable experimental procedures. Saying that they are all "one state" has no physical meaning 
whatsoever. It is also, and quite obviously, quite different from the statement that the coherent 
quantum mechanical superposition of these states must be symmetric or antisymmetric because this 
coherent superposition has no relation whatsoever to the description of what one observes in the real 
world. 

Quantum statistics does not make any difference. The CB theory treats the atoms as classical and 
this is correct in both classical and quantum physics. One can also say that in this sense solids 
are always classical. Permutations which are not realized physically do not distinguish between 
quantum and classical particles. Even mentioning the effects of quantum statistics on permutations 
in this context complicates the explanation of a fairly straightforward and purely classical problem 

- without any evident advantages. 
A self-contained version of the discussion in this chapter is available in Alexander (1997). 

PART I. THE CAUCHY-BORN THEORY OF SOLIDS 

We want to apply the Cauchy-Born approach to amorphous solids. This means we want to study 
the CB expansion around reference states which are random. There is no fundamental reason why 
this should not be possible - as we argued in detail in Section 2. In practice it is however not at 
all obvious how one should go about this because many of the features of the standard textbook 
algorithms cannot be carried over to situations when the reference state is random. We therefore have 
to reformulate the derivation to put it into a form suitable for formulating the theory and its derivation 
in the most general way possible which is consistent with the general symmetry requirements. 

In principle the Cauchy-Born expansion procedures are so general that they are almost synony- 
mous to the definition of a solid. One describes the solid in terms of the positions of suitably defined 
particles and by an expansion around a microscopic reference configuration of the positions of the 
particles (Eq. (2.1)) 

{ R } = ( R i , R 2  . . . .  , R i , . . . } .  

As we explained in Section 2 one expects this to be adequate for the description of both crystalline 
and amorphous solids. 

In practice one has a very good CB theory of periodic crystalline solids but nothing comparable 
for amorphous materials. In fact the only really successful microscopic theory of the mechanical 
properties of an amorphous material, the polymeric network theory of rubber elasticity, carefully 
avoids the CB framework and arrives at its results by a very different route. We believe that the 
reason for this is essentially technical. 

The procedures one uses traditionally in carrying out the CB expansion were developed with 
periodic crystals in mind. One expands the many-particle energy 8({r}) directly in the components 
of the single particle deviations ui: 

e({r} )  = e ( {R})  + Z ("J" • + . . .  

and then proceeds to calculate the vibrational eigenstates and their long wavelength continuum limit. 
This is feasible only as long as one can use the lattice periodicity to carry out an explicit expansion 
in the vibrational eigeumodes. Attempts to apply this procedure to the description of amorphous 
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solids in general have not proved very effective. We believe that this is largely responsible for the 
unsatisfactory state of the microscopic theory of such solids. There are a number of features one 
wants in the formalism: 

(a) Automatic rotational invariance. One obviously requires that the energy o~({r}) is invariant 
under translations and rotations both globally, for the system as a whole, and also locally, for the part 
of  g({r})  which describes the internal interactions in any region. Translation-rotation invariance 
(TRI) must therefore be a property of the CB expansion around any reference state, and to any 
order in the components of  ui. 

If  one chooses a specific TRI function 8({r})  and expands it around a specific reference state 
{R} this is of  course automatic. In constructing a 9eneral theory one wants a formalism for which 
TRI symmetry is manifested in the form of  the expansion i t se l f -  without reference to the functional 
form of the energy and to the atomic arrangement in the reference state. 

The general relations between the expansion coefficients which assure translational invariance are 
familiar and easy to derive. Any expansion in the relative deviations, the components of  

Uij ~ Hi -- Uj 

is automatically TI. This can also be expressed as a condition on the expansion coefficients - for 
example 

~--~ K,:f --- O . 
J 

It is however not possible to derive similar simple criteria for rotational invariance 9 (RI) which 
would assure that the coefficients of  the expansion describe an RI series. In a general theory one 
wants a formalism in which full TR symmetry is assured automatically without first specifying {R} 
and g({r}). 

(b) Stresses in the reference state. The reference states of amorphous materials are often tenuous, 
at least locally. One therefore expects stresses in the reference state to be much more important in 
amorphous materials than in crystals. Internal stresses are dominant in the shear rigidity of rubbers 
and gels (Alexander, 1984, 1985) and this suggests that they could also be important in other 
amorphous solids. But stresses do not show up at all when one expands directly in the ui because 
all linear terms must vanish in equilibrium. 

One needs a formalism in which the role of  stresses can be studied. 
(c) Many-body interactions. It is well known that microscopic many-body interactions - in 

particular 3-body bending and 4-body twist interactions - have important effects on the shear rigidity 
of  solids. Such interactions are expected to be particularly important for weakly bound tenuous 
structures (Bergman and Kantor, 1984; Kantor and Webman, 1984; Feng, 1985). 

When one writes the harmonic expansion in terms of  the components of the u,- the distinction 
between 2-body interactions and many-body interactions gets obscured. Each term in the expansion 
has - at most - two site-indices so that many-body interactions can leave no obvious signature. 

(d) Local continuum limit. One is also interested in a formalism in which the relationship between 
the microscopic expansion and its continuum limit and the local meaning of this limit will be clear. 

9 This can be seen in the detailed discussion of  rotational invariance in Born and Huang (1954). 



S. Alexander/Physics Reports 296 (1998) 65-236 85 

Important properties of  the energy - rotational invariance and many-body interactions - and of 
the reference state - the "initial" stresses - are thus obscured when one expands directly in terms 
of  the single particle deviations ui. This makes it difficult to study the 9eneral formal structure of 
the TRI microscopic expansion and the effect of  stresses in the reference state on this expansion. 

In constructing a formalism which avoids these problems we will use the fact that a TRI energy 
can always be considered as a function of the internal configuration of the interacting particles and 
therefore of the distances between them. Any function of the distances 

r,+= Ir - 

between the particles, #({r})  is TRI. This is often used in the theory of molecular vibrations 
(Herzberg, 1945). We will use this to construct a general TRI formalism for the CB expansion. This 
automatically guarantees TRI as a global symmetry of  the system as a whole and also as a local 
symmetry. 

As we will show it is also easy to define the local stress as a property of  the reference state and 
to derive the stress induced terms in the CB expansion to distinguish the contributions of many-body 
terms and to obtain a local continuum limit for the expansion. 

Historical comment. The classical - mostly 19th century - work on elasticity relied heavily on microscopic models in 
clarifying continuum field concepts such as stress and strain. It was generally assumed that the energy had to be a sum of 
two-body central force interactions (the Cauchy model). Thus the energy appeared as a function of the distances between 
interacting particles and microscopic expressions for the stress appeared naturally in the expansion. 

These features disappeared in the later analysis of lattice dynamics which allowed more general forms for the energy. 
In theoretical discussions of lattice dynamics the microscopic stress induced terms are not mentioned explicitly even when 
local stresses and such stress induced terms clearly appear in the expansions, e.g. ionic crystals (Born and Huang, 1954). 
It is also customary to neglect stresses in the reference state. Born and Huang (1954) even define an equilibrium reference 
state as a state in which there are no stresses. 

In the theory of vibrations of small molecules it is also common practice to assure TR invariance of the energy by 
writing the mechanical energy as a function of distances (e.g. Herzberg, 1945). 

What we do here is a generalization (and revival) of the old formal procedure - to general translation-rotation invariant 
forms of the energy. We also introduce a more modem and compact formalism. In the continuum limit we essentially 
rederive the classical results. The main new result is in the expressions we get for the microscopic expansions which 
were of relatively little interest in the 19th century work. We distinguish clearly between the stress induced terms in these 
expansions and those which appear in expansions around unstressed reference states. 

Presenting this form of  the CB and working it out in detail is the contents of  Part I of  this article. 
We present a detailed derivation of  the microscopic expansion of  the mechanical energy around a 
general equilibrium reference state which can be stressed. We then derive the continuum limit of  this 
expansion. We demonstrate that the general rotation invariant microscopic expansion contains special 
stress-induced terms which are qualitatively different from those one finds when there are no stresses 
in the reference state. 10 In the continuum limit these terms are responsible for the appearance of  
the second order strain, E~a~u~a#u~, in the elastic energy. 

We discuss the equilibrium conditions and the linear expansion in Section 3. We then discuss the 
continuum limit and the derivation of  the stress-strain relations in Section 4. The standard expansion 

10 We are not aware of any discussion of these microscopic stress induced terms except for Alexander (1984, 1985). 
Their continuum limit, the product of the stress and the second order strain is of course familiar in the discussion of 
elastic stability (Landau and Lifshitz, 1970). In Part II we show that they are extremely important in understanding the 
dynamics of floppy networks. 
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around an unstressed reference state which we call the Born-Huang (BH) expansion is derived in 
Section 5. We show there explicitly that the continuum limit of  the BH harmonic expansion yields 
the usual form of the elastic energy as an expansion in the components of  the symmetric linear 
strain ½(~,u~ + ~u , ) .  In Section 6 we then discuss the effect of  the local stresses on the microscopic 
expansion. We derive the microscopic stress induced terms (Alexander, 1984) and show that their 
continuum limit provides the terms in the elastic energy in which the second order strain appears. 

3. The expansion in distances 

3.1. Parametr&ation of the energy & terms of distances 

The internal energy of a system consisting of  N particles can be regarded as a function of  their 
positions 

~f = d°({r}), (3.1) 

where 

{r )  = { r l , . . . , r , , . . . , r j , . . . , r N )  

and the vector r~ describes the position of atom i in space. 

(3.2) 

3.1.1. The internal degrees of freedom 
The energy, g({r})  describes the interactions among the N particles. It therefore must be invariant 

under rigid translations and rotations (TRI). The energy ~({r}) does not depend on the 

~rig = ½d(d+ 1) (3.3) 

rigid body degrees of  freedom of the system as a whole. It depends only on the remaining 

~int = a N  - ~rig (3.4) 

internal degrees of  freedom of the N-particle system. This is equivalent to saying that the energy 
depends only on the internal geometric configuration of the N atoms relative to each other in the 
state described by {r). 

Elementary geometrical considerations show that one can always describe this internal configura- 
tion by specifying ¢gint independent distances 

r,j = It, - r j l  ( 3 . 5 )  

between the particles. 
Altogether there are of course ½ N(N - 1 ) different pairs [i j] and distances, rij, among N particles 

but these distances cannot all be chosen independently. In d-dimensions ¢gint distances are sufficient to 
determine all the others if they are independent so that none of these ~int distances can be determined 
as a function of the others 

{r) =~ {r}ina = {r12,r13 . . . . .  rij . . . .  } = {r l , r  2 . . . . .  rV,.. . ,r"~').  (3.6) 
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Any set, {r}ind, of  ~int independent distances determines the internal configuration of  the N points 
completely. It determines all the other distances between the points. 

The atomic configuration which determines the TRI energy in the state described by the set of  
N atomic positions {r}, Eq. (3.2), can therefore also be described as a function of  the set of  Olin t 
independent distances {r}ind- The atomic positions {r} determine {r}in d and also the ~ g  rigid-body 
translational and rotational degrees of freedom of  the system as a whole which are not determined 
by the distances and do not affect the energy. 

3.1.2. The 9eneral translation-rotation invariant energy 
Since a translation-rotation invariant energy depends only on the internal configuration of  the 

interacting atoms one can always write it as a function of  the set of  independent distances, {r}i.d 
which parametrizes this internal configuration. This means that the dependence of  a TRI energy on 
the positions {r} can always be expressed as a dependence of the energy on a set of  distances {r}ind: 

e ({ r})  ¢~ e({r}ind). (3.7) 

The two forms of  writing a TR invariant energy are equivalent and are related by substituting 

rij  = It, - r j l  = V / E  - x 7 ) 2 .  (3.8) 

Writing the energy as a function of the distances {r} has the advantage that it automatically 
assures TRI for any functional form of  the dependence of g({r})  on its arguments. Substituting 
Eq. (3.8) into any function g({r})  gives the most general TRI function of the atomic positions 

e ({ r} )  = o~({Iri - r j l } )=  e ({r})  ; rij = Ir~ - rjl. (3.9) 

This is completely general. There is no restriction on the functional form of g({r})  or on the 
distances which appear in {r}. Any function of  the 1 N ( N - 1  ) distances between N particles generates 
a TRI function 8({r})  when one substitutes Eq. (3.8) for the rij. 11 The implied relations between 
the distances and the restrictions on their ranges are all purely geometrical and follow automatically 
from the substitution. 

3.1.3. Choosin9 the pairin9 scheme 
Any TRI function of  N particles can be written as a function of ~int independent distances, 

Eq. (3.7). 
The choice of  the set of  distances {r}ind assumes a definite pairing scheme {[ij]}ind -- the choice of 

a specific set of  pairs [i j] whose distances appear in {r}ind. When N is larger than d + 1 this pairing 
scheme is not unique and can be chosen in many different ways which are formally equivalent. 
The atomic configuration described by {r}, can be parametrized by different sets of  ni.t independent 
distances. In this sense {r}ind is not unique. One can regard the set of  distances {r)ind as coordinates 
which span the hint-dimensional space of  all the possible configurations of N points in d-dimensional 

11 An illustration of this parametrization is the possibility of writing the most general interaction between three particles 
as a function of the three distances between the particles and the most general four-body interaction as a function of six 
distances (see Appendix A). 
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space. Different pairing schemes are related by trigonometric relations 

{rt}incl = { r ' } ind({r} ind)  ; r,,j, = ri,j,({r}ind ) (3.10) 

which follow from (3.8) and relate the distances r~j. As long as the hint distances, rij, are geometrically 
independent they all describe the same configurations of  the N points. The specific choice of a pairing 
scheme is a matter of  convenience. 

We note that the fact that rij represent distances between points in d-dimensional space, Eq. (3.8), 
also imposes restrictions on the range of the distances in {r}t.d. The independent distances are related 
by inequalities. An example is the familiar "triangle" inequalities 

(r i j+rjk)  > rgk >__ Irij - rjkl. (3.11) 

For a given pairing scheme the set of  ~int independent distances {r}ind is restricted by such 
inequalities to some specific regions of  the ~int dimensional space defined by {r}incl. 

3.2. Expanding the energy 

3.2.1. The reference state 
To describe a solid one has to be able to define an equilibrium configuration 

{ R } = { R 1 , . . . , R i , . . . , R ) , . . . , R N }  (3.12) 

in which there are no forces on any of the particles in the configuration {R}. Each atom, separately, 
is in equilibrium when the positions of all the other atoms with which it interacts are kept fixed: 

f = 0 .  (3.13) 

The existence of  such an equilibrium reference state, {R}, which can serve as a reference state 
around which one can expand 8({r})  is obviously a pre-requisite for the development of  the theories 
describing the mechanical properties of solids. 

In general the force on the atom i can be divided into the contribution of  the interactions between 
the particles: 

f,-({R}) = [ (3.14) 

and external forces ffxt which are not due to the interactions between the N particles: 

f = f ( { R } ) +  f f  xt . (3.15) 

3.2.2. Expansion procedure 
We can now use the parametrization of  the energy in terms of  the distances r~j to derive the most 

general form of the expansion of a translation-rotation invariant energy 8({r})  around the reference 
state {R}. 

The mechanical properties are described by the deviations of  the particles from their reference 
positions in the embedding space - the expansion of  8({r})  in the single particle deviations 

ui = ri - Ri (3.16) 
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around the reference configuration {R}. The in terna l  configuration in the reference state {R}, can 
be described by a set of ~int equilibrium distances, R 0 

{R} ::> { R } i , d = { R 1 2 , R I 3 , . . . , R ~ j , . . . } .  (3.17) 

Using the description of the energy in terms of distances it is natural to derive the expansion in 
three steps: 

1. We first expand E({r})12 directly around the internal reference configuration {R} 

1 [ ~_2_~_ ] 6 r i ; f r k , + h . o . t . ,  
~tij "F ~ Z [ ~rij " ~rkl J 

{R} {R} 
e({r}):e({R})+E 

where 

fir o = r o - R~; 

is the change in the distance r~j from its reference value R 0. 
2. One can then use the expansion of 6rij in the relative deviation of the pair [i j ]  

(3.18) 

(3.19) 

i.e., 

u 0 = ui - u j ,  (3.20) 

5rij = u~ + [(u~)g/2Ro] + h.o.t., 

I ~ i j  1?2 Uij = -- Uij 

where 

II 
Uij = Uq Jntij , 

(3.21) 

(3.22) 

are, respectively, the components of the relative deviation, uo, parallel and perpendicular to the 
reference vector R 0 and, as usual, we have used the notation 

Rij = R~ - R;  ; R~j = Ro /Ri :  . (3.23) 

Substituting the expansion of 6rg:, Eq. (3.21), in the expansion of the energy, Eq. (3.18), gives an 
expansion of the energy which is written explicitly in terms of u~j and u~, i.e., in the components 
of the relative deviation of two particles, u o, with respect to the local coordinate frame defined by 
the vector R 0. 

Our derivation demonstrates that this is always possible. 
3. Finally, one can use the definitions in Eqs. (3.20) and (3.22) and the values of the vectors R 0 

in the reference state {R} to obtain the explicit expansion of the energy in the components of the 
single particle deviations, u~. 

Any expansion constructed in this way is evidently TRI. 
The intermediate steps in this procedure, the expansions in fir o and in the components of u;j, 

depend on the specific pairing scheme. Only the final result - the expansion in the components of 
u ~  - is general and does not depend on this choice. 

12 In the following we will omit the subscript ind in the description of  the set of  distances on which the energy depends. 
This emphasizes that the derivation only uses the fact that the energy can be written as a function of  a set of  distances 
and this is not restricted to independent ones. 
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3.2.3. Singularities in the expansion procedure 
For completeness we note here that the expansion procedure we have described - the substitution 

It 1 of  Eq. (3.21) into Eq. (3.18) to derive an expansion in % and % - can become singular when 
the reference configuration {R}ind is on the boundary of a consistency region of its pairing scheme 
- e.g. ,when the triangle inequality, (3.11), becomes an equality. 13 When this occurs some care is 
required. We shall return to this when we discuss the description of  microscopic angular and twist 
interactions in Section 5 and in Appendix A. 

3.2.4. Binary forces, bond tensions and equilibrium conditions 
It is convenient to introduce a more compact notation for this formal procedure. If the energy 

is written as a function of  the distances {r) - Eq. (3.7) - the derivatives of d°({r}) with respect 
to the components of  the vectors r; can be calculated from the derivatives of ~'({r}) with respect to 
the variables r~j using 

8/Srij=(Sr#/Sro)8/Sr U (3.24) 

and 

8ro/Sro=Sro/Sr i=-Sro /8~=ru/ro .  (3.25) 

The force which the network exerts on atom i, f ( { r } ) ,  appears as the sum of binary forces, 

fo((r}) 

f ( { r } )  = 8/8r~ g ( { r } ) =  ~ f f i { r } ) ,  (3.26) 
J 

where the force of atom j on atom i in the configuration {r} is 

f j ( { r }  ) = [8/~rij] {,} g({r} ) = Ji j({r} )- rij/rij, (3.27) 

and 

~7~j({r}) = [Se({r} )/~Fij]{r} (3.28) 

can be thought of as the tension of the "bond" [i j] in the configuration {r}. 
If there are no external forces on the atom i the condition for atomic equilibrium in the configu- 

ration {R}, Eq. (3.13), can be written in the form 

= = :%. R , / R , i  = 0 ,  

J J 
(3.29) 

where 

= y,j({R}) ( 3 . 3 0 )  

is the tension in the bond {/j} in the reference configuration {R}. 

13 That is when the three points Ri, Rs, Rk are collinear. 
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3.3. Bonded networks 

The pararnetrization in terms of  independent distances which we described is quite general and 
applies to any functional form of  the energy 8({r}) .  As we discussed above this description was 
a formal device for expressing translation-rotation invariance which did not depend on any specific 
physical assumptions. It was therefore natural to describe the energy as a function of  the minimal 
number of  distances - a set {r}ind of ~int geometrically independent distances. This is however not 
always the best way to describe a physical situation. 

3.3.1. The Cauchy model 
In many models the energy is a sum of  interactions between small numbers of particles. Thus 

Navier (1827) and Cauchy (1827, 1828) assumed that the mechanical energy can be described as 
a sum of  binary central-force interactions between pairs. For a Cauchy model the energy d'({r}) is 
of  the form 

d~cau({r}) = ~cau({r})= Z ~//ij(r~j), (3.31) 
bonds 

where the summation is over the nbond interacting pairs, [ij], and f//j(r) is a binary potential. 
The energy of  a Cauchy model, gCau({r}), Eq. (3.31), is explicitly a function of  the "bonded" 
distances which appear in the interactions 

{r}bond = {r12, r 1 3 , . . . ,  r~:,...}bond = {rl, r2 . . . . .  r~, . . . ,  Fnb°nd }bond. (3.32) 

For all the pairs [i j] which do not appear in the bonded set {r}bond there is no interaction 

~iij(rij ) = O . 

Thus one can write the energy of  a Cauchy model as a function of  the bonded distances 

gC~u({r}) = gC.u({r}bond) • (3.33) 

The choice of  the distances in the set {r}bond is of  course determined by the physical model. 
It is not arbitrary in the way the choice of the independent set {r}ind -- Eq. (3.6) - was arbitrary. 

It is natural to consider the pairs which appear in {r}bond as "bonds" and call a Cauchy model a 
bonded network model. 

3.3.2. Generalization to sums o f  many-body interactions 
The concept of  a bonded network can be generalized to models for which the energy also includes 

sums of  many-body interactions between small numbers of  particles. One can always parametrize 
the interaction between a specific set of  point particles in terms of  the distances between these 
particles. Thus, e.g., the interactions between the three particles [ijk] can quite generally be written 
as a function of  the three distances (rij, r/k and rik) which determine the triangle [ijk] 

~:k(r~,rj, rk ) = ~/k(r~/,rjk, r~ ) (3.34) 

even when the interactions between the three particles are not a sum of  two-body Cauchy interactions 
and include also a true irreducible three-body interaction 

~ 3  _= q/-3(riy, ryk,r~.) " (3.35) 
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Similarly an irreducible four-body interaction can be described as a function of the six distances 
which determine the triangular pyramid [ijkl]. For all such models one can define a set of  bonded 
distances, {r}bond, for the full N particle system which contains all the distances which appear in 
the parametrization of  the separate interactions. The energy can then be regarded as a function of 
this set of  distances 

e({r})=e({r}bo.d). (3.36) 

3.4. Classifyin9 bonded networks 

The description of  the energy of a bonded network model 6~({r}bond), in terms of the bonded 
distances, {r}bon d -- Eq. (3.36) - is of  course reminiscent of  the general parametrization of  the 
energy in terms of  distances - Eq. (3.7). In particular one can use the parametrization in terms of 

" ± corresponding to the bonded distances, {r}bond, distances in expanding 8({r}bond) in the uij and % 
exactly as we used the general parametrization in deriving the expansion of  ~ ( { r } i n d )  in the u~ and 

± corresponding to the independent distances which appear in {r}ind. We even used this intuitive uq 
analogy in calling the first derivative of the energy, J,.j defined in Eq. (3.28) a "bond tension" in 
analogy to the usual definition of  the tension in a spring. 

The two descriptions are of  course related but they are not equivalent. 
The set of  bonded distances, {r}bond, on which a Cauchy energy - or a general bonded-network 

energy - depends is a property of the physical model which determines which interactions appear. 
This set defines a graph which consists of  the vertices {i} connected by the bonds [ij]. We shall 
call this graph a bonded network. 

The bonded network describes a common property of  a class of  models. For example all the 
Cauchy models - Eq. (3.31 ) - with summations over the same bonds [i j] but arbitrary forms of  the 
binary interactions ~.(rij) are described by the same bonded network. 

On the other hand the parametrization in Eq. (3.6) is general and fairly arbitrary. Since it depends 
on purely geometrical considerations it applies to all models. 

The most important difference between parametrization by bonds and the parametrization by in- 
dependent distances relates to the nature of  the set of  distances. The number of  geometrically 
independent distances among N points is always exactly ¢¢int - -  Eq. (3.4). On the other hand, the 
number of terms in the sum (3.31) or the number of bonds in its generalization, the number of 
"bonded distances", ~b, can be both larger and smaller than ~int. 14 This is an important distinction. 

3.4.1. Redundant surplus bonds 
When the number of bonds is larger than ~ i n t :  

agbond > ~int , ( 3 . 3 7 )  

the bonded distances cannot all be independent. One can express all the ~bond bonded distances in 
{r}bond as functions of a set of  ~int independent distances - {r}ind -- e.g., a subset of  hint independent 
distances in {r}bond. This transforms the expression of the energy ¢({r}bond) which is written as 

14There is also no reason why the bonded  distances one obtains from a physical model  must  all be geometrical ly 
independent  - whatever  their number.  
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Fig. 1.1. Parametrization of the configuration of four points in the plane. Only five of the six distances are required. 

a function of all the ~bond separate bonded distances {r}bond, Eq. (3.28) into a different formal 
expression for the same energy in which all the nbo,d distances in {r}bond are expressed as functions 
of a smaller set of ¢¢int geometrically independent distances {r}ind: 

6r({r }bond)= •({r }bond({r }ind ) ) =  e({r}ind). (3.38) 

Formally this is always possible but it may not always be a very convenient procedure. 

3.4.1.1. An example - the line tensions between four co-planar particles. The general expression 
for the "line tensions", Eq. (3.28), is of course reminiscent of the expression of the spring tensions 
of the Cauchy model 

Y i f ( { r } )  = ~-~f(rij ) = [ ~ i j ( r  )/~r]r=r,j . (3.39) 

Nevertheless one cannot simply identify the two expressions for the "line tension" - even for Cauchy 
models. To show this clearly we consider the simple example illustrated in Fig. 1.1. 

There are six distances, ru, among the four points 1, 2, 3, 4 and a general Cauchy energy has the 
form 

4 

g =  Z ~iij(ri/). 
[i>j=l] 

(3.40) 

There are therefore six bond tensions 

~.~nd = d~eu 
dr u (3.41 ) 

for the six bonds [ij]. 
In the plane five distances are however sufficient to determine the configuration of four points 

(~idt 2-- 5). The sixth distance is not independent in the plane and can be expressed as a function of 
the remaining five distances 

r12 = r12(r13, r14, r23, r24,/'34.). (3.42) 
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This can be substituted into the interaction ~12(r~2) in Eq. (3.40) to obtain a parametrization of  the 
general four-particle Cauchy energy in terms of five "independent" distances. In this new form rl2 
no longer appears as a variable in the energy 

~C = ~12(r12(r13,t14, .- . ) )  + Z ~ij(rij)" (3.43) 
q412 

There are therefore also only five "line tensions" and they are different from the "bonded" tensions 
in Eq. (3.41) 

toT-bond/~ "~ ~rl2({ri j}) .  [ij] ¢ [12]. (3.44) ~ij({r}ind) = Jib°nd(rij) + J12 ~,'123 " ~rij , 

3.4.2. Floppy networks 
The number of  bonds, ~b, can also be smaller than Nint 

~b < ~int-  (3.45) 

The ~b bonded distances, {/'}bond, then cannot determine ~int independent distances. They therefore 
cannot determine the geometric configuration of  N particles in d-dimensions completely. The values 
of  the ~b bonded distances only amount to constraints on the allowed configurations. If  we fix the 
distances in {r}bond this restricts the configurations of the N particles but does not determine it 
completely. 

We shall call such bonded networks floppy. We shall develop the theory of floppy bonded networks 
(FBN) in Part II. 

4. The microscopic definition of stress 

4.1. The first order expansion of  energy 

We can use the first derivatives we calculated above to expand the energy g({r})  around an 
atomic reference configuration {R}. To first order the expansion is 

1 1 ~--~_~j ,,, (4.1) e '  = g .uij 
tj ij 

where the pair forces f ;  are defined in Eq. (3.28). As written this is an expansion in the parallel 
component of  the relative deviations u~j defined in (3.22). 

We will show that the continuum limit of this microscopic first order energy is the linear elastic 
energy 

continuum ge,a~tic = -- d r - ~  rr~ni(r, {R}).  e~(r) (4.2) 

where ¢rini(r; {R}) is the stress at r in the reference state {R}. Following Love (1927a, Section 75) 
we shall call the stresses in the reference state initial stresses. The strain, el(r), is the symmetric 
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linear strain with components 

e l  =51 (~u# + ~/~u~) (4.3) 

and is defined with respect to the stressed reference state {R}. 
The continuum limit involves a double expansion. It is an expansion in powers of  the compo- 

nents of  the deviation field u(r)  and is also a oradient expansion in the derivatives of  this field, is 
The elastic energy - Eq. (4.2) - is the linear contribution of the linear strain - Eq. (4.3) - to 
the elastic energy. We will show that it is the leading term in the gradient expansion of  the mi- 
croscopic linear energy - Eq. (4.1). We will derive explicit expressions for the stresses in the 
reference state as the coefficients of  the linear strains and compare them to the general mechanical 
definition. 

4.2. The continuum limit 

We replace the atomic deviations ui by a continuous vector field, u(r) defined so that 

u ( e i )  : u i  . (4.4) 

To lowest order in the gradient expansion one then has 

I7) .  u ( r ) : -  (~-~X~.  ~ ) - u ( r ) ,  (4.5) uij '~ - (  Rij . 

where ~ is the ~ component of the vector R~j. The component of u~y parallel to R 0 is therefore 

u~'. ~- - (  Riy • ~7)u . e i j  : -~ -~  siff " stfl ~¢tufl . (4.6) 
~# Rij 

We note the transposition symmetry  between the derivative index, ~, and the index fl of  the 
component of  u, in Eq. (4.6). In the continuum limit of  ui: the transposed derivatives O,u, and 0#u, 
appear with the same coefficient 

Rij 

Because of this symmetry one can write Eq. (4.6) in terms of  the symmetric linear strain tensor, 
el(r),  defined in Eq. (4.3) 

~ e i j *  Rij " ~ - S  -'Xi -x/ff 1 o Ilelll . (4.7) u O :  ~ ~ . e ~ , = - T r  Ro 

~5 Thus the continuum limit assumes that one can construct a smooth field u(r), which gives a reasonable description 
of all the u~: so that a gradient expansion makes sense. 



9 6  S. Alexander/Physics Reports 296 (1998) 65-236 

In the last expression the " , "  represents the dyadic extemal product of  two vectors and "o" stands 
for the matrix product and Tr for the trace. 

4.3. The definition o f  stress in a solid 

Substituting the continuum limit of u~'. from Eq. (4.7) into (4.1) the first order energy becomes 

¢I({R} ) ~ - -  Tr ~ s/o el(R,) = - ~ s~ '~ o e~,(Ri) (4.8) 
i i, ct]~ 

to lowest order in the gradient expansion of the deviation field. 
The substitution introduces a symmetric tensor 

s, = - ~ ~i2" (Rij * Rii) (4.9) 
j RiJ 

which one can call the site-stress for the lattice site i. 
The properly normalized continuum limit of  the site stresses, &, is the stress field tr(r). The site- 

stress, s,, has the dimensions of an energy while the continuum stress field, tr(r), has the dimensions 
of an energy density. It is therefore natural to relate s~ to the average of the continuum stress 
field. 

= f dr .  o ' ( r )= ~//.~,,  (4.10) S, 
a~e, 

where ~ is the volume of  the Voronoi cell of the site i. 

-6, = -1/~t~, • ~ ~-~j. (Rij * Rij) (4.11) 
j R,j 

The continuum stress field o-(r) is defined by this equation just as u(r)  is defined by Eq. (4.4). 
We derived the microscopic expression (4.11) which defines the local stress in terms of the bond 

tensions from the continuum limit of  the first order terms in the microscopic expansion of the 
mechanical energy - Eq. (4.1). This derivation and the definition of  a stress in terms of the bond 
tensions, 97~j, is specific to the description of solids. It assumes the existence of  a rigid reference 
state, {R}, and describes the stress as a property of the energy in this state. 

The general definition of a stress is of course not restricted to solids. The average stress in a 
volume V is 

~v = ~ [ f ( r ) ,  r + r , f ( r ) ] . d s ,  (4.12) 

where f ( r )  is the force per unit area acting on the boundary of the volume V at r and the integral 
is over the boundary surface of this volume (Landau and Lifshitz, 1970, Eq. (2.9)). This can be 
rewritten as a sum over forces 

1 ~ ( f ~  * r~ + r~ , f ~ ) ,  (4.13) 
~t 
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where the point force f~ crosses the boundary of  V at the point r,, and we have assumed that there 
is no net force on V 

)-~f~ = 0 .  (4.14) 
Ct 

For the cell of  i and the pair forces acting on it this becomes 

1 . ~ (fj • Ru + Ru , f j )  (4.15) ~i = - 2---~ 
J 

which reproduces Eq. (4.11) when one substitutes 

4.3.1. The network stress and the total stress 
The identification of  the general definition of  the average stress in a volume - Eq. (4.12) - 

with the definition which we derived from the continuum limit of  the CB expansion of  a bonded 
network model, Eq. (4.11), assumed that one can identify the forces acting on the volume V or 
on the Voronoi cell ~ with the forces exerted by the bonds of  the bonded network model which 
describes the solid. This is correct in many cases. It is however important to emphasize that there 
are exceptions. The contribution of  the bonded network to the stress - the network stress defined 
by (4.11) - is not necessarily the total stress in the material. There can be other contributions to 
the forces on the boundary of  the volume element V beside those which can be attributed to the 
bond tensions. Since the network stress describes the stress exerted by a solid completely this always 
means that the material is in some sense composite and there are additional terms in the mechanical 
energy which cannot be described as originating in a solid. This means that there are contributions to 
the total stress which have to be added to the network stress of  Eq. (4.11). When the distinction is 
important - in particular when we shall discuss the square foam in Section 8.1.3 and, more generally, 
soft matter in Section 14, we will therefore emphasize the distinction between a network stress and 
the total stress. 

4.4. Mechanical equilibrium 

Eq. (4.1) is written as an expansion in the relative deviations u u. Using (3.20), this expansion 
can obviously be rewritten in terms of  the single particle deviations: 

e 1 = Z f ( { R } ) .  ui, (4.16) 
i 

where f ( { R } )  is the force exerted by the network on i. It follows that ~1 must vanish when there 
are no external forces because equilibrium, Eq. (3.13), then requires 

f . ( { R } ) = 0 .  

In the general case there is an exact cancellation of  the forces. The energy associated with the 
external forces across the boundary 

Z }t'ext . Hi 
- I /  

i 
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cancels the linear contribution of the internal stresses to the energy for the same deformation 

1 ,, X;-" fext ~ ~ij'uij + z..,si .ui=O (4.17) 
ij i 

for any deviation from an equilibrium reference state {u}. 
In the continuum limit this amounts to the requirement that the average stress in any volume 

element must represent a mechanical equilibrium state with respect to the extemal forces acting 
on it. 

5. The Born-Huang expansion around unstressed reference states 

5.1. The Born-Huan9 approximation 

We shall now use the parametrization of the energy in terms of  the distances - Eq. (3.9) - to 
derive the second order terms in the expansion of the harmonic energy. One has to evaluate 
the second derivatives of  the energy. 

Starting from the expressions (3.27) for the first derivatives one gets 

rij • ~ -~e({r})]  +6([ij][kl]) Oe({ r} ) ]  ~ rij 
Orkt , f y ( { r } ) =  riy ~ ~rij ]{R} ~rij J{R} Or~)- * rij '  

(5.1) 

where we have used the notation defined in Eq. (3.24). 
There are thus two types of terms. The first term on the r.h.s of Eq. (5.1) involves a second 

derivative of the energy with respect to distances 

__riJ • ~ ~g({r})]  = ~2g({r})] . Rij * Rki (5.2) 
rij ~ ~rij {R} Orij" ~rkl ]{R} rij "rkt 

This represents the contributions of  the second order terms in the expansion of the energy in distances, 
(3.18): 

e2g(-{r})] 6r j- 6rk; 
~ri j  " ~rkt ] {R} 

to the harmonic energy. 
The second term in (5.1) 

[ ~8({r})]  , 0 , r ; j  

~riy ] {R} ~ri j  riy 

is proportional to a first derivative of the energy g({r})  with respect to a distance, a bond tension 

O g ( { r } )  

J"Y = ~r;y {R} 
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- Eq. (3.28). Its origin is the first order term in the expansion in distances, (3.18), 

~°~({r}) 1 • 6rij 
~r~/ J {R} 

and they appear in the harmonic energy only because the expansion of  &i/ is not linear 

6ri/= uij + (ui~ )2/2Ri/ + h.o.t 

- Eq. (3.21). 
The two types of  terms are qualitatively different. In the rest of  this section we will only consider 

the expansion which originates from the second derivatives of  the energy, Eq. (5.2). This means 
that in effect we set 

- 0 .  (5.3) 

It is evident from (5.1) that in general the initial bond tensions appear explicitly in the harmonic 
energy. Because of  this the stresses also appear in the harmonic energy. These terms disappear when 
one imposes (5.3). 

Because the classical monograph of  Born and Huang on lattice dynamics (Born and Huang, 1954) 
defines an "equilibrium solid" as a solid with no stresses in its reference state we will call (5.3) 
the Born-Huang (BH) approximation 16 and the harmonic expansion around an unstressed reference 
state a BH (harmonic) energy, ¢ahH . For convenience we will sometimes assume that (5.3) holds 
strictly for the reference state. We shall call such a reference state a BH reference state, {R}BH. 

In principle the BHA is a real physical approximation whose validity in specific situations has 
to be justified. The BH condition - Eq. (5.3) - is an additional requirement on the reference state 
which has to be added to the atomic equilibrium condition (3.13). 

Taken literally the BHA is clearly very restrictive. A microscopic state such that, separately and 
simultaneously, all binary potentials are at their minimum, as (5.3) would suggest, must be very 
exceptional. One can only formally construct and analyze models for which this is assumed. As an 
approximation the BHA is however applicable in a very wide range of  situations. For most crystalline 
materials one does indeed find that the effects of  deviations from the BHA, the effects of  stresses on 
the bulk elastic properties are small and the BH terms are therefore dominant) 7 The initial stresses 
often also average out on fairly small scales, as in the cores of  dislocations, so that they can only 
have fa i ry  local effects. It is therefore often convenient and correct to disregard the initial stresses 
in the theory of  the bulk properties. 18 

The continuum limit of  the BH harmonic expansion is the standard elastic energy of  a solid - a 
binary form in the symmetric linear strain tensors - ½(~u~ + ~u~). 

16 Interpreting the BH definition of an equilibrium solid in this strict sense is not quite accurate. The text in Born and 
Huang (1954) is imprecise but the authors may not have had such a strict interpretation of the absence of stresses in 
mind. 

17 We shall discuss the reason for this in Section 14. 
18 In practice the formalism used in describing the lattice dynamics of crystals does not display the stresses so that the 

use of the BHA is only implicit. 
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We shall investigate the effect of the BH approximation, the terms proportional to the stress in 
the elastic energy and the less familiar microscopic terms whose coefficients are the bond tensions, 
in Section 6. 

5.2. General form of  the harmonic expansion 

When one expands around a Bom-Huang reference state, {R}BIa, the second term on the right- 
hand side of  Eq. (5.1) vanishes because the initial bond tensions vanish - Eq. (5.3). Thus, for the 
Born-Huang reference state, {R}BH, the second derivatives of 8({r})  with respect to the components 
of the r~ are always also second derivatives of 8({r})  with respect to its arguments - the distances r~j. 
Thus in the BH approximation one neglects the first term in Eq. (3.18) so that 

I [ ~z_~ ] 6rij '6rkt+h.o.t .  e({R))= Z L8r,j. 8r~,j~R),, 
(5.4) 

The linear term in the expansion in distances is neglected. 
Substituting 6rij from Eq. (3.21) into (5.4), or directly from (5.2) one obtains the general form 

of  the BH harmonic expansion: 

(5.5) 
a2g(-{r})] " " [~2g(-{r}) ~ I X ~ ' ~  ~ ~ u~) 

e h l a = Z  ~rij.~rk, J{R} uij 'ukt=~-~ [ Orij.~rk, {R} "Rk----~l(ui - u j ) ( u k -  " 

5.2.1. Two, three and four body terms 
The coefficients in the BH harmonic expansion are the second derivatives of  the energy with 

respect to distances. There are three types of terms which differ in the number of different site 
indices in the derivatives of  the energy: 

(a) Two-body terms. We can take two derivatives of g({r})  with respect to the same distance 
rij - [i j] = [kl]. These terms in the expansion have only two site indices, [i j]: 

Jt~j - 8r~ (5.6a) 

The ~ j  can be regarded as the spring constants of the bonds [i j]. Such contributions show up in the 
expansion of  gCau, Eq. (3.27), and are the only terms in the harmonic expansion of the Cauchy model 
around an unstressed BH reference state. We call the sum of  these contributions to the harmonic 
energy, fib. 

(b) One then has three-site contributions from derivatives with respect to two different distances 
with one common vertex - say rij and rik. Such a derivative has three site indices [i, jk]. 

82e({R})" i C j C k .  (5.6b) 
~i, jk - 8rij . ~rik ' 

Such terms appear in the expansion when the parametrization of the energy, g({r}) ,  contains many- 
body interactions among at least three particles, e.g., in the description of microscopic angular 
bending interactions. We shall call the sum of the three-body terms in the harmonic expansion ~¢. 
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(c) Finally all four indices [ijkl] can be different. 

~2°~({R})" i # j # k # l  (5.6c) 
~ j , k ~  - Orgs " Orkt  ' 

describes four-body interactions. This describes twist and we call the harmonic contribution which 
contains these terms ~/¢F. 

As long as one is only interested in the second derivatives there are no other possibilities even if 
g ({r})  can have mixed derivatives with more than four site indices. 

5.2.2. The two-body Cauchy contribution 
From (5.4) for [ij] = [kl] one finds 

1 
~ ~ j .  (rro) 2 , (5.7) 

t,J 

where o¢'ij is the 2-site spring constant defined in (5.6a). We substitute 

~rij ~ Uij 

to get a harmonic expansion in the atomic deviations 

~h 1 ,,.2 (5 .8)  = kuij) • 
i , j  

5.2.2.1. The expansion in parallel components and rotational invariance. We saw that cgh depends 
only on the u~, the components of  uij parallel to Rij like the first order expansion of the energy 
in Eq. (4.1). The component of uij normal to Rij, u ± appear only as higher order terms in the ij, 
expansion of 6r~j and therefore only contribute to anharmonic terms in the BH expansion of  the 
energy. 

One can interpret this result as a direct consequence of  rotational invariance. The argument goes 
as follows: 

Only two site-indices, i and j ,  appear for each term in the summation, Eq. (5.7). The only vector 
relevant to these two-body terms in the expansion is therefore R o. The transverse component of  uij, 
u~, describes a rotation of  Rij 

6q~ ~-- ui~ /Rij (5.9) 

and therefore cannot appear in the expansion of a rotationally invariant energy. One concludes from 
this argument that only u j  can appear in the expansion - as in Eq. (5.8) - and that this follows 
from rotational invariance. 

This argument is obviously more or less correct. As a criterion for rotational invariance it is 
however incomplete because it is only valid to first order in the expansion of  6r o and 6q~ in the 
components of  u~j. Because of  this it does not apply to the harmonic expansion in stressed systems, 
around stressed reference states, where the linear terms in the expansion in 6r~j, Eq. (3.18), do 
not vanish and give rise to contributions to the two-particle Cauchy harmonic energy which cannot 
be expressed in terms of  the u[j. 

We shall discuss this in detail in Section 6. 
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5.2.3. Many-body contributions 
As we have seen three-site terms, ~¢, and four-site terms, ~¢/', can also appear in the harmonic 

expansion. Using the definition (5.6b) one obtains the three-body expansion 

1 
Y~ o~f~i, jk " 6rij . 6rik (5.10) 

i4j•k 

which gives the contribution to the harmonic expansion 

11 I I  d = ~  Z ~i,;k'Uij'Uik" (5.11) 
is~j~k 

Similarly, using (5.6c) when i, j,  k, l are all different, one obtains 

1 
-~ Y~ ~ij, k," 6rij. 6rg, (5.12) 

i¢j¢k4(  

I I  II 
= ~ ~ ~,j, kl'Uij "Ukt. (5.13) 

i~j4k4{ 

These are the most general terms. 

5.2.4. Completeness of the expansion in parallel components 
The expression of the harmonic expansion of the three and four-site terms in Eqs. (5.1 1) and 

(5.13) in parallel deviations, u[j, ui'~, u~'k,..., arose naturally when we used the parametrization of  the 
energy in terms of  distances - Eq. (3.9) - in deriving the expansion. It is also evident that such 
an expansion is automatically TRI - whatever the coefficients. It is however obvious that this is 
an unusual way for writing these terms in the expansion. If the derivation is indeed general then 
these terms must describe the familiar three-body bending and four-body twist interactions which are 
commonly expressed in terms of changes in angles and are therefore usually related to the transverse 
deviations of the relevant vectors. It is also evident that our simple rotational invariance argument in 
Section 5.2.2.1 does not apply to the many-body interactions. It does not follow from TRI that the 
internal deformations of the triangle [ijk] and of the pyramid [ijkl] must be expressed in terms of  u[j. 

This raises questions. Specifically the question is whether the formal procedure we have used which 
led to Eqs. (5.11 ) and (5.13) is completely general and, in particular, whether and how it incorporates 
bending and twist interactions - as we claim. The question is whether the most general three-point 
and four-point interactions can be expressed in the form of Eq. (5.4). The problem has actually been 
discussed extensively in the literature on molecular vibrations - often also using the same formal 
device we use - parametrizing the energy in terms of  distances to assure rotational invariance. 19 

One finds that the expansion in u[j is complete and therefore sufficient as long as all possible 
deviations ui, can be expanded in terms of  R;j 

u i =  ~-~ qlJ . R i j  . (5 .14)  
J 

19 We only mention Herzberg (1945) but there are obviously innumerable later references. 
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This is obviously possible as long as the vectors R q  of  the reference state which are relevant to 
the interaction span a d-dimensional space for every site i. An expansion of  the form (5.14) cannot 
describe all the components of  the vector u; when the/~0 are restricted to a subspace. For a three- 
point interaction the exception is the situation when the three points - Ri, Rj, Rk, the vertices of  
the triangle [ijk] - are colinear and for a four-point interaction when the four points - Ri, Rj, Rk, 
Rt, the vertices of  the pyramid [ijkl] - are coplanar. In these special cases the expansion in u~j is 

± to expand the interaction energy. incomplete and one has to invoke some transverse deviations uij 
The expansion in ulj describes all other situations. 

For completeness we show explicitly in Appendix A how an angular interaction can be expressed 
in terms of distances and how the singularities in the expansion arise when the triangle inequality 
(3.9) becomes an equality 

(riy + rjk ) = rik . 

The problems for such special reference states do not really limit the generality of  our expansion 
procedure. As a formal procedure for describing the solid the expansion in u,~' is general. One can 
always consider the singular reference state as the limit of  a nonsingular configuration or choose to 
re-express the singular interaction in a regular way by invoking additional distances. 

5.2.5. The  f u l l  B H  expans ion  

We have demonstrated two results which are general and apply to the second order harmonic 
expansion around an unstressed reference state of  any translation rotation invariant function. 

1. We have shown that the harmonic expansion around an unstressed reference state can be written 
II as an expansion in the parallel components u U . 

2. We have also shown that this expansion can always be regarded as a sum of two-body terms, 
- Eq. (5.8), three-body terms, d - Eq. (5.11), and four-body terms, ~ -  Eq. (5.13). 
To show this we only used the existence of a parametrization of the energy in terms of  distances, 

{r}, which is a direct consequence of  TR invariance and therefore quite general. This does not assume 
that the energy g({r})  is really a sum of  two, three and four particle interactions. The expressions 
we derived apply both to the case where the separation into 2, 3 and 4 body terms is a formal result 
of  the parametrization of  the energy, as in our derivation above, and to bonded network models 
where it reflects the specific physical interactions - as in Section 3.4. The most general form of a 
TR invariant harmonic expansion around an unstressed BH reference state can always be written 

g~H = cg + d + ~W. (5.15) 

One can always write the harmonic energy in this form as long as one can neglect the direct effect 
of  initial stresses in the reference state. As we shall see writing the expansion in this way is also very 
useful as a theoretical tool. Both TR invariance and the absence of initial stresses in the reference 
state are automatically assured when one writes the harmonic expansion explicitly in terms of  u,~'. 

5.3. B o n d e d  n e t w o r k  mode ls  

As we noted in Section 3.4 one is often interested in physical models for which the energy is 
a sum of  interactions between small numbers of particles - e.g., models with central, angular and 
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twist interactions. Since each term in such a sum can be written as a function of a small number 
of  specific bonded distances - the distances between the interacting particles - it is then natural to 
express the full N-particle energy as a function of these "bonded" distances rather than in terms of 
a minimal set of  ~c independent distances which describe the system as a whole. 

5.3.1. The Cauchy model 
Consider first the Cauchy model of  Eq. (3.31). The energy is a sum of binary interactions 

(g({r})  = cg({r}b°nd) = E ~(ro) 
bonds 

so that the many-body terms of  Eqs. (5.8) and (5.9) cannot appear. Thus the harmonic energy 
has the form of Eq. (5.6) and the summation is over all the bonded distances for which there are 
interactions. The coefficients in this expansion are the force constants of  the bonds at the minima 
of  the respective potentials 

~ij({r}bo.d) = A o [~23~0(r)] [ ~/j(r_____)) ] = 0 .  (5.16) 
~r J r=r/O 

Evidently no many-body terms appear in this expansion and there can be very many interactions. 
Expressing such a model explicitly in terms of  the set of  bonded distances, {r}bond is obviously 

much more convenient than to introduce complicated trigonometric, relations in order to re-express 
the same energy as a function of  some smaller set of  independent distances with the help of  trigono- 
metric identities. 

5.3.2. Many-body interactions 
Many-body interactions are usually discussed as bending and twist interactions. The standard way 

of  writing these interactions is as functions of  angles rather than of distances. Thus the leading term 
in the expansion of an angular interaction is usually written as 

[ ~ 2 ~ k ]  2 ~/jk 2 
"(&P;4k) = (5.17) 

L ] • a ,jk, 
where &p~ is the change in the angle {jik}. Similarly the twist interaction is written as a function 
of the twist angle. This has to be converted into an expansion in the ui. 

For our purposes it is most convenient to start by rewriting the interactions as functions of the 
distances between the interacting particles and then write an expansion of  the form (5.4) in terms of  
the changes in these distances bra. This results in contributions to the harmonic energy which have 
explicit many-body features as in Eq. (5.11) for angular interactions and in Eq. (5.13) for four-body 
twist interactions. 

In Appendix A we show in detail how the angular expansion, Eq. (5.17), can be rewritten as an 
expansion in the longitudinal deviations uiS.' as in Eqs. (5.11) and (5.13). 

For completeness we add a comment concerning the separation of the harmonic energy into two, 
three and four body terms. When we express the energy in terms of  the bonded distances which 
appear in the interactions {r}bond defined in Section 3.4 this separation is unique. Evidently, 
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by construction 

A c =  Wc-O (5.18) 

but this assumes that we used the full set (?'}bond in deriving the expansion. If  instead we choose a 
smaller set as parameters, say a set of hint independent distances {r}ind, then some of  the distances 
in {r}bona can become complicated functions of the parameters 

= rd{r}i. ) 

as in Eq. (3.42). Fortuitous many-body terms can then appear in the expansion. 2° 

5.4. The continuum limit and the elastic constants 

We have shown that the unstressed BH harmonic energy can be written as an expansion in 
the parallel components of  the relative deviations ub' - Eqs. (5.8), (5.11) and (5.13). To derive 
explicit expressions for the elastic constant tensors we need the continuum limit of  u~'. We derived 
expressions for this in Eqs. (4.6) and (4.7). 

uU~__(Ru ' e ) u . k u  = _ ~-.,Xi~ .X~ .O=ua=_~-.~Xi~ 1 
g ,8 Rij "2 

Substituting these expressions into the BH harmonic energy transforms the microscopic expansion 
in u~' into an expansion in the components of the symmetric linear strain. 

The coefficients in this expansion which we shall derive are explicit microscopic expressions for 
the elastic constants. 

5.4.1. The Cauehy model 
First we substitute the continuum expression for u~!, Eq. (4.6), into Eq. (5.8) for cgh 

1 ((Rij. W).(u(Rj).Rij)) 2 (5.19) 
(boel=~-'ff=2 Z ~ / j ' .  . R/j " 

l , j  

Rearranging terms as in Eq. (4.7) this leads to an elastic energy of the form 

1 (TrIIIIRu,R,JIIoIlel(Rj)IIII] 2 (5.20) 
c~?el = 2 X ~iJ " "R//f • 

l,J 

In the continuum form this becomes 

f dr. 9(r), (5.21) (6'el(r) 

where 

9(r) = y ~  Dc~'~(r). el,~(r), e~(r) = el(r)  o IlOc(r)ll o el(r)  (5.22) 

10 This is seen clearly in the example discussed in Section 3.3.2. 
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is the elastic energy density. In this equation the fourth rank elastic constant tensor IIDc(r)H is 
defined by the site tensors 

1 ~-'~ij Rij*R#*Rij*Ro 
I lOc(r) l l j= , R# (5.23) 

and ~ is the volume of the Voronoi cell j .  We also write the components of this tensor explicitly 

x,;. .x,j 1 

23~JJ" i "  ~/J" R2 

One notes the high symmetry of the tensor IID II. The elements of this tensor, D "~'r~, are the same 
for all permutations of the four indices [~/~y6]. 

In three-dimensions the fourth rank tensor D has 81 (:3 4) elements but, because the indices 
~, /~, 7, 5 can only take three values (x,y,z), only 15 of them can be different. One can at most 
have 3 different elements of the type D ~' ' ,  3 different elements of the type D ~ ( = D  ~'a, etc.), 
six of the type D ~ '  where e ¢/~ and 3 of the type D ~#rr (= D ~rt~r, etc.) where a ¢ f l¢  y. Thus 

n c ( d : 3 ) :  15 (5.25a) 

and, counting the elements in two dimensions 

nc(d=2)=5.  (5.25b) 

5. 4.2. Many-body interactions 
Using (4.6) in Eqs. (5.11) and (5.13) one gets 

= 

i4j~k "R-~j.j Rik 

and 

~A.~qrelasti c ~ 1 ((R~/" ~)"  (H(Ri)" Rij)~.((Rkl" ~)"  (U(Rk)" ekl)) 
is~jT~kT~l 

Rearranging terms this leads to elastic energies 

OX~ ¢elastic ~ _ _ 1  ([[R~,Ru[Iollet(r)ll)(llRik,RikllOlle~(r)ll) 

~4j4k4t 

or, in tensorial form 

f ""'~ f 
,o&,A~elastic~ : dr- ~ O~r(r).el, a(r).e~a(r)= dr.el(r)llO~,.,r(r)llel(r). 

ally6 

(5.26a) 

(5.26b) 

(5.27a) 

(5.27b) 

(5.28) 



S. Alexander~Physics Reports 296 (1998) 65-236 107 

In this equation the fourth rank elastic constant tensor IlD~c(r)l[ is the continuum limit of  

1 Riy 

i yCk 

and IID~(,')ll 

8-~1 R o IlD,r(r)ll/= 
t j#k#l 

* Rij * R~k * R~i 

Rg . Rig 

* R o * Rkt *Rkt . 

Rq . Rk! 

Again we also write the components explicitly 

D " li = eij " e i k  ' 

n~.,~ I = 1 *X/~ *X~t*X~/ 
L"W" ,i ~ ~ ~ij ,  kl" ~.:Rk-"~l • 

I j4k¢ 1 

(5.29a) 

(5.29b) 

(5.30a) 

(5.30b) 

5.4.3. The Cauchy relations 
Comparing the expression (5.24) for the elastic constants of  the Cauchy model to the expres- 

sions (5.30) one immediately notes the lowering in the symmetry when many-body interactions are 
introduced. 

The elements of  the fourth-rank tensor in (5.30) exhibit transposition symmetry in the interchange 
of  the "left-hand side" indices ~ and fl and in the interchange of  the right-hand side pair of  indices 
? and 3. They are also symmetric in the interchange of the pair [aft] with the pair [?~]. 

D~,~6 _ r ~  r~6~ r~6~ (5.31 ) 
~¢r - -  L , , ~ ,  W -  = " - " M ,  W" = "-"~¢, W" " " " 

This is the symmetry of  the elements of  the most general elasticity tensor, IIDIIgon. It is the symmetry 
of  the coefficients of  a binary form in the components of  a (six-component) symmetric tensor (Landau 
and Lifshitz, 1970, p. 10). 

It can be seen that Eqs. (5.31) mean that the general tensor IIO ,,¢(r)ll can at most have 21 in- 
dependent components in three-dimensional space and six in two dimensions: 

ngen(d = 3 ) = 21 ; ngen(d = 2 ) = 6. (5.32) 

For central forces the elements of  the tensor, Eq. (5.24), were symmetric under all permutations 
of  the four indices. The additional symmetries which reduce the maximum number of  independent 
elastic constants from 21 to 15 are known as the Cauchy relations. In the Cartesian notation they 
are (e.g. Love, 1927b) 

D ~ = D ~ p  ; D ~r~ = D ~r& . (5.33) 

The general symmetries, Eq. (5.31), express the fact that the BH elastic energy is a binary form 
in the elements of  the symmetric linear strain tensor e 1. The Cauchy relations represent an additional 
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symmetry. It does not follow from the symmetry of the strain tensor that terms in the elastic energy 
such as 

e~, .e~ and (e~) 2 or e~p.e~ and e,~.e& (5.34) 

have identical coefficients in the expansion of elastic energy. This is an additional symmetry of the 
Cauchy model, a result of the restriction to central forces. 

Note. The Cauchy relations played a relatively important role in the 19th century history of the 
theory of elasticity (see Love, 1927b, Note B) because they were believed to express an explicit 
macroscopic test of a microscopic model - the Cauchy assumption that the fundamental microscopic 
interactions were two-body interactions. When sufficiently accurate experiments became available it 
was found that the Cauchy relations are often violated. 

Several authors (Poisson, 1842; Voigt, 1887; Thomson, 1890; Born, 1915) showed that this did 
not really test the central force assumption. They found that even for pure Cauchy interactions the 
macroscopic elastic constants need not satisfy the Cauchy relations when the unit cell is complex. 
Kelvin (Thomson, 1890) showed that this can be traced to non-affinity, i.e., to the fact that in a 
complex unit cell the internal deformation inside the cell need not be described by the macroscopic 
average strain. 

From a modem point of view there is obviously no reason why the atomic interactions should 
be two body central force interactions. Interest in the Cauchy relations has therefore essentially 
disappeared. We mention them here because they seem to be the first context in which the importance 
of affinity was discussed. 

5.4.4. Affinity 
We have derived explicit microscopic expressions for the elastic constants - Eqs. (5.24) and 

(5.30). It is however important to add a reservation concerning the validity of these results. 
The derivation we have constructed describes the change in the mechanical energy of the solid 

when all positions are changed in accordance with the affine transformation defined by the average 
strain (el). 

(u,~')afr = T r  I[R° *R°[[ o II(el)ll (5.35) 
Rq 

say 

t t  l !  2 

(u~')afr ] ,~1, (5.36) 

where u~' is the actual relative change in the positions of i and j when the average strain is (e 1) and 
(ui~) is the affine deformation predicted by this strain. But this assumption is by no means always 
justified. In some situations, in particular for materials which are not very tightly interconnected, 
the deformations become affine only when averaged over sufficiently large regions - larger than a 
suitably chosen affinity length and the inequality (5.36) does not hold for smaller distances. Thus, 
e.g., the internal deformations of a complex unit cell can be very different from the uniform distortion 
described by the average macroscopic strain. Such non-affinity can have large effects on the values 
of the macroscopic elastic constants. 
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As we noted above Kelvin (Thomson, 1890) discovered that non-affinity can also lead to violations 
of the Cauchy relations for purely central force interactions. In general, the expressions we derived 
for the elastic constants assume affinity and can only be trusted when this assumption is justified. 

We will discuss some dramatic effects of non-affinity on the shear rigidity of floppy networks in 
Part II. 

5.5. Irreducible representation o f  the elastic constants 

In Section 5.4 we discussed the elastic constant tensors using a Cartesian description. This is the 
form which arises directly from the expansion and is also the traditional approach. For some purposes 
this description is cumbersome and inconvenient. As in other problems symmetries are easier to 
handle if one decomposes the Cartesian tensors into their irreducible components (Lyubarski, 1960). 
This is particularly useful when one wants to analyze the effects of the symmetry of the solid phase 
in determining the number of independent elastic constants. 

5.5.1. The general case 
The symmetry relations of the elements of the general elastic constant tensor [[D[[gen which we 

derived, Eq. (5.31), are equivalent to saying that IIDElg~n is the symmetrized external product of two 
symmetric second rank tensors IIQII (Landau and Lifshitz, 1970) 

I[Dllgon = l[ IIQII * IIQ'II []sym • (5.37) 

The symmetrized external product of two symmetric second rank tensors is also the most general 
form of the fourth-rank elastic constant tensor. Constructing IIDII in this way is equivalent to the 
definition of its elements as the coefficients of a quadratic form in the components of the strain. 

We first decompose the symmetric tensor [[QII into its irreducible components 

IIQII -- 22 + 4 ,  (5.38) 

where -~2 is a (5-component) L : 2 irreducible second rank tensor and 

 0c( TrlIQII 

is an L = 0  scalar. Decomposing IIDIIg , the symmetrized square of IIQII one derives 

IIDIIgo° = 94  -~- 92  -~- 90 AI- 92  -~ 9 0 ,  (5.39) 

where we have used 

["~2 * ~"~2] : 9 4  + 92  "71- 90 ; ["~2 * "~0] : 92  ; [~-'0 * 4] = 9 0  (5.40) 

and 9L is an irreducible tensor of rank L with 2L + 1 components. The maximum number of 
components is thus 

ngen(d=3)=9  + 5 + 1 + 5  + 1 =21 (5.41) 

as also found by the explicit counting of independent Cartesian components using the symmetry 
relations (5.31 ). 
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The above is the result in three dimensions. In two dimensions the irreducible representations have 
a single index, M and are two dimensional for M ~ 0. One has 

[IQII =q2 + qo, 

IlOllgo. = d4 -~- d2 -~ do -q- d0 ,  

so that 

ngen(d=2)=2 + 2 + 1 + 1 = 6 .  

(5.42) 

(5.43) 

(5.44) 

5.5.2. The Cauchy model 
We have to decompose the fourth-rank Cartesian tensor IIDllcauchy, Eq. (5.23), into its irreducible 

components. I[/)llCauchy is the sum of the totally symmetric external products of  four vectors, R (=~1) ,  
and therefore 

[IDllcauchy oc IIR* R ,  R ,  Rllsym = 9~ + 9~ + 90 ~ (5.45) 

in three dimensions. Thus 

nCauehy(d : 3) = 9 + 5 + 1 : 15 (5.46) 

as we found earlier, in Eq. (5.25), by explicit counting of the independent Cartesian tensor elements. 
In the irreducible description the Cauchy relations, Eq. (5.33), mean that there is only one scalar 

and one irreducible second rank tensor for Cauchy models while there are two of each in the general 
case. 

- -  c - -  92, 92 ~ 9 2 , 90, 90 --~ 9~ .  (5.47) 

The two scalars also coalesce in two dimensions 

I[Dllcau~hy = d  4 + d 2 + d o . (5.48) 

The Cauchy relations, Eq. (5.33), are symmetries of the elastic constant tensor which make dif- 
ferent elements equal to each other - as described explicitly in Eq. (5.34). Writing the expansion 
in its irreducible form only amounts to a regrouping of the terms in the expansion. The meaning of  
(5.45) is therefore that the coefficients of  the respective expressions in the expansion of the energy 
in the general case become proportional to each other for Cauchy models. 

5.5.3. Effect of  the symmetry of  the solid 
Writing the elastic tensors in irreducible form is particularly useful when one wants to investigate 

the effects of  the symmetry of the solid on its elasticity. We consider two cases: 

5.5.3.1. Isotropic materials with full rotational symmetry. Only scalars can appear as invariants. 
Full rotational symmetry therefore implies 

9 4 = 9 2 ~--- 9 2 ~ 0 .  (5.49) 

In the general case, Eq. (5.39), there are then two independent elastic moduli - 9o and 90. We can 
relate this to the notation and terminology of  Elasticity (e.g., Landau and Lifshitz, 1970). As can 
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be seen in Eq. (5.40) 30 is the coefficient of  the product of  two scalars ~ and .~. It therefore 
multiplies the square of  the scalar density change 

e0 = Trllell • (5.50) 

30 is thus proportional to the bulk modulus K. 90 is the scalar square of  an irreducible second 
rank tensor -~2. It describes the response to a strain without volume change and is proportional to 
the shear modulus ~. 21 

90c~# ; 90 c (K .  (5.51) 

For a Cauchy model there is only one scalar as is seen in Eqs. (5.45) and (5.47). For Cauchy 
models the shear modulus, #, and the bulk modulus, K, are therefore not independent. The two 
moduli are proportional to each other 

90 cx ~ c< K .  (5.52) 

Alternatively one could also use Eq. (5.31 ) directly to obtain two independent rotational invariants 
for an isotropic solid, e.g., the square of  the trace of IIOII 

= (TrlIQII) 2= ~ D ~ + ~ D ~#~ (5.53) 

and the trace of the square 

J2  = ( T r l l q ,  q l l )  = + . (5.54) 

It can be seen by direct inspection that J1 and J2 become equal to each other when the Cauchy 
relations, Eq. (5.33), hold so that D ~ = D  ~aB. 

This result is actually quite old. Navier's original paper (1827), used central forces and found one 
elastic constant for isotropic solids. Navier's explicit calculation showed that this predicts a ratio 
(v/3) between the longitudinal and transverse velocities of  sound which is a test of  the Cauchy 
relations. 

5.5.3.2.  Cub ic  s y m m e t r y  22 . There are three elastic constants (Landau and Lifshitz, 1970, ch. 10). 
First the two scalars, 90 and 90 which we also had for full rotational symmetry - Eq. (5.51). In 
addition, the fourth rank tensor 9 4 also has a cubic invariant which we denote d4. Thus there are 
three independent elastic constants in the general case which are reduced to two for Cauchy models. 

This counting is correct but the description is not quite satisfactory. 
90 is indeed the compressibility, K, as in the isotropic case. But the cubic symmetry implies that 

what one really wants are always linear combinations of the two shear moduli 90 and d4. 

21 The proportionality constants here and in Eq. (4.46) are numerical coefficients which are determined by the normal- 
ization of ~L. 

22 For simplicity we assume full cubic symmetry O or Oh. 



112 S. Alexander~Physics Reports 296 (1998) 65-236 

In cubic symmetry the five component irreducible part of  the strain tensor, e2, is decomposed 
into a two dimensional part, eE (=(3ezz -  e xx -  eyy),(exx- eyy)), and a three dimensional part eT, 
(=exy, eyz, e:x). 

Ilell = eo + e2 ; e2 = eE + eT ,  (5.55) 

so that the elastic energy can be written 

~x~elastic =K(e0)2 + btE]eEI2 + ~wlewl2. (5.56) 

m 

Thus the proper elastic constants for cubic symmetry are the bulk modulus K(90)  and the two 
specifically cubic elastic constants #E and PT. Both /aE and PT are linear combinations of 90 and 
d4. For Cauchy models the two scalars 90 and 90 become equal but this only shows up indirectly 
in the constants PE and PT. The Cauchy relations thus imply a linear relationship between the three 
elastic constants of  a cubic crystal 

c~'K + f l 'pT + 7"#E =O.  (5.57) 

6. S tressed  re ference  s ta tes  

6.1. The two effects o f  stresses 

Our purpose in this chapter is to discuss the effect of  the initial stresses 23 in the reference state 
on the microscopic harmonic expansion and on the elastic energy. 

In the macroscopic theory of elasticity second order terms in which the stress appears as a coef- 
ficient are well known - namely the terms in the elastic energy in which the stress multiplies the 
second order strain (e.g. Landau and Lifshitz, 1970, ch. 1) 

ZO.i~fli 2 1 - . e ~  = - ~  ~ ai~ ~ • ~ u r ~ u r .  (6.1) 

Using a different notation Love (1927a, b, p. 75 and Note B) discusses the expansion around a 
stressed reference state in detail. These contributions to the elastic energy have been known for a 
long time. They dominate the transverse vibrations of stretched strings and drumheads - as in musical 
instntments. They also play a central role in the analysis of  elastic stability (Landau and Lifshitz, 
1970, ch. 21 ) as in the Euler buckling of  loaded columns (ibid. ch. II). All these are examples 
of situations in which the directly stress induced contributions to the elastic energy described by 
Eq. (6.1) are very important and often dominant. In the examples discussed there the reason they 
are important is that the geometry of the material is very anisotropic - thin rods and thin plates - so 
that the stress induced terms of  Eq. (6.1) compete with relatively weak BH bending and curvature 
energies. 

23 We follow Love (1927a) in calling the stresses in the reference state for the expansion initial stresses. 
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The microscopic counterpart of  these terms is less familiar. 24 For a stressed reference state, {R}st~, 
there are non-vanishing bond tensions 

~ij = ~-~0({R}str) ¢ 0. (6.2) 

When one expands around such a reference state one finds scalar terms in the harmonic expansion 
which depend on the magnitude of the relative deviations 

lu012 = (6.3) 

(Alexander 1984, 1985). These terms in the harmonic expansion are qualitatively different from 
those appearing in the expansion around an unstressed BH reference state - Eqs. (5.8), (5.11) and 
(5.13). The continuum limit of  these terms is the contribution of the second order strain to the 
elastic energy - Eq. (6.1) - j u s t  as the product of  the linear strain with the stress - Eq. (4.2) - was 
the continuum limit of  the linear microscopic expansion around such a reference state - Eq. (4.1). 

6.1.1. Direct and induced effects of  stresses 
There is an important formal point in the expansion procedure which we want to emphasize. 
We expand around a stressed reference state, {R}str.  There are then terms in the microscopic 

harmonic expansion in which the first derivatives of  the energy with respect to the interparticle 
distances, the initial bond tensions 

~!,i__ ~ij({R}str) ----- [~g/~ru]{R}s, (6.4) 

appear as coefficients. These terms, Eq. (6.3), result from the terms 

r u = ~ ~ij r ij g r ij 
J/0- • ~r/j * r7 r3 (6.5) 

in the general TRI harmonic expansion - Eq. (5.1). In the continuum limit they give rise to terms 
in the elastic energy which are quadratic in the first derivatives of the deviation field in which the 
components of  the initial stress, tri~fi, appear as coefficients - Eq. (6.1). The bond tensions appear 
as coefficients in the microscopic expansion and the macroscopic stresses appear as coefficients in 
the elastic energy. We shall call this the direct effect of  the stresses. This is the effect of  stresses 
which we shall discuss in this chapter. 

Stresses also have an indirect effect on the mechanical properties. The positions in a stressed 
reference state are different from those in the unstressed state of  the same material. 

{R}s t r - - {R} ( ( r in i )~{R} ( ( r=O) ,  { a R } - - { R } ( c r  ini) --  { R } ( o ' - -  O) # 0 .  

When the difference is small one can relate a stressed state to an unstressed state of  the same material 
by induced stresses 

e ind ~-- eind(o "ini) ~ 0 
C rlnl "-+0 

24 We are not aware of discussions of the effect of stresses on the microscopic expansions except for our own earlier 
ones (Alexander 1984, 1985). 
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which are induced by the initial stresses, O "ini, and vanish with these stresses. Because of  these 
induced strains the microscopic second derivatives in the stressed state 

~ / j s t r  [ ~ 2 ~  ] ( 6 . 6 )  

' * ' -  Ltru arktJ{R , , 

are different from what they would have been in the unstressed state. 
The induced effect of the strain reflects the modified geometry of the stressed reference config- 

uration {R} str. The mechanical properties of the strained material are different from those of the 
unstrained one because its geometry is different. We shall call this the induced effect of  the stresses. 
It represents the effect of  the induced strains on the mechanical properties. 

One might think that these are simply two equivalent descriptions of the same physical effect but 
this is not the case. They are quite different. 

If the initial stresses are large, e.g., because of large external pressures, the induced effect can 
become quantitatively large so that the inter-particle interactions become quite different from those 
in the unstressed state, but the induced microscopic interactions are still of  the BH type and can be 
expressed in terms of  the u~'. The indirect effect of  the stress does not create any terms which are 
qualitatively different from those one obtains from a BH expansion around an unstressed state. Only 
the magnitude of  the second derivatives of  the energy is changed. The expansion depends only on 
the reference state itself. One simply expands around a different reference state. As long as one does 
not include the bond tensions, the specific terms - Eq. (6.5) - which are responsible for the direct 
effect, everything we did in Section 5 also applies to the expansion around a stressed reference state. 

The definition of  induced strains in {R} str which are caused by the stresses also assumes that 
there exists a "true" reference state, {R} ~e, which is not stressed and is different from {R} str. 
The difference between {R} str and the true reference state defines the induced strain. Thus to lowest 
order the induced strain is given by 

e ind ----- D - I  • ffini , (6.7) 

where D is the elastic constant tensor in the unstressed reference state {R}truL The expansion around 
{R} str can then be regarded as an expansion around the unstressed state {R} T M  in which the initial 
stresses also appear. When derived in this way the indirect effect depends on the third (and higher) 
order terms in the expansion around the "true" reference state. It has no meaning outside the com- 
parison of the coefficients of  the expansion around the stressed reference state {R} str to those of  the 
expansion around the unstressed "true" reference state {R} ~ .  Thus, e.g., 

~O(tlrini) ~ 0 3  , eind(O.ini) 6D~O,~6 ,,~ ~ O3fl, r&#v ind , .e#v (O'ini) , ( 6 . 8 )  
,uv 

where D3 is a higher order elastic constant tensor in the unstressed state {R} true. 
The magnitude of the higher order coefficients in the expansion around the true reference state 

determines how large the strains have to be to produce a significant change in the elastic constants. 
The induced effect can be very important in its own right - when the stresses are large. It is 

however a completely different effect from the direct effect of the same stresses. 
We shall illustrate the distinction between the direct effect of  stresses and the effect of  the strains 

induced by the same stresses in a simple and familiar example: 
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6.1.2. Stresses and induced strains in the vibrations of  strings and drumheads 
One analyzes the vibrations of stretched strings and the transverse fluctuations of drumheads using 

a stressed reference state. In both cases one expands around a stressed equilibrium state - a stretched 
string for which the strin9 tension does not vanish and a stretched membrane, drumhead or surface 
for which the surface tension does not vanish. It is well known that in both cases this initial stress 
is directly responsible for the leading terms in the bending rigidity of  the string or membrane. 
Specifically, 

The leading terms in the elastic eigenmode energies and (squared) frequencies, o92, are proportional 
to q2 and to the stress, cr - the line or surface tension 

~ [ d x .  [ - a . ( V h )  2 + F . (V2h)  2] 
(6.9) 

co2q ~ - a .  q2 + F. q4, 

where h (=h(x))  is the transverse deviation, a is the stress - the surface tension - and F is a 
bending modulus which represents the BH contribution to the transverse rigidity. The result is well 
known in many versions. 

We note that the stress, a, appears explicitly as a coefficient in Eq. (6.9). When the string is long 
and thin enough a completely dominates the transverse rigidity. The contributions of  the regular, 
unstressed bending modulus, F, are proportional to q4 and can therefore be neglected for long 
wavelengths. For negative a this was already used by Euler (1755) in his explanation of buckling 
and it is the essence of  the analysis of  elastic stability (Landau and Lifshitz, 1970, ch. 21). 

Obviously a stretched string will also be elongated by the stress when compared to its "true", 
unstressed, length L0. The initial stress in the reference state, the line tension a, induces an elongation, 
ilL, or equivalently a strain, 6L/Lo, in the string - as in Eq. (6.7). If  this strain is large enough it 
can significantly change the mechanical properties of the material constituting the string. In general 
one therefore expects that the induced strain will also change the bending rigidity, F - Eq. (6.8). 
The stressed string can even break when the strain is large enough. This is the induced effect of  the 
stress. In this example it affects the coefficient of  the term proportional to q4 in Eq. (6.9) 

r(o)  # r(6t /Lo) .  

The induced strain, the elongation of the string induced by the initial stress, plays no role at all in 
the direct term in Eq. (6.9) which is proportional to q2. Only the stress itself appears there. As long 
as the string remains intact, and does not break, this term in Eq. (6.9) is not changed. 

The effect of  the elongation of  the string on its mechanical properties, the effect of the induced 
strain, and the transverse rigidity induced directly by the tension are two separate and qualitatively 
different effects. 

The direct effect of  stresses on the mechanical properties is familiar for these anisotropic geometries 
because even relatively small stresses become important for the transverse long wave modes of  thin 
rods and plates when 

Fq 2 < a .  (6.10) 

The distinction between two different effects of stress on the mechanical properties is however a 
general phenomenon. 



116 s. Alexander~Physics Reports 296 (1998) 65-236 

6.2. Bond-tensions in the harmonic expansion 

6.2.1. The harmonic expansion 
We want to discuss the effect of  the term in Eq. (5.1) which is neglected in the BH approximation 

- ( ri/*r°~ 6e({r})  6 ,rij ~ 1 - -  (6.11) 
~rij ~rij ri/ ri/ r~. ] 

which appear when the reference state is stressed 

~ = [~e/~riA{,} # 0. 

This gives a contribution to the harmonic energy 

1 YO (u~ ,,z, (6.12) - + , ,  
U 

The terms in the sum on the right-hand side of Eq. (6.12) are second order in the components of 
the deviations, ui, and contain only two site indices - [i j]. Thus ~ is part of  the two-body, Cauchy, 
harmonic energy. In the harmonic expansion ~ appears to the same order in the components of  
the ui as the unstressed Cauchy energy, cgh _ Eq. (5.8), the angular three-body contributions, ag - 
Eq. (5.11), and the four-body twist contributions, ~ - Eq. (5.13), which we discussed in Section 5. 
There is therefore no general reason why one should neglect the direct effect of  the stresses - the 
tension induced terms ~ - compared to the terms in the BH harmonic expansion, Eq. (5.15). 

We note that once ~ is expanded in the single particle deviations, the u~, it is no longer possible to 
single out these stress-induced terms in the harmonic energy - in spite of  the underlying differences 
between them and the BH contributions to the same expansion. 

6.2.2. Rotational invariance 
The intuitively most striking peculiarity of  the terms in ~ is that they seem to violate the standard 

rotational invariance criteria for two-body interactions. The contribution of  a pair [i j] to ~' cannot 
be expressed in terms of the component of u 0 parallel to the reference vector, Rig, separating the 

" ± alone pair - ui/. ~ can even be written explicitly in terms of  the transverse deviations, uij, 

1 ~ ± 2 (6.13) 

tJ 

and it would seem that this is not consistent with rotational invariance because of  the identification 
± with a rotation - Eq. (5.9). We discussed this rotational invariance criterion in Section o f  ui j  

5.2.2.1. Eq. (6.13) cannot be written in terms of  ui~. but this cannot be a real violation of  rotational 
invariance. The energy we expanded, ~({r}),  is obviously rotationally invariant and the formal 
derivation of Eq. (6.13) is elementary. Terms which violate rotational invariance cannot appear in 
such an expansion. 

The origin of this apparent contradiction is that the identification of  u~ with a rotation in Eq. (5.9) 

u~ ~ Rofq~i / 

is valid only to first order in the components of  uij. 
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For a pure rotation, 6q~, the distance r 0 cannot change, fir o, must vanish exactly and to all orders. 
This is rotational invariance. But for a purely transverse deviation 

u~j ± ¢ 0, u o'' = 0 , (6.14) 

one has, to second order 

6rij _ (U~)2 (6.15) 
2Rij 

± does not describe the rotation correctly to so that 6r~j does not vanish. Evidently this means that u 0 
second order. To this order the rotation 6q~;j is described by a vector with the components 

±" " (u~)2 (6.16) 
u~j , u~j- 2R ° 

which assures 6r -- 0 to second order. To second order the rotation cannot be described by the purely 
transverse deviation (6.14). When 3 - % 0  these second order corrections appear in the harmonic 
expansion of  the energy. 

Since the apparent violation of  rotational invariance may seem surprising, and even counterintu- 
itive, we discuss the transverse response of  a stressed spring in detail in Appendix B. The purpose 
of  this discussion is of  course purely didactic. 

6.3. "Scalar elasticity" 

It is convenient to consider the scalar part of  ~' in Eq. (6.8) separately. 

~sca,~ = ~ ~ . u ~ .  (6.17) 

We have called this "scalar elasticity" because of the appearance of the scalar maonitude of  the 
deviation uij (Alexander, 1984). 

6.3.1. The Born model 
In studies of  lattice dynamics expressions which look like /~i~scalar 

1 y ~  ~i j 'u~ (6.18) ~=~ 
/j  

are sometimes added to the harmonic expansion to increase the shear rigidity. This is known (to 
the experts) as the Born model (Born and Huang, 1954, ch. 5). The "Born" terms are introduced 
as a substitute for the many-body, angular and twist terms - because the expansion of  these scalar 
two-body terms is much simpler and more convenient than that of  the many-body terms they replace. 
When introduced in this way the coefficients of  the scalar Born terms are essentially fitting parameters 
and it is evident that they violate rotational invariance. These "Born model" terms are of  course 
always qualitatively different from the BH bending and twist interactions which they replace. 

Our derivation of  Eq. (6.17) shows that such scalar terms can also appear in the expansion of a 
rotationally invariant energy around a stressed reference state. 
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6.3.2. Correction o f  the spring constants 
t! The rest of  ~ ,  the contributions of the u o to ~ ,  

1 
~i~-  ~i~scalar_ 4 Z ~ij/Rij+[uij ).,2 

ij 
(6.19) 

can be incorporated into the Cauchy energy by redefining the coefficients in Eq. (5.8) 

(~h ~ (~th; ~i~ + ~h = ~scalar -'~ (~th (6.20) 

where 

~ , h =  1 
(ui/) , oUii)= ~ j - ~ / 2 R  o . (6.21) 

i j  

The effect of  the line tensions on the force constants is small when the bond tensions are not too 
large so that 

Yij ~ 1. (6.22) 

One can then neglect the difference between the corrected Cauchy energy, cg,h, Eq. (6.21), and cgh, 
Eq. (5.8). 

Thus the special effect of  the stress which is qualitatively different from the BH harmonic energy 
is the effect of  9'scal~r. Because of  this the inequality (6.22) does not necessarily justify the neglect 
of  ~s~,~,r. The inequality implies that the terms in :~sc,~,r are small compared to the BH terms in the 
expansion. However, because ~sca~a~ is qualitatively different in structure from the BH terms it can 
become important for modes for which the BH terms are for some reason ineffective even when the 
stresses are small. We will see in Part II that this happens in tenuous materials and is crucial to 
understanding their properties. 

6.3.3. The sign o f  the bond tensions 
It is evident that the bond tensions, the ~-7/, have a sign. They can be positive - as in a stretched 

spring - or negative - as for loaded columns. Since the ~-70 are coefficients in the harmonic expansion 
terms in ~ - Eq. (6.13) - and in the scalar contributions, (6.17), these terms also can have different 
signs. Positive tensions have a stabilizing effect on the transverse bending rigidity while negative 
tensions destabilize it. 

6.4. The continuum limit 

6.4.1. The second order strain 
We want to show that the terms in the elastic energy in which the second order strain appears, 

Eq. (6.1), are indeed the continuum limit of  ~scalar. 
We first evaluate the continuum limit of  u~. From Eq. (4.5) one finds 

u,~ ~ u  r (6.23) 
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so that 

2 = ~ (u,~)2 _ ~-'~ [X~ .X/Z ] • y ~  ~ u ~ u ~  (6.24) Uij 

7 :~,fl Y 

Substituting this into ~s~al~ we can write the continuum limit of  Eq. (6.17) as 

~scalar ==~ ,-~elastic-=--(llfdr'ZcT~(r)'e2~#(r), (6.25) 
\ z - /  d 

where the microscopic expression for the stress tensor o(r) is 

ai = - ~i/~ -1" ~ ~ "  (Rij * R~j) (6.26) 
j Rij 

exactly as in Eq. (4.10) and the components of  the second order strain tensor, e 2, are 

e2 : ( 1 ) E ~ u 7 ~ , u r .  (6.27) 

We have thus shown that the "scalar elasticity" terms in the harmonic expansion, Eq. (6.17), are 
the terms in the microscopic expansion which, in the continuum limit, are the origin of  the second 
order strain in the stress-strain relations. 

6.4.2. Direct effect o f  the stress on the elastic constants 
Because of  the redefinition of the force constants in Eq. (6.21) stresses also have a "direct" effect 

on the continuum limit. The change in the force constants 

6 ~ j  = - ~ / 2 R i /  

causes a correction in the elastic constants 

1 ~ ~ Rig * R~j • R~j,  Rij 
(6.28) 

which has the Cauchy form - Eq. (5.23). 
While this contribution to the elastic constants at r is also a direct effect of  the stresses on the 

elastic energy it cannot be expressed as a simple function of  the stress, Eq. (6.26). The contributions 
of  the ~ for different bonds are weighed differently in the definition of  the stress, Eq. (6.26), and 
in Eq. (6.28). 

We only mention this for completeness and shall not discuss these corrections further. When the 
line tensions and local stresses are small - Eq. (6.22) - the corrections to the elastic constants 
defined in Eq. (6.28) are not important. 

6.5. Network stresses are elastic constants 

Our purpose in Part I was to restructure the derivation in a form which would assure rotational 
invariance and make the effect of  the stresses manifest. Rotational invariance and stresses are not 
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evident when one writes the microscopic expansion in the standard text-book form - i.e., directly 
as an expansion in the components of  the ui. One cannot really see in these expansions whether 
the expansion is rotationally invariant and if the reference state is stressed. In the continuum limit 
the situation is different. The rotationally invariant structure of  the theory of  elasticity is quite 
transparent and this is also apparent in the inclusion of initial stresses and of  the second order strain 
in the discussion of  many problems. One sees immediately that the presence of  stresses introduces a 
qualitatively different type of term into the elastic energy and that it does not violate any symmetry. 

In this sense the continuum limit demonstrates clearly that the scalar terms in the harmonic 
expansion, Eq. (6.17), are qualitatively different from the BH terms. Only these terms give rise to 
the terms in the elastic energy in which the second order strain appears. The continuum limit of  all 
other terms in the expansion can be written as an expansion in the symmetric first order strain. 

We saw this explicitly. Eqs. (5.22) and (5.28) contain products of the fourth rank elastic constant 
tensor [[D[[ with a second order form in the components of the symmetric tensor e 1 - Eq. (4.3) - 
which is linear in the first derivatives of  the deviation field u(r). On the other hand, the coefficient 
in Eq. (6.25) is the second rank stress tensor I[ainill. The equation is linear in the symmetric second 
rank tensor e 2, the second order strain, which is itself of the second order in the derivatives of  the 
deviation field. The two expressions are qualitatively different and cannot be transformed into each 
other. Both types of terms are second order in the first derivatives of the deviation field but their 
tensorial structure is different. 

When the reference state is stressed the initial stresses of  the network appear in the elastic energy 
as elastic constants. Clausius (1849) was apparently the first who noted that the initial stresses 
appeared as elastic constants in the results of  Cauchy (1828c) 25 (see Love, 1927a'b). At least formally 
the components of  the second rank initial stress tensor in the reference state - [[tri,i[[ - are elastic 
constants of  the pre-stressed solid exactly like the components of the fourth-rank elastic constant 
tensor [[D[[ and for the same reason. Both tensors are local properties of  the energy g({r}),  and of  
the specific equilibrium reference state {R). 

In general both types of "elastic constants" have to be included. 

6.6. Breakin9 transposition symmetry 

We have seen that in stressed materials new terms appear in the elastic energy which have 
a different structure and whose continuum limit is proportional to the second order strain. These 
contributions to the mechanical energy can dramatically enhance the shear rigidity of  a mechanical 
network - at the macroscopic level and also at the local microscopic level. This will be important 
for our discussions in Parts II and III. There is however also a qualitative difference between ~elasfic, 
Eq. (6.25), and the most general BH expansion in the components of the linear strain. 

6.6.1. Breakin9 transposition symmetry 
To second order the BH elastic energy can be written as an expansion in the components of  

the symmetric linear strain - ½(~u~ + Opu~). Such an expansion is completely symmetric in the 
transposition of  the derivative index and the index of  the component of  the deviation. The shears 

25 Cauchy (1828c) found 21 elastic constants - the 15 BH constants of the Cauchy model and the 6 components of the 
initial stress. 
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~u/~ and ~#u~ appear in the elastic energy in exactly the same way. We shall call this symmetry of 
the unstressed BH elastic energy transposition symmetry (TS). 

As we saw in Section 4 the origin of transposition symmetry is in the continuum limit of u}~. 

, , ~  

Uij : Ri j 

- Eq. (4.6). TS for the expansion as a whole follows from the fact that the microscopic harmonic 
expansion around an unstressed BH reference state can be expressed as an expansion in the ul~. 

TS is a general symmetry of the BH elastic energy which cannot be broken by lowering the 
spatial symmetry of the solid. TS can be broken in the harmonic expansion only when the reference 
state is stressed. 

It is convenient to write the elastic energy (6.25) in a coordinate system in which the stress tensor 
a is diagonal 

z ] ~elastic : aini  • e ~  : - -  a in  i ( ~ u / / )  2 (6.29) 

When the stress is an isotropic pressure 

Pini ~ O'ini 

the elastic energy (6.29) becomes 

~i~elastic = - - P i n i "  E ( ~ a U / / )  2 (6.30) 
~,/~ 

and the coefficients of (~ua)  2 and of ( ~ u , )  2 are identical. Thus the elastic energy has full TS 
symmetry. This symmetry is broken when the spatial symmetry is reduced so that 

~ ~ (6.31 ) O'ini ~ ~'ini " 

The coefficient of (a~ua) 2, a~ is then different from cr/~, the coefficient of the transposed shear 
(~u~) 2. Thus transposition symmetry is broken by applying anisotropic stresses. Since the two 
shears ~ua and ~u~ differ only by the "rotation" ~u/~ - ~au~ this looks like a violation of rotational 
invariance. 

One can therefore design experiments which can distinguish between the shear 

~u~ ~ 0, ~u~ = 0, 

and the transposed shear 

~u~ ~ 0, ~u~ ~ 0. 

One could do this, e.g., by comparing the frequency of a phonon polarized along/3 and propagating 
in the g direction with wave vector q, to that of the transposed phonon polarized along g and 
propagating along/~ with the same wave vector. 

If the elastic energy can be written in terms of the symmetric linear shears then one must have 

co~(q) = co~(q). (6.32) 
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This must hold even when the solid is very anisotropic so that the ~ and fl directions are not at all 
equivalent. This symmetry can be broken by the direct stress induced terms in the elastic energy, 
(6.29). If one finds 

co,a(q) ~ coa~(q) (6.33) 

the difference must be due to the direct effect of  anisotropic stresses. 
An example would be a situation where the solid has uniaxial symmetry around z. One compares 

a transverse phonon propagating along z (00 with a transverse phonon propagating in a direction 
normal to z but polarized in the z direction. Any difference would demonstrate the violation of  
TS - i.e. the direct effect of  anisotropic network stresses. 

6.6.2. The second order strain and the symmetric linear strains 
An expansion in the components of  the symmetric linear strain is always symmetric under trans- 

position but TS is not sufficient to assure that an expansion in the derivatives can be written in 
terms of the symmetric linear strains. One cannot express the second order strain as a binary form 
in the components of  the symmetric linear strain tensor. 

For example, the square of  the antisymmetric component of  the deformation 

(~U,6 -- O~U~) 2 ~- ~xU2~ -~- O[tU2~x -- 2~UI~ " O~Ug 

has full TS but, of  course, cannot be written in terms of the symmetric linear strain. 
The apparent violation of  rotational invariance in stressed systems which we noted at the micro- 

scopic level in Eq. (6.13) appears again in the continuum field equations. The naive rotational 
invariance argument says that the expansion of  the energy in the first derivatives of the deviation 
field u(r) can be expressed as an expansion in the components of  the symmetric (linear) strain 

e~l = l(0~u~ + ~u~) 

because the antisymmetric part of  the derivative tensor 

a~  = ½(0~u~ - 0pu~) (=  ½(rotu)~) (6.34) 

is a rotation which cannot appear in the elastic energy. This argument is analogous to the argument 
in 5.2.2.1 that the perpendicular deviation u~ is a rotation - Eq. (5.9). It is the continuum equivalent 
of  that argument and also breaks down to second order - i.e., when there are initial stresses and the 
second order strain appears. 

Consider for example the isotropic component of  the second order strain 

2 1 ~--~(0~ur) 2 (6.35) 
e i s o  z 

~t,~ 

which multiplies the isotropic component of the network stress - the network pressure lr - in the 
elastic energy: 

~ i ~ l a s t i e  _ _  • 2 (6.36) 
o - -  - -  " e i s o  , 

e2so is obviously rotationally invariant. Also, as we already noted, it has full transposition symmetry. 
However, since 

(~u~) 2 + (0~u~) 2 = ½[(0~u~ + 0ru~) 2 + (0~u~ - 0ru~)2], (6.37) 
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it cannot be expressed in terms of  the symmetric linear strains alone. If one chooses to introduce 
the linear strain, e l, into Eq. (6.36) one finds that one also needs the components of  the "rotation" 
- rotu: 

e2so --- Trl[e 1 II 2 + ¼(rot u) 2 . (6.38) 

Thus the isotropic contribution to the energy, Eq. (6.36), cannot be written in terms of the sym- 
metric linear strain even though it does not violate TS. 

This can be generalized. 
The geometric deformation of a solid is described by the derivatives of  the field u(r) - the matrix 

II i r ,  .11 = Ildll ; d=~ = O,u~. (6.39) 

In terms of  this derivative matrix the second order strain can be written as a matrix product 

lie211 = Ildll" Ildll, (6.40) 

where IJdll is the transpose of  the derivative matrix Ildll. 
In general the matrix d is not symmetric since 

~u/~ ~ ~#u~. (6.41) 

It can then be decomposed into a symmetric part, the linear strain, e l, and an antisymmetric part 

Ildll=lle~ll + Ilall ; Ildll=lle~ll- Ilall (6.42) 

and therefore quite generally 

Ile=ll--(llelll + Ilall)o ( l l e l l l -  Ilall)=(lle~ll  2 - I l a l l  = - [ l l e l l l  o I l a l l -  Ilall o Ile~ll]. (6.43) 

Evidently the second order strain cannot be expressed in terms of  the symmetric part of  the 
derivative tensor alone. The antisymmetric part of  this tensor also appears. 

6. 7. What is the second order strain? 

The second order strain defined in Eq. (6.26) is a rather peculiar object. When it appears it plays 
a strange role in the elastic properties of  a stressed material. We want to discuss this in some detail. 

6. 7.1. Thermodynamic and physical definitions o f  the strain 
In texts on thermodynamics (e.g., Callen, 1960) one defines the isotropic stress, the pressure, 

through its relation to the volume: 

p = - [ ~ - ( N ,  V)I~ V]N=constant , (6.44) 

where N is the number of  particles in the volume V and ~ - =  ~-(N, V) is a free energy. This leads to 

6 ~  = - p .  6V .  (6.45) 

This can also be written as a stress-strain relation. The change in the energy density, f ,  caused by 
the isotropic stress p is 

tSf = - p - e  is° , (6.46) 
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where 

f = °-f /V (6.47) 

is the free energy density and one defines the dimensionless isotropic strain as a relative volume or 
density change 

e is° = [•V/V]N=cons t = 6C/C, (6.48) 

where N is the number of particles in the volume element V and c (=  N / V )  is the particle density. 
In this standard thermodynamic derivation the isotropic strain which multiplies the pressure is 

def ined as a relative volume change. It is somewhat surprising to note that this identification of the 
isotropic strain with a volume change is str ic t ly  valid only for fluids. For solids it is only valid to 
lowest order in the expansion of  the strain in the derivatives of the deviation field. 

In the theory of elasticity one generalizes Eq. (6.40) to the stress-strain expansion of  the mechan- 
ical energy (Callen, 1970, ch. 13; Landau and Lifshitz, 1970, ch. 10) 

6 f  = - a o e = - ~-~cr ~ . e ~  , (6.49) 

where a is the stress tensor and e the dimensionless strain tensor. 
The definition of  the stress in terms of  the forces acting on the boundaries of  a volume element is 

unique and general (see Landau and Lifshitz, 1970, Eq. (2.9) and Section 4.3 above). The definition 
of  the strain, e, conjugate to the stress is a much more delicate matter and depends on the physics. 

The purely thermodynamic definition as a variable conjugate to the stress 

e ~  = - ~ f  ( a ) /~a  ~ (6.50) 

is quite general but, in itself, not very instructive. One needs to supplement it by an explicit physical 
and geometrical definition of the strain - analogous to the definition of  the isotropic strain in a fluid 
as a density change in Eq. (6.48). This phys i ca l  definition of  the strain depends on the model which 
is appropriate in describing the specific situation. In particular the physical definition of the isotropic 
strain for a solid is different from the definition of  the isotropic strain for a fluid. The physical 
definition of  the strains in a solid is also different from the definition of  the strains conjugate to the 
same stresses in a mesophase. 

For a solid one defines the strain in terms of  the overall deformation of  the solid material. The 
continuous field, u(r) ,  describes this deformation as a geometric transformation of  space. More 
formally one can say (Landau and Lifshitz, 1970, Eq. (1.3)) that the local strain is def ined as the 
metric of  the continuous transformation of space, u(r) .  This is the continuum limit of  the description 
of the deformation of  the reference configuration 

{R} {R + u} 

which we used. This procedure gives the thermodynamic strain as an expansion in the derivatives 
of u(r) .  As we saw this gives 

1 e,# l ( ~ u ~  -~- ~Uce) -~- ~Z~ctUTOI3U~ "-~ O((~,u/~) 3) (6.51) 

which is the quantity one should substitute into Eq. (6.49) for a solid. 
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6. 7.2. Second order volume chanoes are not second order strains 
1 The second order strain, e~,,2 in (6.51) multiplies the stress, tr "~, just as the first order strain, e,p, 

does. Contrary to what one might guess this does not mean that the second order strain is the second 
order term in the description of  the 9eometric deformations which we intuitively associate with the 
first order strain. We want to show this explicitly for the isotropic strain. 

In the elastic energy the isotropic strain, eiso(= e~so + ei2so) multiplies the network pressure, to. 

it • eiso = it • e~s o + It • e2so . 

The first order isotropic strain of  the solid, el  o = div u, is a relative volume change. It describes 
the relative change in volume - to first order in the derivatives of the deviation field u. We want 
to show that the isotropic second order strain does not describe a volume change at all. It can 
have identical values for deformations which change the volume and for deformations which do not 
change it at all. The contributions to the volume changes which are second-order in the derivatives 
of  the field u(r) are not part of  the second order strain. 

The relative volume change of the volume element dx.dy.dz due to the field u(r) is given by the 
determinant 

6V det 1 + ~xUx ~xUy OxUz 
T = ayUx 1 + ~yU e ~yU~ - 1 . (6.52) 

~zUx ~zUy 1 + ~zUz 

The first order volume change is indeed the trace of  the first order strain tensor 

61V/V= y ~ u ~ = e ~ s  o . (6.53) 

This is familiar. The second order term in the volume change is 

1 
t~2V/V = -2 ~B (~eue " ~flufl - ~ctufl " ~flua) . (6.54) 

This is the contribution to the relative volume change which is second order in the derivatives 
of  u. Evidently none of  the terms in this sum appears in e2so - Eq. (6.35). 

The isotropic second order strain which multiplies the pressure, e2so l 2 = 5~ , ,p (~ ,ua) ,  is a sum of  
squares. It can only vanish when u(r) is constant and ~,u#-= 0. There is always an isotropic second 
order strain when u(r) is not constant. A second order volume change, 62V - Eq. (6.54) - can also 
appear but this is not necessary. For some forms of  u(r) there is a second order volume change 
while for others which lead to the same value of  the isotropic strain there is no such change. It is 
quite possible to have deformation fields for which 62V = 0 while the isotropic second order strain 
does not vanish. 

6.7.3. Some examples 
We want to illustrate this by a few examples. Consider a pure shear 

~ut~7~0, ~ ¢ f l  (6.55) 

with all other derivatives vanishing. The second order strain tensor is diagonal and has one non- 
vanishing component 

e2~ = ½(~u~) 2 . (6.56) 
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Thus e2so ~ 0 but there is obviously no second order volume change - Eq. (6.52) - because ~u~ = 0. 
For a pure shear the first order volume change vanishes because div u = 0. 

A second example is a uniaxial strain. Only one component of the derivative tensor 

~u~ ¢ 0 (6.57) 

is non-vanishing. Again the second order strain has one component - e2~. There is a first volume 
change, and a finite contribution to the isotropic second order strain: e2so 1 2 = i(8~u~) , but no second 
order volume change, Eq. (6.53). 

Even when there is a second order volume, or density change, Eq. (6.53), this volume change 
does not appear explicitly in the elastic energy of the solid. Only the isotropic second order strain 
e2so multiplies the pressure for a solid. One cannot tell from the value of  the isotropic second order 
strain tensor if there is a (first or second order) volume change or how large it is. Even though the 

2 for a solid are both determined by volume change, 62V, and the isotropic second order strain, eis o 
the same field u(r) they are only indirectly related. This is qualitatively different from the situation 
for fluids where the relative volume change itself is the isotropic strain and explicitly multiplies 
the pressure. Because of this the isotropic second order strain can give rise to restoring forces at 
constant volume - as it does, e.g., for the surface vibrations of a balloon. 

We discuss a simple illustrative example in Appendix C where we describe two deformations with 
identical contributions to the second order strain but different volume changes. 

PART II. THE RIGIDITY OF FLOPPY BONDED NETWORKS 

Our purpose in this section is to develop a theory of  the mechanical properties of tenuous solids. 
By this we mean materials which are solid but are only tenuously bound - solids which are described 
by physical models which, prima facie, cannot define a rigid reference configuration. The motivation 
for studying tenuous solids is of  course that many materials one encounters are described by such 
models as we noted in the Introduction. The discussion in this section is however still purely 
theoretical and we do not refer to any specific physical models. 

To formulate the theory of tenuous solids in a systematic way we shall use the concept of  
bonded networks (BN) associated to physical models which we introduced in Section 3.3. We shall 
systematically analyze the mechanical rigidity of  such networks. We shall discuss the rigidity of  
bonded networks as a property of the graph when it is embedded in space. This will lead us to 
the study of geometrically floppy bonded networks (FBN) which are connected but nevertheless not 
rigid because they are not sufficiently interconnected to fix all the ~int internal degrees of  freedom 
of the N particle network. This floppiness is a geometrical property of the graph of  the FBN. 

We shall then show that models which are described by FBN always have soft eigenmodes with 
no harmonic restoring forces when the reference state is a BH reference state. The analysis of  the 
bulk mechanical properties of  solids described by FBN is thus similar to that of  objects with very 
anisotropic shapes "...whose dimension in [some] direction[s] is small" such as thin rods and plates 
(Landau and Lifshitz, 1970, p. 3). For thin rods and plates stresses are always important - even 
when they are relatively small - because their BH transverse bending rigidity is small. For FBN the 
soft modes result from the floppy internal geometry of the bonding and not from the external shape. 
The stress-induced terms of Section 6 become important for these modes and the initial stresses are 
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therefore crucial in determining bulk properties. Like their macroscopic analogs stresses can either 
stabilize the soft modes, as in stretched strings and drumheads or cause their buckling. 

7. Rigidity and dynamic stability 

7.1. Bonded networks 

We want to discuss the rigidity of the reference states for the description of the mechanical 
properties of  solids. To analyze the rigidity it will be useful to relate the energy to a BN. We first 
recall the definition of  the BN in Section 3.3 in detail. 

We consider models for which the mechanical energy g({r})  is the sum of  short range interactions 
among small numbers of  particles 

= E  % .1, (7.1) 

where 

~...l  = qFn(r" r j , . . . )  = ~U"({r}t~,y...l) (7.2) 

is an interaction among the n particles [ij...] and can be written as a function of the distances 

{r}t"0....l = {r,j . . . .  } (7.3) 

between the interacting particles. 
We define the set of  bonded distances, {r}bond, as the set of  all the distances which appear in the 

parametrizations of  the separate interactions 

{r}bond = {rlz, rl3,...,rij,...}bond=~--~ {r}t~/j...] • (7.4) 

The energy can then be written as a function of the bonded distances: 

e({r}  } = g({r}bona ) • (7.5) 

The distance rij, which appears in {r}bond can be represented by a bond - [i j], which connects 
the points i and j .  

The BN relevant to such a physical model is the graph one obtains by drawing bonds between 
the vertices i and j whenever the distance r;j appears in {r}bo,d. The bonded network is completely 
determined by the pairing scheme in {r}bon d. It has N vertices and ~bond bonds which are arranged 
in a way prescribed by the pairing scheme {[ij]}. 

The bonded network can be regarded as a property of the physical model one uses to describe 
a physical system. When the energy is given as a sum - Eq. (7.1) - one can always associate it 
with a specific bonded network. On the other hand, the same BN evidently can describe a family 
of  physical models which differ in detail. 

7.2. The 9eometric rigidity o f  bonded networks 

Once one has determined the bond structure of the network one can discuss its rigidity in 
d-dimensions as a property of  the graph defined by {r}bond. This rigidity is a purely geometric 
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property of  the graph - the bonding structure of  the network. A bonded network is geometrically 
rigid (GR) in d-dimensions if it cannot be deformed without changing the lengths of  some of its 
bonds. A geometrically rigid bonded network becomes completely rigid when all its bonds [i j] are 
replaced by rigid links of fixed length. The links are connected at the vertices but, since we have 
chosen to represent angles by distances, they are freely linked there. 

Geometrical rigidity obviously requires that all the vertices of the network are connected by 
bonds. A sufficiently interconnected bonded network of  N vertices is always geometrically rigid 
but, in general, connected bonded networks are not necessarily GR. Bonded networks which are 
not GR remain floppy even when all their bonds are made into completely rigid links. The rigid 
bonds constrain the possible configurations of  the network but do not fix a unique configuration. 
We shall call such networks geometrically floppy (GF). The fact that a network is GF in d- 
dimensional space is a property of the graph - the internal bonding structure of the bonded net- 
work. A GF bonded network can be deformed continuously without changing any of  the bonded 
distances which appear in {r}bon d. Any configuration of a GF network belongs to a manifold of 
equivalent configurations which can be deformed into each other without changing the bonded 
distances. 

7.3. Three types of floppy networks 

Bonded networks can be floppy in different ways. For our purposes it will be useful to distinguish 
three types of  floppy networks with different degrees of  floppiness. We first illustrate this with simple 
examples: 

7.3.1. Examples 
• The square lattice with nearest neighbor bonds, Fig. II. 1, has no shear rigidity in the plane. It can 

be sheared without changing the lengths of  any bonds and cannot maintain shear stresses. This is 
a macroscopic floppiness. But this is not a full description of the floppiness of the square lattice. 
One can rotate the horizontal edges of  all the squares belonging to the same column, i, by an 
angle (Pi and the vertical edges in each row, j ,  by an angle ~/. This results in a configuration 
of the network which can be obtained from the square lattice by a continuous deformation of  its 
boundaries which is not a simple shear. 26 Rubinstein et al. (1992) and Ajdari et al. (1992) have 
discussed this "infinite" and continuous floppiness in detail. The square lattice thus belongs to 
a continuous manifold of configurations all of  which have the same bonds as the nearest neighbor 
square lattice. If one fixes the external boundary of such a network in any one of  the continuum 
of allowed shapes - the whole network becomes completely rigid. The positions of a / / the  interior 
vertices are determined by fixing the boundary. The square lattice is thus macroscopically floppy 
(MaF) because its boundary is floppy. Its macroscopic shape, can be changed continuously without 
changing the lengths of any bonds. This floppiness includes macroscopic shears of  the lattice as 
a whole but also many more subtle deformations of the boundary. Because the positions of 
all interior points are fixed by the shape of  the boundary this is the only floppiness of  this 
network. 

26 In general these configurations are not periodic. 
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Fig. II.1. The freely-linked nearest-neighbor square lattice has macroscopic floppiness. 

Fig. 11.2. The freely linked linear chain. In 2-dimensions the chain is locally stable but still has both macroscopic and 
microscopic floppiness. 

• Our second example is a freely linked linear chain in the plane - Fig. I1.2. Such a network is 
much more floppy than the square lattice. It cannot be made rigid by a macroscopic boundary 
condition - or even by any condition which only determines the positions of  a small fraction of  
the vertices - which becomes negligible when N is large - as was the case for the square net. One 
can only fix the positions of  all the N vertices by a "boundary condition" which determines the 
positions of  a finite fraction (one half) of  these points - see Fig. I1.2. This means that one cannot 
only deform the chain as a whole but there is also additional microscopic internal floppiness. Any 
segment of  a linear chain with more than two links can be deformed continuously even when its 
ends are fixed (see Fig. I1.9). This is a collective microscopic floppiness (MiF). In the plane the 
position of  every vertex is completely determined by the links connecting it to the two neighbors 
to which it is directly bonded. There is no freedom for any single junction on its own. 27 Thus 
the fraction of  points whose positions one has to fix is i - the points marked by black disks in 
Fig. II.2. Sequences of  three bonds are however floppy. This floppiness is collective and requires 
the correlated motion of  two vertices. 

• As a third example we consider a network with the geometry of  a branching tree - Fig. 11.3. 
Such a network obviously has the two types of  flexibilities of  the linear chain - macroscopic 
floppiness (MaF) and collective microscopic floppiness (MiF). Besides that it also has singly 
connected points at all the free ends of  its branches whose positions are not determined by the 
bonds connecting them. They can be moved even when all the other vertices are fixed. There 
are many "dead-end" branches and the position of  the atom connected by a single bond, at the 

27 Such freedom does of course appear in three-dimensions where every junction can move  freely perpendicular to the 
plane determined by the bonds connecting it to its immediate neighbors. 
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Fig. II.3. A tree. The gray circles mark the dead-end points which are not locally rigid. 

head of  such a dead-end, is evidently not fixed by the bonded network. We can say that the tree 
is not Locally Rigid (LR) while the square lattice and the linear chain are LR in the plane. 

7.3.2. Macroscopic, microscopic and local rigidity 
These illustrations suggest three different types of rigidity - as a property of floppy networks: 
(a) Macroscopic rigidity. A network is macroscopically rigid if the shape of  its boundary is 

determined by the bonded distances and cannot be changed without changing them. Otherwise it is 
macroscopically floppy (MaF). This obviously includes rigidity - or floppiness - with respect to 
uniform shears but as we saw is more general. 

(b) Microscopic rigidity. The square lattice in Fig. II.1 becomes completely rigid when one fixes 
the macroscopic boundaries. For the networks depicted in Figs. II.2 and II.3 there is still a lot of  
local microscopic floppiness even when the external boundary is fixed. A network which is floppy 
in the macroscopic sense may or may not also be floppy in the microscopic sense. The question is 
whether all the microscopic geometrical degrees o f freedom (DOF) are fixed by the bonding structure 
(Phillips, 1979, 1981, 1982). When a homogeneous material is microscopically floppy some of  the 
microscopic DOF remains free and are not determined by the bonding structure - even when the 
external boundaries are fixed. 

(c) Local rigidity. As we saw in Fig. II.3 microscopic floppiness can appear in a trivial way 
when the positions of  some of the particles are not completely determined by the bonds. We shall 
call the requirement that the position of  every particle is fixed completely by the positions of the 
particles to which it is directly bonded - local rigidity. Evidently the requirement that all particles 
are in locally rigid positions is a necessary condition for microscopic rigidity but, as we saw for the 
linear chain, it is by no means sufficient. 

We emphasize that MaF, MiF, and LR are three essentially independent properties of networks. 
All combinations of  the three types of floppiness are possible. In particular, a macroscopically rigid 
network can be MiF if it has a rigid scaffolding in which floppy regions are embedded. 

7.3.3. Geometric rigidity criteria and geometrically floppy networks 
We called a network geometrically rigid when the configuration of  the vertices could not be 

deformed without changing the lengths of  some of  the bonds. This only depends on the bonding 
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structure - the geometry of the network. The geometrical question is whether the bonded dis- 
tances can determine the configuration of the N junctions - i.e., whether they can determine all the 
½ N ( N -  1) distances rij among the N vertices. In principle this is a straightforward criterion for 
the geometrical rigidity of a bonded network. Checking whether a specific network is macroscopi- 
cally, or completely rigid, is nevertheless often a fairly complex and delicate geometrical problem. 
In particular this is true close to the macroscopic rigidity threshold - as discussed, e.g., by Deweney 
(1991) and Sen et al. (1985). For many networks, it is however obvious that they cannot possibly 
obey the geometrical rigidity requirements. Examples are the networks described in Figs. II.l-II.3 
above. 

We shall call networks which do not obey the geometrical rigidity requirements because the set 
{r}bond is insufficient - geometrically foppy (GF). In a geometrically floppy network some distances, 
rgj, between points are not defined by the bonding structure - some degrees of  freedom (DOF) among 
its hint DOF are free and are not determined by fixing the distances in {rbo,d}. 

We shall discuss some examples of geometrically floppy networks in detail in Section 8 and 
sufficient formal criteria in Section 9. 

7.4. Dynamically floppy bonded networks 

In the discussion above we used a purely geometric definition of  rigidity as a property of  a bonded 
network embedded in space. The bonded network is however a theoretical construction and because 
of  this geometrical rigidity is not directly accessible to experiments on real materials. The geomet- 
rical rigidity of  a bonded network is however not the only approach to the question of  rigidity. 
The alternative is to check for the stability of the expansion of  the energy 8({r})  around the refer- 
ence configuration {R}. Since the theory of  the mechanical properties starts with the energy, g({r}) ,  
and not with the bonded network defined by {r}bo,d, this is probably the more obvious approach in 
the context of  materials science. The experimentally verifiable questions related to rigidity which one 
asks - the vanishing of  a shear modulus, the vanishing of  the velocity of  sound in some directions 
and the presence of  local modes with no harmonic restoring forces - are all questions of  dynamical 
stability. 

What one needs eventually is to describe the mechanical properties in terms of  the expansion of  
the energy of  an N particle system, g({r}) ,  in the deviations of the particles from their respective 
reference positions Ri. This is an expansion in the Nd dimensional space of positions 

[ ~ ] ,  [r)=[rl,r2 .... ,ri , . . . ,ru) (7.6) 

around a specific reference configuration 

[R) = [R1, R2,..., Ri,..., RN) (7.7) 

and the continuum limit of  this expansion. The problem of the rigidity of  the bonded network then 
becomes a question of  the stability of this expansion. The usual way to check for stability is by 
analysis of  the linear stability of  the expansion around a reference state {R}. 

If  we choose [R) as the origin in {~}  we define the Nd dimensional space of  atomic devia- 
tions [q/] 

[q/], [U)=[UbU2,...,Ui,...,UN), (7.8) 
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where u; is the deviation of atom i from its equilibrium position R~. We want to expand around the 
origin of [q/] - the reference state [R). 

The harmonic expansion of  the energy can then be written as 

~h = (u]lIKll[u), (7.9) 

where [IKII is the Nd dimensional dynamical matrix for this expansion. 
The dynamical matrix IIKII is defined by the N single-vertex matrices 

* (7 .10)  

and by the 1 N ( N -  1) two vertex matrices Kij 

Kij=~i = I1[  * vi]e({r))ll{R}, i ~ j  (7.11) 

one for each pair [q]. Both the symmetric matrices Kii and the matrices Kiy are d-dimensional. 
The matrix IIKII has dN eigenvalues. Of these eigenvalues a~ig (=  l (d  + 1)d) correspond to the 

rigid-body DOF of  the system as a whole and therefore vanish because of  global translation-rotation 
invariance. The remaining ~¢int eigenvalues, x ~, are the force constants for the internal harmonic 
eigenmodes [u =) 

IIKIIfu = (7 .12)  

where 

[l~ ~ ) -~- ~ • ~ [U  1 , I / 2 , . . . ,  H i , . . .  ,HN) (7.13) 

is an eigenvector and u~ is the d dimensional vector which describes the deviation of the junction i 
in the mode ~. If the equilibrium state {R} is dynamically stable all these force constants have to 
be positive 

x ' > 0  for all ~. (7.14) 

For geometrically floppy networks there are restrictions on the dynamical matrix [[KII which may 
reduce its rank and cause some eigenvalues to vanish. One actually expects this to happen. 

In Section 7.2 we defined GF networks, as networks which can be deformed continuously without 
changing the length of  any bonded distances. The energy of the model is obviously constant along 
the path of these deformations. We can therefore say that GF networks have free degrees of  freedom 
(DOF) which have no effect on the energy. It is natural to assume that, in general, there are also free 
linear eigenmodes, [ut~)f~ee corresponding to these free DOF. This means that there are no restoring 
forces for these free modes 

t¢~=0 for all free modes ft. (7.15) 

This means that the equilibrium reference configuration of  the floppy network, {R}, is not properly 
stable with respect to these free eioenmodes, r, because they have no restoring force constants. 28 
This always means that there are large fluctuations and that anharmonic effects become important. 

28 Formally one should probably say that such modes are marginally stable rather than unstable. 
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One can also formulate this in a different way as a statement on the structure of  the dynamical 
matrix IIKII as a matrix in the space [q/]. Eq. (7.15) is equivalent to saying that the harmonic 
expansion of  the energy around the reference state {R} is confined to a linear subspace of  [q/] 
which is determined by the ~b bonded distances - [q/b]. The complementary subspace of [q/I, [q/f~e] 
is free. The dynamical matrix IIKII has no elements connecting the space [q/b] to [q/f~] or between 
vectors in [q/me]- The coefficients of  the harmonic expansion of  the energy in this subspace of  [q/] 
vanish. 

The formal criteria for dynamical stability are different from the criteria for geometrical rigidity. 
They are properties of an expansion. In general one would therefore expect that the stability of the 
expansion in eigenmodes depends on the form of  the energy and on the specific reference state around 
which one is expanding - and not just on the underlying BN. This is not just a formal distinction. 
Geometrical rigidity and dynamic stability are really distinct properties of  the mechanical system. 
In particular the bonded network can be geometrically floppy and for suitable energies and reference 
states - the Cauchy-Born expansion can nevertheless be linearly stable. We will show this and also 
that it can only happen when the reference state is stressed. 

We shall show below in Section 10 that the intuitive guess that the "free" DOF will appear as 
"free" linear eigenmodes, Eq. (7.13), is indeed justified in the Born-Huang (BH) approximation, 
i.e., when the direct effect of  the initial stresses in the reference state [R] is neglected. In the BH 
approximation of  Section 5 the harmonic terms in the expansion of the energy in the ui at {R} are 
confined to a linear subspace [q/b] of  [q/]. When there are stresses the correspondence between free 
DOF and free eigenmodes no longer holds. We will show that one can have stable stressed reference 
states for bonded networks which are geometrically floppy and also truly unstable reference states 
which exhibit structural buckling. 

7.5. Classifying dynamically floppy networks 

In Section 7.3 we distinguished between macroscopic rigidity, microscopic rigidity and local rigid- 
ity using the geometrical rigidity criteria. One can classify dynamical stability in the same way. 

The stability condition for all eigenmodes, Eq. (7.14), guarantees complete stability for all eigen- 
modes. When this criterion holds it assures macroscopic stability, microscopic stability and local 
stability. For floppy networks which have free modes, Eq. (7.15), one has to be more careful. 

Only the single particle local stability is simply and directly related to the linear stability analysis. 
Local stability means that each junction is in a stable position when all the other junctions are kept 
fixed. For the site i this means that the d eigenvalues x~ of the local matrix Kii of Eq. (7.10) 

IIKi llu7 =  Tuy (7.16) 

are all positive 

x v > 0 ,  v = l , . . . , d .  (7.17) 

The condition for the local stability of all the N sites of a network is that all these local force 
constants are positive so that the inequality (7.17) applies at all the sites. This is a much weaker 
condition than (7.14). 

On the other hand the answer to the question whether a model is macroscopically floppy depends 
on the distribution of  bonds in the floppy network. For a network which is MF macroscopic stability 
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then depends on the actual distribution of  the stabilizing initial stresses. We shall return to this 
problem in Sections 12 and 13. 

Both the macroscopic stability of  the network as a whole and the local stability of all junctions, 
condition (7.17), follow from the condition that the network is stable - Eq. (7.14). The converse 
is not true. The stability of  the whole network configuration {R}, the inequality (7.14), does not 
follow from the local stability condition (7.17). 

8. Examples of macroscopieally floppy networks 

Our purpose in this chapter is largely heuristic. We want to discuss some specific examples of  
networks which are floppy and to show how geometrical and dynamical floppiness are related. This 
seems useful as an introduction to the general formal discussion of geometrically floppy networks 
in Section 9 and of  their dynamic stability in Section 10. 

The intuitively most obvious manifestation of  insufficient bonding is that a network becomes 
macroscopically floppy and does not retain its shape. This means that it can be deformed without 
changing the lengths of  any of its bonds. When the physical models described by these networks 
are also dynamically floppy the macroscopic floppiness appears in the continuum limit as a property 
of the elastic constant tensor of  the model. Some of  the elastic constants then vanish. 

It is useful to illustrate this first on some specific simple examples where the fact that the networks 
are floppy is intuitively obvious. The examples we shall discuss are simple periodic lattices - mainly 
Bravais lattices - with nearest neighbor bonds. They can therefore be analyzed fairly easily using 
simple heuristic arguments. 29 We shall look at the geometric floppiness of  the networks and - using 
the results of  Section 5 - also at their elastic constants. When this is easy we also indicate the effect 
of the floppiness on the phonon spectrum. In some cases, we shall also show how elastic shear 
rigidity reappears for geometrically floppy networks when they are stressed. 

Only very few Bravais lattices with nearest neighbor bonds are rigid. The only two-dimensional 
Bravais lattice which is rigid with nearest-neighbor interactions is the triangular lattice. A tiling of  
triangles in the plane is obviously rigid. 

8.1. The square lattice 

8.1.1. The unstressed square lattice 
We have already discussed the geometrical floppiness of  the square lattice in Section 7.3.1 of  

Section 7. The square lattice with nearest neighbor bonds can be sheared without changing the 
length of any bond - as we indicated in Fig. II. 1. It is obvious from the figure that the lattice can be 
sheared continuously until it eventually collapses into a line while keeping all bond lengths constant. 
A finite shear, say ~yUx ~ O, transforms the square lattice into a rhombic lattice. 

So far we have not discussed dynamic flexibility, i.e., the appearance of  linear eigenmodes with 
no restoring forces - Eq. (7.15). It can be seen in Fig. I1.4 that the square lattice has soft shear lines 
perpendicular to the bonds. If  one shears the square lattice along these lines the relative deviations 

29 For periodic lattices the linear eigenmodes are all phonons and can often be calculated explicitly. We shall do this 
for the honeycomb lattice in Section 11. 
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L 

Fig. II.4. The soft shear lines of the square lattice. 

± appear. It follows that the of  the bonded neighbors are all perpendicular to the bonds. Only ugj 
shear modulus of  the unstressed square lattice for these shears, D xyxy, mus t  vanish. There are elastic 
constants for an isotropic volume change, ~xUx = ayUy, and for the planar strain at constant volume 
- ~xUx =-~yUy - but there are no elastic constants for the shear strains - ~xUy, ~yUx. 

Using Eq. (5.24) 

rj~,~ 6 1 ~ j  -X~: • X/~ • ' 6 Xi~ • X~ 
L.Cauchy (3( ~ Z 8 2 

i 

to calculate the elastic constants we do indeed find for the square lattice 

Dxr'xx=DYYYY o(o,~.a2 ~ O ,  DxxyY=DXyxy = o  (8.1) 

because the bonds, R~j are all either in the x or in the y directions. 
From the fact that there is a separate soft line between every two lattice lines it is also evident 

that all the transverse acoustic modes with wave vectors along the x or y directions have zero 
frequency. 30 

8.1.2. The dynamic floppiness o f  the family o f  the square lattice 
The square lattice is geometrically floppy and belongs to a floppy manifold, a family of  equivalent 

configurations which can be obtained by continuously deforming the square lattice. All the config- 
urations in this family, ({R}bond), are geometrical realizations of the same bonded network and 
have identical bonded distances - {R}bond. Because of  this these configurations also have identical 
energies, 8({R}bond) and they can all, in principle, serve as reference states for an expansion. 

The expansions in the changes in the bonded distances, 6rij, 

1 
e ( { r } )  -  6,.ij + + . . . ,  

bonds bonds 

3o For this simple model it is easy to confirm this by calculating the eigenmodes explicitly. 
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" ± upon substitution of  Eq. (3.21) Eq. (3.18), and their formal expression in terms of  uij and u/j 

3rij=u'i~ + (ui~ )2/2Rij + h.o.t 

in this expansion are also all identical for all the reference states belonging to the family: 

tt 1 ~ / 2  tt2 
# ( { r } )  -  u,j + ( 4 / a ) u  o + : uij + ' "  • (8 .2)  

bonds 

For an unstressed network for which J~j - 0, the harmonic energy then looks completely identical 

1 it2 
5Jt'~ ~ uij (8.3) 

bonds 

for the expansion around any of  these reference configurations. The difference in the reference states 
only shows up when we express this in terms of  the single particle deviations in space u~,u: using 

Ulj = (~i -- Hj)" e i j .  (8.4) 

Because the vectors Ro are different for different configurations the explicit form of the expansion 
on the right 

1 l ff 1 off ~ ,,2 _ ~--~. ~. ~ ¢-~ ¢-~ .~. # ¢-~ ¢-~ "i Ui A i jA i j  -- ~ ( 8 . 5 )  Uiy -- 2 2:~  ui ujAijAij 
bonds i,j, ot~ i,j, ~# 

depends explicitly on the form of  the reference state around which one is expanding. 
The square lattice has the highest symmetry among all the configurations in its family. Because 

of  this the dynamic floppiness of the square lattice is intuitively obvious. The floppiness can be 
attributed completely to the soft shear lines shown in Fig. II.4 and the floppy zero-frequency modes 
are the transverse acoustic modes along the axis. In general, the other configurations in the family 
have no obvious geometrical symmetry. In general, they also have no straight soft-shear lines and 
the eigenmodes of Eq. (8.5) can no longer be determined from translation symmetry. They are, in 
general, complicated modes and not phonons. Nevertheless, all the reference states in the family are 
dynamically floppy and Eq. (8.5) always has the same number of  floppy zero frequency modes as 
the square lattice. 31 The zero-frequency eigenmodes for the expansion around a general reference 
configuration are complex and, in general, have no simple spatial interpretation. 

These considerations apply only when there are no stresses. One cannot make any similar general 
statements about the dynamical modes of  the stressed network. This is mainly because of the appear- 

± in Eq. (8.2). In addition, the bond tensions, 9-o, are constrained ance of  the transverse deviations ugj 
by the equilibrium conditions 

J 

Eq. (3.23), which are different for different reference configurations. 
It is instructive to single out the square lattice and investigate the effect of stresses on its floppiness. 

31 We shall prove this in Section 10. 
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Fig. 11.5. 

8.1.3. The stretched square foam 
If we want to retain the spatial symmetry of  the square lattice the only choice of  bond tensions 

is 

~Tj -- ~-. (8.6) 

This means that the lattice exerts an isotropic stress, a "network" pressure 

Pnet = --J-/a (8.7) 

or, equivalently, a normal force of  this magnitude per unit length on its boundaries. 
Consider the situation depicted in Fig. 11.5. A negative external pressure, Pext, exerts forces on the 

outer boundaries of  the square lattice in the direction shown. In equilibrium this will set up a positive 
tension J -  ( > 0 )  in the bonds which will exert an opposite force on the boundaries. Equivalently, 
the internal network pressure Pnet, created by the tension in the stretched springs is equal to the 
external pressure 

Pnet = Pext < 0. (8.8) 

The pressure inside the net, the pressure which acts on some internal boundary inside the net, Pint, 
is then 

Pint = Pnet = Pext. (8.9) 

In this scenario the internal stress is balanced by the external pressure on the boundaries. This is 
the situation one thinks of  intuitively. The network is stressed because of  external forces. 

Alternatively one could think of  a foam. No external pressure is then required to maintain 
mechanical equilibrium for a stressed net. 

Let the pressure of  a fluid trapped in the squares of  the square net be Pn~.  The forces ex- 
erted by this fluid on the external boundaries are exactly the same as those which would be 
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exerted by an external pressure --Pfluid ( =  Pext) acting on the outside. The same equilibrium tension, 
J- ,  is set up in the bonds of  the network by Pnuid and by an external pressure of the opposite 
sign. 

But the total internal pressure is different because both the network pressure Pnet and the fluid 
pressure pnuid act on any internal boundary. Thus 

Pint = Pnet + Pfluid (8.10) 

inside the foam. If, in particular, there is no external pressure then the total internal pressure must 
vanish 

Pint = Pnet + Pfluid = 0 .  (8.1 1 ) 

There is no real external pressure, no force on the external boundaries but the network is nevertheless 
stressed. 

Consider now the effect of  the network pressure on the rigidity. The part of  the mechanical energy 
which depends on the pressures can be written 

~x*elastic / 17 = 
scalar /"  pfluid(6V/V)fluid + Pnct "e~so + Pnet'ei2so, ( 8 . 1 2 )  

where 

els o = div u = (61V/V)net. 

Equilibrium with respect to the simultaneous volume change of  the two components 

(6VIE)fluid = (61 ElF)net ( 8 . 1 3 )  

requires Eq. (8.11) as an equilibrium condition when there is no external pressure. 
The network pressure, Pnet, is then responsible for a term in the elastic energy 

l 2 (~yUx):] (8.14) -~Pnet[(OxUy) + 

which is the only term which makes the network rigid for shears along the soft lines, ~xUy and ~yUx, 
for which there are no proper elastic constants - Eq. (8.1). Thus the foam, or the stressed network 
is no longer dynamically floppy. 

8.2. The three-dimensional cubic Bravais lattice 

In three dimensions only the close-packed face centered cubic (FCC) and the trioonal (HCP) 
Bravais lattices, both with 12 nearest neighbors, are rigid. In particular the nearest-neighbor sim- 
pie cubic (SC) lattice with 6 neighbors and even the n.n. body centered cubic (BCC) lattice 
with a coordination of  8 can be deformed continuously without changing the nearest neighbor 
distances. 

8.2.1. The simple cubic lattice 
For a cubic lattice there are always three elastic constants - two of them relevant to shear, ktT 

and #E -- Eq. (5.53). As we saw in Section 5.3.3.2 this is not changed by the Canchy relations. One 
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Fig. II.6. The BCC unit cell can be distorted by changing the lengths of the three edges without changing the distance 
from the center to the comers of the cell. 

of  these constants can vanish because of  floppy binding. We consider the nearest neighbor cubic 
lattices in detail to show how the softness is related to the elastic constant tensor. 

There is no shear rigidity in the 100 planes of  an S C  lattice with n.n. bonds because the bonds 
cutting these planes are perpendicular to them. This is completely analogous to the situation for 
the square lattice which we illustrated in Fig. 11.4. Using Eq. (5.21) we can calculate the elements 
of  the fourth rank elasticity tensor. All the bonds are along the 1 0 0 directions so that the only 
non-vanishing elements are 

D xxxx : D yyyy = D zzzz ~ O. (8.15) 

All the other elements of  the tensor I[DII vanish in close analogy to the square lattice - Eq. (8.1). 
In the notation of  Eq. (5.56) this means that one of  the three elastic constants for a cubic lattice - 

2 + e 2 )  _ vanishes namely #v, the coefficient of  (e2y + ey z 

#r = O, PE, K cx D xxxx # O . (8.16) 

It follows that the velocity of  sound for transverse modes vanishes along the 1 0 0 directions. 
It is straightforward to see that for this model the vibration spectrum is unusual. One can describe 

the vibration spectrum by three acoustic bands, each of  them polarized along one of  the three axes 
with frequencies 

(o9~) 2 cx 1 - c O S q a ,  a = x , y , z ,  (8.17) 

where we have taken the lattice constant as 1. It can be seen that the frequency of  the vibrations po- 
larized in the • direction vanishes in the whole plane q, = 0 and not only along the other two axes - 
~ ' #  • - for which it is transverse. The number of  zero frequency modes is therefore proportional 
to V 2/3 and not to V 1/3 as one would predict from the number of  obvious soft shear planes. 

8.2.2. The body centered cubic lattice 

The unit cell of  the n.n. body centered cubic BCC lattice can be distorted without changing 
the distance from the center to its bonded neighbors. Any transformation into an orthorhombic, or 
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tetragonal unit cell, with translations a, b and c along the axis and obeying the constraint 

a 2 + b e + C 2 = 1 (8.18) 

does this (see Fig. II.6). 
This distortion also implies a volume change because there are no solutions to 

a . b . c = l  (8.19) 

which also obeys the constraint (8.18). 
For BCC the bonds are all along the 1 1 1 directions. Thus, from (5.23), 

~ ,~=x ,y , z  (8.20) D ~ = D ~ # #  : D~#~# , 

so that 

#E ~ D ~ -- D ~/~ = 0, #T,K ~ D ~ # 0 .  (8.21) 

Thus the pure elongational shears along the cubic axis 

~u~ = - ~ u ~ ,  ~ # / ~ '  (8.22) 

have no restoring elastic constant but the n.n. BCC lattice is rigid with respect to a transverse shear 

 #fl 

and with respect to volume changes 

~,u, = ~u~ = ~ u r .  

Finally for the n.n. FCC lattice the bonds are in the 1 1 0 directions and therefore 

e # / ~  (8.23) D ~ = 2 D ~ # #  = 2D~#~/~ , 

s o  that  

#E OC D ~ - D ~ # 0 ,  #T ~ D ~ # O, 

In agreement with the symmetry analysis. 

8.3. Lattices with complex unit cells 

K c< D ~'~" + D ' ' ~  # 0. (8.24) 

8.3.1. The honeycomb lattice 
For the honeycomb lattice there are soft shear lines perpendicular to the three bond directions. 

We show this in Fig. II.7. 
Evidently there are no harmonic restoring forces for shear along the directions of the lines shown 

in the figures because the bonds cutting these lines are all perpendicular to the lines. Shear on these 
lines amounts to a rotation of  the bonds and there are no restoring forces. Since all lines of the 
types shown in the figures have no restoring force the transverse acoustic phonons along the bond 
directions have zero frequency and the transverse velocity of  sound must vanish in these directions. 
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Fig. 11.7. The obvious soft shear lines of the honeycomb lattice. 

We shall discuss the mechanical properties of  the unstressed honeycomb lattices in Section 11. 
We shall show there that this lattice is not only macroscopically floppy but microscopically floppy 
in spite of  the fact that it is locally rigid. We shall also show there that there is no shear rigidity in 
any direction which is not obvious from the above. 

8.3.2. The diamond lattice 
It is easy to see that the nearest-neighbor diamond lattice has no shear rigidity in the 1 1 1 planes. 

To see this it is convenient to think of  the diamond lattice planes as an AABBCC stacking of  
triangular planes perpendicular to the 111 direction - similar to the usual description of  the FCC 
closed packing of spheres. Since the bonds between pairs of  identical planes, AA, BB or CC, are 
along the 1 1 1 direction and therefore perpendicular to the planes - they have no shear rigidity. 
Evidently the same applies to the directions of  the other body diagonals. 

We will show later that this by no means exhausts the floppiness of  this lattice. We will show 
that this lattice is microscopically floppy and has no shear rigidity in any direction. 

8.3.3. The hydrogen peroxide lattice 
Something similar happens for the H202 (gyroid) lattice for which all the nearest neighbor bonds 

are in the 1 1 0 directions and some of the 1 1 0 planes are cut only by bonds perpendicular to them. 
Because of  the relative complexity of  these structures this is a little more difficult to visualize. There 
is no shear rigidity in the 1 1 0 directions and the velocity of  sound in these directions vanishes 
(Alexander Bruinsma and Hilfer, 1989). 

8.3.4. Complex unit cells 
We note that the honeycomb lattice, the diamond lattice and the n202 lattice all have complex 

unit cells. There are two vertices per cell for both the honeycomb and the diamond lattices and four 
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(or even eight) for the H202 lattice. This has to be incorporated into the microscopic computation 
of  the elastic constants. One cannot simply use Eq. (5.23) to calculate D when the unit cell is 
complex. 32 

If  one were to ignore the complexity of  the unit cell one would conclude from Eq. (5.23) that 
there is no difference between the elastic constants of the honeycomb and triangular lattices and 
of the diamond and BCC lattice, respectively, because for each pair the bonds are in the same 
directions. For H202 the conclusion would be that it is equivalent to FCC - Eq. (8.24). This is 
evidently wrong. When one investigates this in detail one can see that Eq. (5.24) is not valid 
for these lattices because the affinity criterion - Eq. (5.36) - is violated for the bonds connecting 
the different sites in the unit cell of  the floppy lattices - honeycomb, diamond and H202.33 The 
use of  Eq. (4.6) to obtain the continuum limit is therefore not justified. For these geometrically 
floppy models the relative motion inside the unit cell, the relative motion of the different atoms 
in the cell, is correlated and very different from the average strain. This results in a dramatic 
reduction of  some of the elastic constants. Because of  this we cannot evaluate the explicit microscopic 
expression for the elements of  the elasticity tensor using the standard expressions. We note that 
these are very simple examples where the non-affinity of the short range deformations, in response 
to imposed stresses, is important. In these simple situations this is an effect inside the respective unit 
cells. 

9. The bond counting inequality 

In Sections 3 and 7 we defined bonded networks and related them to the mechanical model which 
describes a physical system. This allowed us to introduce two distinct definitions of  rigidity. Geo- 
metrical rigidity (GR) in Section 7.2 and dynamical stability (DS) in Section 7.4. GR is a property 
of the graph, the bonded network. A bonded network is geometrically rigid if it becomes completely 
rigid when its bonds are made into rigid links. A bonded network which is not geometrically rigid 
is a geometrically floppy network (GFN). 

The precise criteria for the geometric rigidity of a bonded network are complicated and depend 
on the detailed structure of  the network when it is embedded in d-dimensional space - see, e.g., 
Dewdney (1991). 34 In this chapter we shall use some very general considerations to derive a very 
simple but general inequality for the number of  bonds in a rigid bonded network. This inequality, 
the bond counting inequality (BCI), is a necessary condition for geometrical rigidity. Networks 
with more bonds than required by the BCI may or may not be rigid - depending on their detailed 
structure but the bonding of  networks which violate the BCI is always inadequate. Such networks 
cannot be GR. They are always GFN and have free degrees of freedom (FDOF) which allow them 
to deform continuously without changing the length of  any of their bonds. We will then show that 
BCI is violated for many connected networks. 

32 We note that the two 3-D networks also have no center of  symmetry and the symmetry analysis of  the elastic constants 
in Section 4.3.3.2 is therefore incomplete. There are additional elastic constants. 

33 We shall show how this happens for the honeycomb lattice in Section 11. 
34 See also Sen et al. (1985) and numerous publications by Thorpe with collaborators. 
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9.1. Counting degrees of freedom and counting bonds 

9.1.1. The free degrees of freedom o f floppy bonded networks 
One can always parametrize an N-point configuration {r} in terms of  the distances between the 

points. We discussed this in Section 3. One then needs 

~i.t = d ( N  - l ( d  + 1 ) ) ~ d N  (9.1) 

distances, r,j, to fix the relative positions of all N junctions in d dimensions. One can also say 
that hint is the number of  internal DOF for a configuration of  N points in d dimensions. To fix 
the configuration uniquely any set of hint geometrically independent distances is sufficient. In d 
dimensional space all the 1N(N - 1 ) distances between N points are determined and can be calcu- 
lated once hint independent distances, {r}ind, are fixed, ni,t independent distances are also necessary. 
A smaller number of  distances, smaller than ~i,t, cannot determine the configuration of  N points in 
d dimensions completely. This is a purely geometrical statement. 

The number of  bonds in a specific bonded network, rib, is the number of  different distances which 
are needed to specify the energy and therefore appear in the se t  {r}bond. Since a network of N points 
can accommodate 1N(N - 1) bonds, ~b Can obviously be larger than hint (when N > d + 1 ). Since 
N - 1 ( <  ~i,t) bonds are sufficient to connect N points the number of bonds in a connected bonded 
network can also be much smaller than ni,t. The configuration of  N vertices, {r}, is determined 
by the nb bonds when the set of  bonded distances, {r}bond, - Eq. (7.4) - contains a subset of  ni,t 
independent distances {r}. The remaining distances which appear in {r}bo,d are then determined 
uniquely by these distances. 

A necessary condition for the existence of such a subset is obviously that the total number 
of bonds, ~b, is at least equal to the geometrically required minimum number 

~b --> ~i~t. (9.2) 

We shall call this inequality the bond counting inequality (BCI). It is a necessary condition for the 
geometrical rigidity of a bonded network. 3s 

A bonded network is always geometrically floppy when the BCI is violated 

~b < ~int" ( 9 . 3 )  

The network then always has free distances, DOF which are not determined by the bonded distances. 
When the number of  bonds ~b is tOO small the set of bonded distances 

= 

cannot determine the geometric configuration completely. To parametrize a definite configuration the 
bonded distances in {r}bo,d, have to be supplemented by 

~fre¢ ~ ~int --  ~b (9.4) 

additional distances 

{r} e , 2  v . . . , r , f =  = {rf, r-f,...,r), } (9.5) 

35 We note that Eq. (9.2) is not a sufficient condition for geometric rigidity because the ~ bonded distances can depend 
on each other. 
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which do not correspond to bonds. These additional distances are needed to specify the configuration 
completely but are not bonds of  the bonded network. The geometric configuration of the N atoms 
is only specified fully by ~int independent distances 

{r} = {{r}bond; {r}free} = {r l , r2 , . . . , rV , . . . , r  "~'} (9.6) 

but of  these only the ~b distances {r}bo,a correspond to bonds of  the network and appear as arguments 
in the energy. 36 

The ~int independent distances, {r}, which describe an N-point configuration cannot determine each 
other. It follows that each of  the ~f~c "free" distances in {r}free can be changed continuously over 
a finite range while keeping the ~b bonded distances in {r}bo,d and the ~f~e~- 1 other free distances 
in {r}~c - fixed. 37 This means that when nb is smaller than ~¢int there exists an n ~  dimensional 
continuum of configurations for every value of  the energy. Holding all the bonded distances in 
{r)bond fixed defines an nf~ dimensional surface ~({r}bo,d) in the space of  configurations, o({r}bond)  
is obtained by changing the free distances {r}~e while keeping all the bonded distances {r}bo,d 
fixed. A freely linked bonded network with rigid links will then be floppy and o({r}bond) describes 
the range of configurations into which it can be deformed. 

Since the energy only depends on the bonded distances which are held fixed 

g({r})  = g({r}bo,d) 

the energy is of  course also the same for all the configurations on the surface o({r}bond). 

9.2. Relating the bond counting inequality to the coordination 

One can relate the BCI for the whole network, the inequality (9.2), to the local coordination at 
the bonded junctions. 

Let bi be the number of bonds connected to junction i - its coordination number. The total number 
of bonds in the net, ~b, is related to the coordination numbers bi, and to the average coordination 
number, (b), through 

N 

~-~ bi = N (b) = 2~b . (9.7) 
i=l 

The factor 2 on the right appears because each bond is counted twice in the sum over junctions at 
its two ends. 

Combining Eq. (9.7) with the BCI, the inequality (9.2), and using Eq. (9.1) one can relate the BCI 
to the local coordination. ~b bonds can determine the configuration of  N junctions in d dimensions 
only when the average coordination number is large enough: 

(b) > 2d (9.8) 

which is another form of the BCI. 38 

36 In this equation and below we implicitly assume in our notation that the bonded distances are geometrically indepen- 
dent. This is just to avoid repetition of  the distinction between the bonded distances and their independent subset. 

37 The range is determined by geometrical constraints - which can be expressed as inequalities between the distances. 
3s For macroscopic systems the number of  rigid-body degrees of  freedom, ~ig (=  ½d(d+ 1 )), is a small number compared 

to Nd and can therefore be neglected. 
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These elementary geometric considerations tell us that in three-dimensions one needs at least 
six bonds per junction, on the average, and in two-dimensions at least four bonds per junction to 
determine the equilibrium configuration, {R}. 

When the average number of bonds per site, (b), is smaller than required by the inequality (9.8) 
the network is always geometrically floppy. The reference configuration {R} (or, equivalently, {R}) 
then also belongs to a continuum of equivalent equilibrium configurations all having the same bonded 
distances {R}bond. There exists a continuous ~free dimensional manifold of  configurations 6({R}bond) 
which all have the same energy and the same bonded distances and are therefore in a sense equivalent 

- but are nevertheless different configurations, {R), {R}, of  the network. 
The fraction of  DOF which is free in a floppy network is 

rg~e >_ ~f~e/~c > 1 - ((b)/2d).  (9.9) 

This means that the number of  FDOF, n~e, becomes large and extensive - proportional to N - when 
the average coordination, (b), is smaller than 2d. For macroscopic systems, in the limit N ~ oo, there 
is then a finite fraction of FDOF. This implies that such a network is necessarily microscopically 
floppy. 

9.3. Locally rigid floppy networks 

9.3.1. Definition 
It is easy to visualize the high concentrations of  FDOF predicted by Eq. (9.9) when the network 

is not locally rigid so that the position of some atoms is not fully determined by the rest of  the 
bonded network. The tree depicted in Fig. 11.3 has many singly connected dead-ends which obviously 
have some free atomic DOF. In three-dimensional space an atom in a linear chain (Fig. 11.2) is also 
insufficiently bound and can move freely in the direction perpendicular to the plane of its two 
bonds. 39 A finite concentration of  such local FDOF can appear in many different ways and is 
almost trivial. It is therefore important to show that the BCI is a much stronger condition than this 
and can be violated even when all the atoms are in locally rigid positions. 

The inequality (9.8), the local form of  the BCI is in a way a strange result and seems counter- 
intuitive. In d dimensions each vertex, i, has only d DOF and local rigidity therefore requires only 
d bonds at a site 

b / >  d for all i .  (9.10) 

In d dimensions the position of a point is fully determined by its distances from d other points to 
which it is directly bonded. Eq. (9.10) is the condition that the local coordination is sufficient for this. 
Because of  this the local equilibrium conditions at a site, Eq. (3.29) amounted to d equations per site 

- rather than 2d - and the local stability requirement - Eq. (7.17) - also involves only d equations. 
The fact that 2d bonds are needed at each vertex, on the average, is a collective, global requirement 

and not a local one. Any specific single site can be in a rigid position when it is connected by only 
d bonds but the whole N-particle configuration cannot be geometrically rigid if the average number 
of  bonds at a site is less than 2d. 

39 Such atomic freedom occurs for singly bonded sites in both two and three dimensions and for sites with only two 
bonds in three dimensions. The insufficiently coordinated atom then has some freedom to change its position without 
changing any of the bonded distances. 
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Fig. II.8. The position of the central black atom in the plane is determined by the positions of its two bonded neighbors. 

The BCI is violated for many connected network structures which are locally rigid. For such 
networks there are enough bonds for local rigidity at all the junctions, Eq. (9.10), but the average 
coordination is still too low for the BCI rigidity criterion for the whole network - Eq. (9.8) - so that 

2 d > ( b ) .  (9.11) 

We shall call networks for which the two inequalities (9.10) and (9.11) hold simultaneously as 
locally rigid floppy networks (LRFN). The FDOF for LRFN are all collective. No single atom is 
free to move alone. The network has only collective free DOF which require the coordinated motion 
of many atoms. Some LRFN are very familiar. 

9.3.2. Locally rioid floppy networks with d bonds 
d is obviously the absolute minimum for the average coordination in a locally rigid network. When 

the positions of all the neighbors to which a junction is connected are fixed d bonds are sufficient to 
determine a rigid position, d bonds can fix all the d DOF of  the junction, d dimensional networks 
with this minimal coordination number at all their vertices 

bi ~- d (9.12) 

exist. They even appear naturally in many models for rubbers and gels. Thus, e.g., the natural 
coordination for percolation is three and one does not require a higher multiplicity for the branching 
of  a chemical gelation process in 3-D. 

9.3.2.1. Doubly coordinated LRFN in two-dimensions 
If a junction is connected by only two (--- d)  bonds in two dimensions its position, Ri is fixed by 

the bonds. The junction is at the apex of a triangle - Fig. 11.8. 
Clearly the black atom is in a locally rigid position. Its position is fixed if the bonds are rigid. 
We just note that the conditions for simultaneous dynamical stability and equilibrium are marginal 

for such local configurations. One has to satisfy two sets of  conditions - d equilibrium conditions 

~--~ =0 
J 
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c d 

Fig. II.9. Collective freedom of a locally stable configuration. 

and d local stability conditions - Eq. (7.16). When the two bonds are not collinear one can only 
have mechanical equilibrium when the bond tensions in the two consecutive bonds, Rig and Rjk 
vanish. When there is any stress the bonds have to be collinear but then one cannot satisfy the d 
local stability conditions in the transverse direction. 40 

The only connected network one can construct with the bonding condition 

(b )=bi=2  

is a freely linked linear chain as in Fig. II.2. Such a chain can be folded to cover the plane. Because 

(b) : 2 < 4  

the linear chain is obviously floppy. Thus the linear chain in the plane is a LRFN. 41 
The freely linked linear chain with rigid links is obviously not geometrically rigid in the plane. 

It can be deformed without changing the lengths of  any of  its bonds. Since the chain is locally 
rigid the deformations must all be collective. It provides an extreme, and rather trivial illustration 
of  a LRFN. 

The smallest free DOF of  the linear chain involves four points. This is the correlated motion of  two 
consecutive vertices when all other vertices, and all bond-lengths, are kept fixed. We describe this 
in Fig. I1.9. 

Assume the vertices "c" and "d" are fixed. The remaining two vertices, "a" and "b", are both in 
locally stable positions in the plane. If we fix "b" the position of  "a" is fixed and vice versa. There 
is however one collective FDOF which keeps the three distances [ac], [ab], and [bd] fixed. In this 
collective mode the points "a" and "b" move tooether along the indicated arcs which are centered 
at the points "c" and "d", respectively - while keeping their distance, lab] fixed. 

It is easy to see that this collective freedom is that of  a quadrilateral in the plane. For a quadrilateral 
d = 2 and N = 4 so that 

hint ---- 2" 4 - 3 = 5. 

40 The generalization to three-dimensions is obvious. 
41 Intuitively one would probably not think of the linear chain as a proper two-dimensional network suitable for describing 

a rigid solid. We note however that in many contexts in polymer physics freely linked random-walk chains do behave as 
rigid bodies - not only in two-dimensions but also in 3-D. 
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Fig. II.10. Minimally coordinated locally stable position in three-dimensions. 

One needs five distances to fix the configuration of  the four points "a", "b", "c", "d". There is 
therefore one FDOF when only four distances ([ab], [bd], [dc], [ca]) are specified so that ~b=4 .  

9.3.2.2. Three-coordinated L R F N  in three dimensions 
A three-coordinated junction i can only be in a locally rigid position in 3-D at the apex of  a 

triangular pyramid formed by the three bonds - Fig. II. 10. 
The linear chain seemed rather artificial as a network describing a solid. In contrast to this, three- 

dimensional lattices with a bonding coordination of  3 can be constructed and some of  them are even 
observed. 

Several periodic cubic space groups suggest structures with this coordination. In the cubic space 
groups No. 1 9 8  (P213, T4), 199 (I213, Ts), 205 (Pa3, T6), 206 (Ia3, T 7) and 230 (Ia3d, O~ °) the 
Wyckoff points in the unit cell with the highest symmetry have a single 3-fold axis (Henry and 
Lonsdale, 1952). All these space groups therefore allow one to construct lattices - bonded networks 
with 3-fold coordination - by connecting each of  these high symmetry Wyckoff points to three 
symmetrically located neighbors of the same type. A fairly common example which appears in 
various contexts in the real world is the hydrogen-peroxide, H202 structure (space-group 230) which 
consists of two interpenetrating three-coordinated cubic networks related by an inversion. For the 
lattices of  this type whose observation we are aware of  the three bonds connected to any specific 
junction are coplanar, and these are also the structures one constructs naturally from the space-groups 
- or otherwise (Alexander et al., 1989). One notes that while such structures are locally rigid they 
are not linearly stable when the bonds are not stretched in the reference state. Perpendicular to the 
plane of  bonds the leading restoring potential is fourth-order. 

9.3.2.3. d-Coordinated L R F N  in d dimensions cannot support stresses unless they are pre-stressed 
We note an amusing dynamic peculiarity of  locally stable networks with the minimum coordination 

d - in any dimension. 
For a coordination of  d in d-dimensions there is a problem in reconciling the local equilibrium 

conditions with the local linear stability. 
(a) Local stability requires that the d bonds point in d linearly independent directions. This is 

necessary if one wants the matrix K;i defined in Eq. (7.10) to have d non-vanishing eigenvalues. 
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(b) This geometry is consistent with mechanical equilibrium at the same junction only when there 
is no tension in the bonds. One cannot satisfy the d-dimensional vectorial zero-force condition of  
Eq. (3.29) 

Z J J" = 0 
J 

at a vertex connected by bonds in d linearly independent directions unless all the bond tensions 
vanish 

~j=0. 

Thus the linearly stable structures of  d bonds in d dimensions cannot maintain stresses. 
When there is tension in any of  the bonds the vectorial equilibrium requirements can be satisfied 

only when the directions of  the d bonds are not linearly independent. The bonds must then be 
collinear in 2-D or coplanar in 3-D. But stresses will always appear when external forces are applied. 
There must then be tension in some bonds. The implication is that some pyramids must collapse 
into coplanar or collinear configurations. Even an isotropic compression - a uniform dilatation of  all 
the bonds - is not consistent with local mechanical equilibrium. 

In defining the Born-Huang approximation we did of  course neglect the bond tensions, Eq. (5.3). 
But one would like to regard this as a convenient approximation rather than as a structural require- 
ment. The above argument shows that BH unstressed LRFN with the minimum coordination d are 
not really consistent stable mechanical networks. 

9.3.3. L R F N  with d + 1 bonds - the Hilbert networks 
Networks with 

b i - d +  1 (9.13) 

are much more common and well known. In many physically important situations one is also inter- 
ested in binary interactions with no minimum for which one cannot set the bond tensions to zero. 
Examples of  this are bonding by polymeric chains which are attractive at all distances - as in 
polymeric networks; electrostatic interactions - as for example in Wigner lattices and ionic crystals 
and "packing" problems with purely repulsive short range interactions. In all these cases the bond 
tensions cannot vanish and one needs at least d + 1 "bonds" to allow the simultaneous establishment 
of  local equilibrium and local stability. 

The local coordination condition - Eq. (9.13) - is known as the loosest packing condition of  
Hilbert. It was invoked by Hilbert for the study of  the dilute packing of  spheres. In this context 
the implications have been studied extensively (Hilbert and Cohen-Vossen, 1932, 1952; Heesch and 
Laves, 1933; Melmore, 1942, 1948). 42 

In two dimensions a junction inside a triangle and bonded to the three neighbors at the vertices 
of  the triangle is in a locally rigid position in the plane - Fig. II. 11. 

42 These papers search for dilute packings which satisfy the Hilbert local stability requirement at all sites. The possibility 
that such packings could still be collectively floppy is not discussed. It is evident from our discussion that all the packings 
generated (and referenced above) are LRFN, i.e., they are all floppy packings. This has interesting implications for the 
loose packing problem which we shall discuss elsewhere. 
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Fig. II.11. Locally stable Hilbert position in 2-D. 

Fig. II.12. Hilbert position in 3-D. 

The same holds, in three dimensions for a junction inside a triangular pyramid and bonded to its 
four vertices. We illustrate this in Fig. 11.12. 

Locally stable extended structures with d + 1 bonds per atom for all junctions are quite common 
and familiar in both two and three dimensions. The simplest and most symmetric illustrations of 
such structures are the honeycomb lattice with nearest neighbor bonds in two-dimensions and the 
diamond lattice in three dimensions. In both two and three dimensions one can construct an infinite 
number of  other less symmetric arrangements even if one insists on the strong constraint bi = d + 1 
for all sites. One can, e.g., introduce dislocation pairs - rings with less and more than six junctions 
into the honeycomb lattice. This keeps the coordination number but requires a distortion of  the bond 
lengths and of the angles between bonds. 

Here we shall only discuss the geometric floppiness of the honeycomb lattice which is relatively 
easy to visualize. 

9.3.4. The 9eometric floppiness of the honeycomb lattice 
The honeycomb lattice is an example of  a d + 1 coordinated LRFN in d dimensions. It has 

a coordination of  3 ( = d  + 1) at all its vertices. Having a coordination of  3, instead of  the BCI 
1 requirement 4 (=2d) ,  means that one misses ~ a degree of freedom per site. One quarter of  the 

DOF are free. 
Consider the network in Fig. II. 13. We construct the nearest neighbor honeycomb lattice by suc- 

cessively adding vertical columns as indicated by the numbering in the figure. Constructing each 
column amounts to adding "dumbbells" attached at the relevant positions in the previous column. 
In constructing such a column each "dumb-bell" - indicated by the color scheme and heavy connect- 
ing line - separately has the 4-point collective freedom we described in Fig. II.9. It can be shifted 
and rotated over a considerable range without changing the lengths of the two bonds connecting it 
to the previous column. Thus, having fixed column n there is still one FDOF for each dumbbell in 
the next column n + 1. This amounts to one FDOF for every 2 points as required by the BCI. 

In general the collective degrees of  freedom corresponding to the FDOF of  LRFN can be very 
complex. It is therefore difficult to visualize them even for simple periodic lattices like the diamond 



S. AlexanderlPhysics Reports 296 (1998) 65-236 151 

Fig. II.13. Microscopic freedom in constructing the honeycomb network by rows. 

lattice and certainly in general. The violation of the BCI proves that they must be there even when 
this is not intuitively obvious. 

9.4. Marginal bondin9 and macroscopic floppiness 

In Section 8 we described some examples of  networks which were only macroscopically floppy - 
the nearest neighbor square lattice in two dimensions and the simple and body centered cubic lattices. 
The only floppiness of  these lattices is the floppiness of  their macroscopic boundaries. The boundaries 
can be deformed freely over a considerable range without changing the lengths of  any bonds but this 
exhausts their floppiness. Once the form of the boundary is fixed the network becomes completely 
rigid and all positions are determined by the bonds. 

We called this purely macroscopic floppiness. 
Macroscopic floppiness is not just a peculiarity of these very symmetric and almost trivial floppy 

networks. One expects it to be a fairly general property of  bonded network with the marginal 
coordination required by the BCI. 

For simplicity consider an infinite bonded network constructed with the marginal coordination for 
rigidity 

bi = 2d (9.14) 

at all sites. We also assume that this network is embedded in space uniformly so that the bonds 
are all reasonably short range. We now make a finite network by cutting out a piece of  this infinite 
network. We cut all the bonds which cross the boundaries and connect the finite network to the rest 
of  the infinite network. This creates sites with a coordination smaller than 2d near the boundaries. 
Like the simple examples of  Sections 8.1.1 and 8.2.1 such a network has a number ocN ~-(1/d) of 
free DOF and it becomes completely rigid when the positions of  the boundary atoms are fixed. Thus 
all the floppy modes must be macroscopic collective modes. 
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Our argument shows that macroscopic floppiness is closely related to marginal bonding and seems 
to follow from it at least qualitatively. The number of FDOF is then proportional to the surface area. 

10. The free eigenmodes of floppy networks 

10.1. The harmonic energy o f  floppy networks 

The energy of a bonded network depends only on the bonded distances {r}bon d 

~({r}) = ~({r)bond) • 

The energy can therefore be expanded in the deviations of the bonded distances {~r}bond, from 
their reference values (R)bon d 

g({r}bond)--g({R}bond)=Zbonds ~ 6r i j+~  [~rijOrt----~kjbrij6rlk+'". (10.1) 

This differs from Eq. (3.18) only in the restriction of the summation to bonded distances. 
Only ~b (< ~i,t) independent variables appear in the expansion of the energy g({r}) - the changes 

in the ~b bonded lengths, {6r}bond. This is equivalent to saying that in the space of distances [~] - as 
functions of the ~ind independent distances {r} which determine the configurations - the expansion 
of the energy is confined to the subspace spanned by the bonded distances [~]bo,d. The expansion 
Eq. (10.1) has no components in the complementary free space [~]free with coordinates {r}f~e on 
which the energy does not depend. 

The changes in the bonded distances, 6rij, are however not the variables one really wants. We 
have to map the expansion in [~], Eq. (10.1), into the Nd dimensional space of single particle 
deviations, [q/I, defined in Eq. (7.8) and this mapping is nonlinear. One has, as in Eq. (3.21) 

,, (u )2 
6rij ~- u~j + ~ + h.o.t. 

t/ The Ugj are the lowest order terms in this expansion. As we saw in Section 5 this means that in 
the Born-Huang approximation, when there are no stresses, the harmonic, second order expansion 

l/ of the energy in the components of the u~ can be written as an expansion in the uij only. Thus the 
harmonic Cauchy energy becomes 

~?h 1 l ~ ,,2. ~-'~ (~ ij" (10.2) = uq ) 
bonds 

and in general 

1 ~ " ~ r X  .x~" it2 l/ It X.JJ" It , , .  (10.3) 
gh H : "~ 2 . . ¢  ( 2 ~ i jUi j  "~- ~ , j k U i j U i k  "Jff ~ ~ ij, k lUi jUkl  ) 

- bonds 

which differs from Eqs. (5.8), (5.11) and (5.13) only in the restriction of the summation to bonded 
distances. The mapping of the expansion of the energy from the expansion in distances, that is in 
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{9~}, Eq. (10.1), to the expansion in the vector deviations ui in the space {q/}, Eq. (10.3) is then 
linear to the order required 

3 r i j  ::~ U ' i j = l t  i . R i j  - u j  . R i j  . (10.4) 

When there are no stresses the nonlinearities in the expansion of  the 6rij, Eq. (3.21), do not show 
up in the construction of the harmonic expansion in the components of  the u~. The nb variables u~ 
simply replace the ~b variables firiy. The result is that the expansion in the space [ad] is confined 
to an nb dimensional subspace of [q/], [ad]b defined by the u~ via Eq. (10.4). The complementary 
subspace of  [~], [q/]~e describes free eigenmodes with no restoring force, Eq. (7.15). We want to 
show this by constructing the subspace [q/]b and its complementary subspace [~//]f,e~. 

10.2. Decomposing the vector space [~]  

10.2.1. The bonded subspace [ ~ ] b  

Define the Nd dimensional vector (Rij] 

(R,j] = (0, 0 , . . . ,  i~iy, 0 , . . . ,  -i~,-j, 0 . . . .  ] (10.5) 

so that the unit vectors Riy and -Ri j  appear in the positions i and j respectively. 43 We can then 
It write the longitudinal deviations uij as 

( U ] [ k / j )  = U i • e i j  - -  u j .  R i j  = u'ij . (10.6) 

Using this notation the harmonic Cauchy energy cKh, Eq. (10.2), can be written 

Th 1 
= = = ½(ullKcllu), (10.7) 

bonds 

where the Cauchy dynamic matrix is 

IIKcll--   ,jllEk;y) • (Rij]I[. ( 1 0 . 8 )  
bonds 

More generally, from Eq. (10.3) the general Born-Huang dynamical matrix is 

1 ^ 1 ^ KBH : ~ ( ~ i j [ k i j )  * (Ri j ]  -Jr- ~ i ,  jk[Ri j )  * (eik] -~ ~d~ij, kl [Ri j)  * (ekl]) • (10.9) 
bonds 

There are ~b vectors (Rij] in [q/] defined by the ~b vectors eij ( = e i -  e j )  for all the bonds 
[i j] in the realization {R} of  the bonded network which serves as a reference configuration. The nb 
vectors (Ro] span a linear subspace of  the Nd dimensional space [ok'] - the bonded subspace [q/lb. 
The dimension of  this subspace is at most rib. It has this maximum dimension when all the vectors 
(eij ] are linearly independent in [~]. 44 

43 We note that the vectors [Ri~) for different bonds are not orthogonal to each other when the bonds have a common 
vertex because (Rij][Rik) = Rij. R~k which, in general, does not vanish. 

44 In general the vectors [Rij) are all linearly independent in [~/] when the ~b distances Rij, are geometrically independent 
distances. Exceptions to this are singular reference states of the type we discussed in Section 5.2.3.1 for which the 
dimension of [~']b is reduced. 
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It follows from the form of the dynamical matrix, Eq. (10.9), that it only has elements between 
vectors belonging to the subspace [q/lb. KBH operates only inside the bonded subspace [q/]b or, 
equivalently the harmonic expansion of the energy is defined completely in this ~b dimensional 
subspace. The rank of the dynamic matrix KSH is ~b and it therefore cannot have more than ~b 
eigenvectors with non-vanishing eigenvalues, x ~. 

10.2.2. The  f r e e  subspace  [0-//]fre e 
Consider the vectors [uf~ee) in [q/] which are orthogonal to all the bonded vectors (l~0]. These 

vectors are defined by the nb equations 

(k,2] [uf~e ) ---- 0 (10.10) 

for all the bonds. The solutions of these equations are 

~tfree ~ ~int - -  ~¢b (10.11) 

linearly independent vectors [ u ~ )  which define a linear subspace [q/]fr~e of [q/]. This subspace is 
complementary to [q/]b: 

= [ U]b X 

It follows from Eq. (10.10) and the definition of KBH, Eq. (10.9), that 

KBa [ Uf~ ) -- 0 (10.12) 

for all the free vectors [u~e~) which satisfy Eq. (10.10). All the deviations described by vectors in 
[q/]f~ are eigenvectors of KBH with zero eigenvalue and there are ~f~e such eigenmodes. 

We can make this somewhat more intuitive. A vector in [o//]f~ describes a deformation mode for 
which 

I I _ _  u o = 0  (10.13) 

for all bonds. The relat ive  deviation of the two ends of a bond in a free mode, [uf~e), is perpendicular 
to the direction of the bond 

ui~e. R o = O  (10.14) 

so that 

u ~ ' R i j  fr~ U~ ec U~ c ± (10.15) = u) • R e , = + u o , 

where u~ ~¢ is the deviation of site i in the free mode, [uf~,). 
This means that each bond can undergo a rigid translation and a rotation described by a transverse 

relative deviation. This is of course just the requirement that the lengths of the bonds do not change 
to lowest order. Our argument demonstrated that for floppy networks one can indeed construct nf~ 
such modes. 

We have thus shown that for unstressed floppy networks there are always (at least) ~¢int--~b (~_~¢tfree) 
independent free eigenmodes with no restoring forces. By Eq. (9.8) this means that there are at least 
½(2d-  (b)) free modes per junction. 
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10.3. The free eigenmodes 

10.3.1. The linear stability o f  the free modes 
We defined the free subspace [~/]f~ from the requirement that for functions belonging to this 

space the u~. vanish for all bonds, Eq. (10.13). For a BH reference state modes defined by vectors 
in this subspace are all degenerate and have no restoring forces, Eq. (10.12). The motion of  a bond 
in a free mode is always a combination of  a rigid translation of  the bond and a transverse relative 

± When motion of  the two ends uij. 

± 
uij - 0  

for all the bonds the "free" mode reduces to a rigid translation of  the whole network. 
This immediately shows that the modes are no longer free when the network is stressed. We saw 

in Section 6 that when there are stresses in the reference state a stress induced contribution 

8't~({R}) -- ~ 3-~J({R})(u~)2 (10.16) 
bonds Rij J 

appears in the harmonic expansion in addition to the BH terms derived from the dynamic matrices 
(10.8) and (10.9). The stress induced terms will of  course affect all the eigenmodes but they are 
completely dominant in the free subspace. For modes in this subspace the harmonic force constant 
x fr~ vanishes with the bond tensions ~rij 

xr~c¢ : x~ ( { ,~ . j } ) ,  x~c({O}) = O. (10.17) 

The force constants for the free modes, xfr~({9-~j}), all vanish for a Born-Huang reference state 
- i.e., when there are no bond tensions. When the network is stressed the initial bond tensions can 
remove the degeneracy of  the free modes. In general, some of  them will end up as stable modes 
with positive force constants 

while for others 

so that the modes become linearly unstable and will tend to buckle. 

10.3.2. Anharmonic terms 
The transverse deviations of  the bonds, u~, also appear when one goes beyond the harmonic 

expansion - in the anharmonic terms - even when there are no stresses. There are, e.g., anharmonic 
terms in the expansion of  the BH energy in which u~ appears, such as 

~ i j ~ 4 ~ i i j  uij + ~ , ]  ----,~ijui 7 + -~ij uijuij -t- ~ i j  uij . (10.18) 

Like the stress induced terms in Eq. (10.16) the anharmonic terms in Eq. (10.18) also appear 
because the expansion of  the 6r u is nonlinear and not because of  intrinsic nonlinearities of  the 
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interactions. 45 These terms all result from the mapping of  the harmonic, second order terms in the 
expansion in the bond lengths - Eq. (10.1). 

Thus the "free" subspace [q/]f~ee, is only linearly free even when there are no stresses. There are no 
harmonic restoring forces for the free modes in the BH approximation when there are no stresses. 
The dynamics in this subspace is dominated by stresses, Eq. (10.16), or by anharmonic terms, 
Eq. (10.18), even when their coefficients are small. The free modes of geometrically floppy bonded 
networks can be stabilized (or destabilized) by stresses and are always bounded as anharmonic 
modes. 

10.3.3. An example o f  a collective free mode 
We illustrate the nature of  these collective free modes by considering the free mode of  the four- 

point configuration of  Fig. 11.9. 
The deviation of  the point a has to be normal to the vector (ca) and therefore of the form 

(sin c) 
u~ = u~ - cos ~bc (10.19a) 

and similarly 

( sint~d 
ub = Ub -- COS ~ba J (10.19b) 

using the notation of  this figure. To assure that the collective mode does not change the distance 
between the points a and b the components of  these translations parallel to the vector (ab) 

u'~' = u~ sin(~bc + ~a),  Ulb t = ub sin(~d + t~a ) (10.20) 

have to be equal to each other 

,, ua _ sin(~bd + ~b~) (10.21) 
da' = Ub ' Ub sin(tk~ + ~b~) " 

A mode of the form (10.19) with the relation (10.21) between the two amplitudes has only 
second order effects on the three lengths. The mode is therefore linearly free when the bonds are 
not stressed. 

10.4. Geometrical description 

We can express this in a more general formal way. 
In Section 9.1 we defined the nb dimensional manifold of bonded configurations ~({r}bond) in the 

space of configurations {~}  by the requirement that the bonded distances {r}bond are the same for 
all the configurations belonging to the manifold o({r}bond). In particular the reference configuration 
{R} then belongs to a bonded manifold ~({R}bond) defined by the parametrization 

{r)={{R)bond; {r)fme ) . (10.22) 

45 But they obviously appear even when there are no stresses. 
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erence configuration {R},  { . }  = 0 

b°nd(~ I space {u}~°~ ~ ' ~  

Fig. 11.14. The hyper-surface o({r}; {R}bond) and its linear tangent space at {R} - [q/]f~. 

In the physical space of  vectorial deviations around the reference state {R} - the space [q/], 
Eq. (7.8) - the bonded distances {R}bo,a define an nb dimensional hyper-surface o({r}; {R}bond) by 
the equations 

{r}~nd({R}) = {r}bond({I R + u l } ) =  {R}bo.d (10.23) 

or explicitly as an expansion at {R} 

2 t /  tt2 12 
(Ri j  + uij) 2 - Rij = 2Rjjuij + uij + uij = 0 .  (10.24) 

Each point on the hyper-surface o({r}; {R}bo~d) describes a different configuration 46 of  the N ver- 
tices. All these states have the same bonded distances and identical energies. The specific config- 
uration {R} - the specific reference state we have selected for our expansion is described by the 
point 

u : O  

on o({r}; {RIbo,d). 
The condition that the bonded distances do not change to first order, Eq. (10.14) 

f~e. Rij = 0 uij 

defines [ql]f~ as the linear space tangent to the curved hyper-surface o({r}; {R}bo,d) at the point 
{R} ({u} = 0). We illustrate this schematically in Fig. II.14. 

It is evident from Eq. (10.24) which defines the surface o({r}; {R}uo,d) that the u~ correspond to 
± to deviations tangential to it. Thus the condition deviations which are normal to the surface and the uij 

(10.14) which defines the free subspace [0//]f~, can also be considered as defining the tangent space 
to a({r}; {R}uo.~) at {R}. This is a direct generalization of  the description of  the effects of  rotational 
invariance on the single spring in Appendix B, Fig. B.1. In that case the surface o({r}; {R}bond) 
reduces to the hyper-cylinder 

(¥1  - -  r 2 ) 2  -~- r 2 = const.  

46This includes the trivial states related to {R} by the global rigid-body translation-rotation symmetry. But 
a({R}; {r}bo,d) also describes the effect of the large group of local gauge symmetries of the geometrical floppiness. 
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The unstressed harmonic expansion at R is an expansion in u" and is therefore confined to the 
normal for every point on the hyper-cylinder. The components in the direction of the tangent, u~, 
are free. They only appear in the harmonic expansion of the energy when the spring is stressed, 
Eq. (10.16), and in the anharrnonic higher order terms in the expansion, Eq. (10.18). 

For a single spring the "free modes" are of course simply the "rigid body" modes related to the 
overall translation-rotation symmetry of the pair. The generalization to a tenuous net of N particles 
is more subtle and is not related to any such simple symmetry. Our derivation shows however 
that the appearance of free modes in floppy networks is just another aspect of the same type of 
symmetry. One could say that for floppy nets the underlying gauge symmetry, the product of the 
translation-rotation symmetries of the separate bonds is not fully suppressed by the interconnections. 
This quasi-rotational symmetry disappears when the network is stressed. 

11. The vibrations of the nearest neighbor honeycomb lattice 

Our results in Section 10 were quite general. We showed that geometrically floppy networks 
must have free eigenmodes when they are not stressed. It is useful to show how these predictions 
are confirmed in a specific but not quite trivial example. Showing this is quite straightforward for 
simple networks which are periodic lattices. For such networks one can use the periodicity to solve 
Eq. (10.10) and thus compute the free eigenmodes explicitly. We shall demonstrate this for the 
honeycomb lattice with nearest neighbor interactions. Since the coordination of this lattice is three 
one misses half a degree of freedom per site and this is therefore the number of free eigenmodes 
one predicts. 

11.1. The free librations of hexagons 

Because of the simple geometry it is easy to visualize free eigenmodes for the honeycomb lattice. 
We have indicated a free mode - the torsional motion of a rigid hexagon - in Fig. 11.15. 

All the atomic motions of the torsional libration are transverse to the bonds connecting the hexagon 
to the rest of the lattice while the bonds belonging to the hexagon itself experience a motion which 
is a combination of a translation and a rotation. Thus the change in the energy of an unstressed 
bond in the libration is purely anharmonic because for all bonds 

uo=O and therefore t$~ij=J~iijrr~= "¢,~.(u~)4 " ~'J 4R~ +h.o . t .  

for the libration. There are no harmonic restoring forces for these librations in the unstressed network 
so that the librations are free eigenmodes. We note that the anharmonicity is a geometric effect. 
We have only expanded the potentials ~ to second order around their equilibrium separation. It is 
only the fact that the network is floppy which causes the librational modes to become anharmonic. 
When there is stress a harmonic term 

J,j rij --  (u )2 
2R o 

appears in the bond energy. 
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Fig. II.15. The free librations of the honeycomb lattice. 

It is easy to see that the librations of  different hexagons are not mutually orthogonal eigenmodes. 
They are however linearly independent and their number is the number of  FDOF. Each atom belongs 
to three hexagons and there is therefore half a hexagon - and consequently half a libration - per 
site in the honeycomb lattice. 

11.2. The dynamical matrix 

Because of the high degeneracy of the free vibrations their description as librations of  hexagons 
is of  course not unique. Instead of  looking at the librations we can calculate the free eigenmodes 
of  the honeycomb lattice directly in the usual way by Fourier transformation. The free eigenmodes 
must then appear in the calculation as zero-frequency vibrations. 

We shall show that for each wave-vector q in the Brillouin zone there is one free mode. This is 
the difference between the number of DOF in the unit cell - four - and the number of  bonds in the 
unit cell - 3.47 

There are three types of  bonds in the honeycomb lattice, 

b l = ( 0 , - 1 ) ,  b2- - ( -~  -~ ,1 ) ,  b3--(-~---3, 2,2,,!~ ( l l . 1 )  

and two sites per unit cell marked "+"  and " - "  in Fig. II.16. We have chosen the vectors in 
Eq. (11.1) so that the b~ always point from a site of  type "+"  to a site of  type " - "  

We write for the four-dimensional vector of  amplitudes belonging to the wave vector q 

[u¢ ) = [u +, u~- ) ,  ( 11.2 ) 

where 

Y v = (~q, r/q), v = +,  - uq 

is a two-dimensional polarization vector for the site v. 

47 This result applies to any periodic but geometrically floppy lattice. 

(11.3) 
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Fig. II.16. The three bonds bi,b2, and b3, and the two sites + and - in the unit cell of the honeycomb lattice. 

V The vectors Uq are defined as 

uq = ~ u" Ve'q R' , (11.4) 
i 

where R i'v is the position of  the vertex (i, v) in the cell i. They are related to the deviations at the 
sites by 

14i'v= Z U~ e-iq'R`''" (11.5) 
q 

Thus one has 

u','~ ~ = (u~  - 
+ , - -  

,,~). b~ = ~ e-iq"'[,D,i, b~] ,  
q 

where [~] and [~] are the two ends of  a bond 

Ri+ = R i , R j_ = R i + b~ 

and the complex vector 

). + _ e-iq'b~147 14q : Ilq 

describes the deviation across the bond 2. For the whole lattice this gives 

Z ~(u"~ + _  )~: ~ t,,~,f ~1 r.~-,, ~l- 
q 

(11.6) 

(11.7) 

(11.8) 

(11.9) 
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In analogy to the definition of  the vectors (Ru] in Eq. (10.6) we define the three four-dimensional 
vectors (b~] 

( b  q] =(b~,-e- iq ' }~ba] ,  2 =  1, . . . ,3  (11.10) 

which gives Eq. (10.7) as a sum 

+-  - -  y ~ y - ] ( u _ , ] l l [ b T ' ) , ( b ~ ] l l [ u ~ )  (11 .11)  
• 2 q 2 

where [b; q) is the Hermitian conjugate of (b~]. The dynamical matrix for q can be written in this 
notation as 

3 3 b2 * b2 --eiq'bzb 2 * b~ , (11.12) 
IIK, II = ~ [lib;') • (b~][[-- y~ _ e i q . b x ~  2 * b2 b2 * b2 

2=1 2=1 

where the vectors b~ are defined in Eq. (1 1.1). Explicitly this gives 

0 
3 
5 

fl* 

3 

0 
IIX~ll = 

7 

where we have defined 

~* fl 
3 0 

3 0 

3F.--1/2iqy e.,~e v/3~ 
~ =  --3 . . . .  "T'~x , 

"x/~ 1/2' x/3 '~ - - - -  --1"~-- e 'qY sin -Tqx • 

1 -- 1/2 iqv -~-~qx) f l =  - - ( e  iqy + 5e -cos , 

(11.13) 

(11.14) 

11.3. The f ree  eigenmodes 

The free eigenmode [uq)f~ are defined as the solutions of  

[[K, ll[uq )fr~e = O . 

Using Eq. (11.10) it follows that one can instead solve the three equations 

(b~][u,)~o = b~. u~,f = 0. 
One finds an explicit form for the free modes 

q,f 

tlq+,f 

L ?]q,f ] 
where 

(11.15) 

(11.16) 

(11.17) 

~q-q,f : :kAi(cos(-~qx)-e±i~q~), ~lq~,f=Av~sin(-~qx). (ll.18a, b) 
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In general the real and imaginary parts of the polarization vectors point in different directions so 
the polarization is elliptical. Moreover, the polarization rotates in opposite directions at the "+"  and 
" - "  sites. 

The meaning of these solutions is more translucent if we write the explicit expressions for the 
relative deviations of the two ends of  a bond by substituting into the expression (11.6). This gives 

1 iA (cos(23-qy) cos(-~-~qx))/~ 1 Uq, f ~ - -  , 

2 = A  s i n ( ~ q x ) ( e x p [ - i ( ~ q x  + 3qy)] 1)~2 lgq, f --  , 

3Uq, f ~--A sin(T~qx) (exp [i( v5 ~3 - T q x -  3qy)]_  1) , 

where we have 

(11.19) 

defined so that 

b~ ./~ = 0.  (11.21) 

The 2lgq, f are thus always orthogonal to the respective bonds. 

11.4. The transverse acoustic modes are the free modes 

11.4.1. The small q limit 
+ and - we computed in Eq. (11.18) become In the small q limit the polarization vectors Uq, f uq, f 

transverse and real 

~± ~ - ~  = -  s in ~o q,f q 

~± ~ q~ = cos q~ q,f q 

q . u ~ f - - 0 + i O ( q )  

and are to this order the same for the two types of  sites. 
Thus the free modes are the phonons of  the transverse acoustic branch. The fact that they are free 

means that the transverse velocity of sound vanishes in all directions 

2 = 0  # = 0  (11.23) Ctrans 

which also shows that the shear modulus, /4 vanishes. 48 
This also means that the shear modulus cannot be computed using the techniques of  Section 5.4. 

I f  one uses Eq. (5.24) to compute the shear modulus the result is the same as that for the triangular 
lattice except for a factor of 2. This predicts, in particular, that 

/~ o ~ K ¢ 0  (11.24) 

(11.22) 

48 There is only one shear modulus for the 2-dimensional  hexagonal  point  symmetry  o f  the honeycomb lattice. 

introduced the unit vectors normal to the bonds (1) () 
~1= (10) ~2= - 2  ~3 ½ (11.20) ' @ ' = ~ 

", 2 
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which we have just shown to be wrong. The procedure of  Eq. (5.18) breaks down for the honeycomb 
lattice because the unit cell is complex - there are two sites per cell - and the deformations inside 
the unit cell are nonaffine. 

11.4.2. The atomic motions in the transverse acoustic band 
In a free mode the relative deviation of  the two ends of  a bond must always be transverse to the 

bond. This is true for all the free modes, Eq. (11.19). The simplest way to assure this is of  course 
when the deviations themselves are transverse to the bonds 

/g/q~-f " /12 = Uj q''f" /12 = 0 ( 1 1 . 2 5 )  

as for the librations of the hexagons. We have however found in Eq. (11.22) that in the small q 
limit the polarizations are normal to the wave vector 

uq~_f . q = u q'f_ . q = O (11.26) 

which is obviously inconsistent with Eq. (11.25) for at least two of the three bond directions, 2. 
The deviations cannot simultaneously be orthogonal to q and to the three vectors /14. This means 
that while the " + "  and the " - "  sub-lattices separately are described by transverse waves with wave 
vector q the relative motion of  the two sites is correlated in a non-trivial way so that Eq. (11.26) 
becomes consistent with 

b 2 • (Uq+,f - e iq" ~ " Uq, f )  = 0 

- Eq. (11.16). We want to see how this comes about. 

(11.27) 

11.4.3. Shears along the bonds 
Consider first a wave along a bond direction 

qx=O, q y ¢ O .  

Substitution into Eq. (11.19) gives 

21Lq, f = 3Uq, f = 0 

(11.28) 

(11.29) 

exactly. Thus there is shear only across the "1" bonds - ligq, f ¢ 0. This is exactly what one expects 
from the soft-shear lines we showed in Fig. 11.7. The bi-layers connected by the "2" and "3" bonds 
move rigidly and all the shear appears in the soft layers of  "1" bonds. We discussed the same effect 
of  soft shear lines for shear perpendicular to the axis of  the square and simple cubic lattices in 
Section 8. Checking Eqs. (11.19) one finds such "soft line" modes also for shears perpendicular to 
the two other bond directions as required by the symmetry of  the lattice. 

11.4.4. Shears normal to the bonds 
Consider the phonons propagating in the x direction 

q x # O ,  qy=O. (11.30) 
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Fig. I1.17. Schematic drawing of the distortion of 2 hexagons in a free shear. In each hexagon the "1" bonds are sheared 
rigidly, as indicated, and the "2" and "3" bonds rotate. The sheared pattern is shaded. It can be seen that the distortion 
of the hexagon is not a simple shear but more complex. 

Starting from Eq. (1 1.19) we can see how the atoms move when the lattice is sheared by adding 
up the relative deviations of the ends of the bonds. It is convenient to look at the real part of  the 
expressions. (The phase is of course arbitrary.) One finds 

Re(u~,f) = 0,  Re(u~,f) = e b 2 , Re(u3,f) = ~ b 3 , (11.31) 

where e is a constant which depends on the amplitude of the shear. 
For this choice of phase the "1" bonds only move rigidly (without rotating) while the two other 

bonds are sheared. For each hexagon the two bonds parallel to the y axis are sheared with respect 
to each other. The remaining two vertices then adjust so that all bond distances remain unchanged. 
We have indicated this in Fig. I1.17. It can be seen from the figure that the distortion is a simple 
shear strain only at large distances. The distortion of a hexagon is not described by a simple shear 
and is therefore not affine. It can also be seen that the sub-lattices of  the " + "  and " - "  sites separately 
are also not deformed affinely. This is a result of  the fact that for this choice of phase the three 
types of  bonds are not treated symmetrically. 

11.4.5. A general shear 
But these are special symmetry directions. Eqs. (11.19) show that there are similar correlated soft 

transverse waves, or equivalently shears, in all directions. This shows that a macroscopic shear of 
the honeycomb lattice in any direction can be carried out so that the relative deviation of  the two 
ends of every nearest neighbor bond is transverse. We want to see how the atoms actually move 
for such a general shear. 
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To leading order in q Eq. (11.19) becomes 

1 lu = U (  3 sin 2 q9 -- ~ cos 2 ~/2) II 1 , 

2// ~ U(COS 2 (~ .q_ V ~  sin ~o cos <p) ~2, (11.32) 

3U ~ U( - -  COS 2 q) "-~ x/3 sin tpcos tp)b 3 , 

where 

~ u = u ~ - u f  when R;_-Ri+=b~. (11.33) 

One notes that for any two bonds 2,2', Eq. (11.32) gives 

(;~u -;~'u). ~ = 0 ,  (11 .34)  

where 

g =  ( cos <p 
\ sin cp ) "  (11.35) 

This shows that the deformation defined by Eqs. (11.32) is a general shear perpendicular to the 
direction g. For this shear each of  the two sub-lattices - the "+"  sub-lattice and the " - "  sub-lattice 
separately - experiences a simple shear 

(u+-uj+).g=(uF - ~ ) . g = 0 ,  ui + - u f l = u  i- -u f -  c<(Ri-Ry).g.  (11.36) 

The overall macroscopic deformation of  the honeycomb lattice is thus also a shear in this direction. 
It is however evident from Eqs. (11.32) that the relative motion of  the bonded nearest neighbors is 
not described by this shear but is always perpendicular to the relevant bonds. One can also say that 
the deformation inside the unit cell - between the " + "  and " - "  sites in each cell - is non-affine, 
because it is not described by the affine shear transformation which describes the average deformation 
of  the whole lattice. This non-affine response at short distances reduces the shear modulus, in this 
case to zero, and are responsible for the fact that one cannot use Eq. (5.24) to calculate the elastic 
constants of  the honeycomb lattice. 

11.5. The free vibrations of floppy periodic lattices 

The formal procedure we used in Sections 11.2 and 11.3 above can be applied to all periodic 
bonded lattices. Quite generally a lattice with n atoms in the unit cell has nd DOF per cell and must 
be floppy when the number of  bonds per cell, nb, is smaller 

nb <nd. (11.37) 

The dimension of  the dynamical matrix for wave vector q -  IIKqll is nd. For a bonded Cauchy 
network (we assume Cauchy networks for simplicity, as in Eq. (10.8)) this matrix can always be 
written as a sum over the nb different types of  bonds 2: 

nb 

IIKqll q) • (bg], (11.38) 
2=1 

generalizing Eq. (11.12) and its rank is therefore at most rib. 
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The free modes can be obtained from the solution of the nb equations: 

(b~][Uq)free = b2 • ilq, f2  = 0 (11.39) 

for all the bonds as in Eq. (11.16). 
Thus for the nearest neighbor diamond lattice one has two atoms per cell so that the dimension 

of Kq is 6 but there are only 4 nearest neighbor bonds in the four (1 1 1) directions. The rank 
of the six-dimensional matrix, Kq, is therefore four. Two of the six phonon branches must have 
frequency zero over the whole Brillouin zone. One can show that these are the two transverse acoustic 
branches. 

PART Ill. THE ROLE OF STRESSES IN AMORPHOUS SOLIDS 

Amorphous solids do not represent global thermodynamic equilibrium. They are only locally stable 
and are never the global minimum energy states of their constituents. They are formed by processes 
which thwart the approach to true thermodynamic equilibrium. Because of this the random reference 
states of amorphous solids are determined by the specific history and are restricted only by local 
equilibrium and stability. The reference states of amorphous solids therefore tend to be much more 
tenuous than the tightly bound reference states of crystalline solids. The initial stresses in amorphous 
solids are also much larger and more ubiquitous. 

The basic claim of our discussion in the following is that one cannot understand the mechanical 
properties of amorphous materials if one does not explicitly take into account the direct effect of 
stresses. For amorphous solids instabilities induced by stresses are important in the dynamics of the 
quenching processes which create the random reference state one observes. Stresses in the reference 
state also play an important role in the stability and nature of the basic vibrational eigenmodes of 
amorphous solids. This is of course dramatically different from the situation for crystalline solids for 
which the neglect of the effects of stresses on the linear bulk properties, the BH approximation, is 
essentially always justified. 

We will support this claim by discussing the role of stresses in three main classes of amorphous 
solids: 
1. Soft matter - solids which are not rigid at the microscopic molecular levels but only at larger 

scales in Section 14, 
2. Packings of hard objects which only become rigid because of externally applied stresses in 

Section 15 and 
3. Glasses produced by rapid quenching with purely internal quenched initial stresses in Section 16. 

To do this we will use the formalism which we developed in Part I, in particular the distinction 
between the usual, Born-Huang (BH) terms in the harmonic expansion and elastic energy (Section 5) 
and the special stress-induced terms which describe the direct effect of stresses which we analyzed 
in Section 6 and the role of this distinction in the theory of floppy networks which we developed 
in Part II which gave us the tools for understanding the effects of initial stresses in tenuous solids. 
Positive stresses can destabilize sufficiently soft modes and cause structural buckling. On the other 
hand, negative stresses can stabilize such modes. However, to make the discussion more readable, 
we have attempted to make these discussions self-contained so they can be read without continuous 
reference to the earlier formal discussions. 
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Before discussing specific physical situations we must first discuss stress fields in solids and 
stressed reference states in a general way. 

The stress fields in a solid are restricted by the conditions of  mechanical equilibrium. We dis- 
cuss this in Section 12. We describe the equilibrium conditions on the continuum stress fields 
in a solid and the microscopic equilibrium conditions on the bond tensions using the results of  
Sections 3 and 4. We also analyze the special restrictions which mechanical equilibrium imposes on 
the stressed reference states of  floppy network models. We show that the stressed reference state of  
a floppy network is uniquely determined by the external forces and is the only equilibrium state in 
the geometric manifold to which it belongs. 

In addition to requiring mechanical equilibrium we also require that the reference state of  a solid 
is stable. In Section 13 we discuss the linear stability of  stressed reference states from two points 
of  view. We first discuss the requirement that the microscopic expansion around a stressed reference 
state is stable. On floppy networks this amounts to conditions on the signs of  the bond tensions and 
of  their distribution in the solid which assures that all the BH-free eigenmodes modes are stabilized 
by the direct effect. 

We restrict most of our detailed discussion to the weaker requirement that the stressed solid is 
completely r igid-  i.e., that it has shear rigidity everywhere and at all scales. Tenuous solids which 
do not have complete BH shear rigidity in this sense can nevertheless become completely rigid when 
there are enough negative initial stress fields. 

In the rest of  Part III we discuss three common classes of  amorphous solids for whose mechanical 
properties the initial stresses are important. 

In Section 14 we discuss the general structure of  the theory of  the mechanical properties of  
soft solids - extending and generalizing our earlier results on rubbers and gels (Alexander 1984, 
1985). The main point of  this discussion is that the shear rigidity of soft solids is due to negative 
network stresses and not to a standard BH shear modulus. Soft matter is described by models 
which are macroscopically floppy and can even have no geometric shear rigidity at any length scale. 
Unstressed reference states would have no significant shear rigidity. The observed macroscopic shear 
rigidity is due to negative initial stresses. We show that this is possible only because soft solids 
are free-energy solids. They are not rigid at the atomic level and can be described as solid only at 
larger scales by a partially averaged parametrized free energy. 

The two other situations we discuss are situations where structural buckling is important in the 
evolution of  the reference state. 

In Section 15 we discuss random packings of  rigid objects with purely repulsive interactions. 
The more obvious realizations are granular materials and models such as the Princen model for 
bubbles (Levine et al., 1996) and the solidification of  hard spheres. Such materials only solidify 
under positive external pressure and have no static shear modulus when no positive initial stresses 
are applied. In a packing the BH interactions responsible for its shear modulus are induced by 
the stress. A packing can have stable shear rigidity only when these induced BH interactions are 
numerous enough and strong enough to overcome the destabilizing tendency to buckling - the direct 
effect of  the same stresses. We discuss the implications of  this balance for the structure of  the 
reference state of  packings. 

In Section 16 we discuss glasses. The main point of  this discussion is that we treat the low 
temperature glass as a Cauchy-Born solid whose properties can be described by the expansion 
around a quenched reference state. We assume that rapid quenching suppresses rearrangements by 
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single particle diffusion states. The dominant restructuring process responsible for the formation of  
the stable equilibrium reference state of the low-temperature glass is then structural buckling driven 
by quenched internal stresses. We discuss the implications for the properties of  the expansion around 
a stressed reference state which is produced in this way. We show that some of  the most striking 
universal low temperature peculiarities of  glasses appear naturally. 

Internal stresses are complex and in amorphous solids it is not practical to try to derive them 
from structural singularities as commonly done for crystals. We therefore analyze the implications 
of  the mechanical equilibrium conditions for the stresses directly. We derive some important general 
properties. We also show how dislocations and disclinations appear in this rather unconventional 
formalism in which the stresses are regarded as the primary fields and the structural strains do not 
show up. This is the content of  Section 17. 

12. Equilibrium in stressed reference states 

12.1. Initial stresses 

12.1.1. Initial network stresses 
Following Love (1927) we shall call the stresses in the stressed reference state of  a solid initial 

network stresses. They are properties of  the expansion of the energy around a stressed reference 
state. As we showed in Section 4 the initial network stresses can be calculated from the initial bond 
tensions in the reference state just as the elastic constants can be calculated from the coefficients in 
the BH expansion around it. 

Since the network stress is not always the only stress in the volume occupied by a solid we 
emphasize the distinction between the network stresses, which are properties of the reference state 
and the total stress in Part III. 

12.1.2. External stresses 
Stresses can always be described as the sum of  external stresses which are induced by external 

forces acting on the solid and disappear when these forces are removed and purely internal stresses 
which cannot be attributed to such forces and are quenched into the reference state by its preparation 
history. Truely external forces can be the cause of initial stresses. Examples are, gravitational forces, 
the effect of  large external pressures on a solid under geophysical conditions and the forces on the 
boundaries of  a string or drumhead. 

The stresses are not always fully described by the network stresses one calculates from the bond 
tensions. When there are additional contributions to the total stress besides the network stress their 
effect is external to the network and they generate a network stress which is external even when 
there is no external contribution to the total stress. An example is the fluid "osmotic pressure" in 
a gel which balances the (external) network pressure of  the stretched polymeric chains. Another 
example is the "stretched square foam" model discussed in Section 8.1.3. 

12.1.3. Internal stresses 
A different type of  initial stresses are internal stresses (Love, 1927a, Section 75) which do not 

require any external balancing forces. 
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The true minimum energy state of  a solid is not stressed. The energy of a solid can always be 
reduced by removing the stresses. Internal stresses are therefore always the result of  the specific 
preparation history of  the material. They are almost inevitably related to structural singularities in 
the reference state and are therefore properties of  quenched reference states. 

Internal stresses are also ubiquitous. 
Even single crystals to which no external forces are applied have complex internal stress fields 

associated with the defects in their periodic structure. There are the internal stress fields of  point 
defects - vacancies, interstitials, etc.; the internal stress fields of the Frank network of  dislocations 
(Friedel, 1964, ch. VIII; Landau and Lifshitz, 1970, ch. IV) and those due to planar defects - grain 
boundaries and twinning planes. 49 

In amorphous non-crystalline solids the internal stresses cannot be related to structural defects in 
such a straightforward way but the actual equilibrium states are also stressed. This is particularly 
true for glasses because quenching plays an essential role in the preparation of  their reference states. 

12.2. Equilibrium conditions for the stress field 

An initial stress field, o-(r), is subject to the requirement that the stressed reference state is an 
equilibrium state. It must satisfy the requirements of mechanical equilibrium in the bulk 

V .  o(r) = --j~ulk(r), ~ ~tr,# = - - f# ,  (12.1) 
Ct 

where J~ulk(r) is the external force density per unit volume acting at the point r in the bulk. It must 
also satisfy the boundary conditions 

~(rb)" a(rb) = --~o~md(rb), ~ n~(rb)a~#(rb) = f/~(rb), (12.2) 
~t 

where n(rb) is an outward pointing unit vector normal to the boundary and f ( rb )  the force per unit 
area acting on the boundary at the point rb on the boundary. 50 

As equations for determining the stress field, the equilibrium conditions (12.1) and (12.2) are 
incomplete. They do not fully determine the stress field. There are only d equations (and d boundary 
conditions) for the ½d(d + 1) components of  the stress tensor in d dimensions. The equations are 
only completed when one adds the material properties, typically via the stress-strain relations, 

a~(r) = K~rr(r) • e~6(r) (12.3) 

to the equations for the stress. 
One result of  this is that the homogeneous equations 

~7. o'mt(r) = 0 (12.4a) 

49 Friedel (1964, ch. 2, Section 2.2) shows that the internal stresses can be related to a distribution of dislocations when 
the stress-strain relations are added to close the equations. 

5o For simplicity we omit the equilibrium conditions for the torques which should he added to (12.2). 
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in the bulk and 

h. o'int(r) = 0 (12.4b) 

on the surface have a family of non-trivial solutions which describe internal stresses. 
Since the equilibrium equations are linear their solutions can always be written as the sum of 

a regular special solution which satisfies the inhomogeneous equations (12.1) and (12.2) and an 
internal stress field which satisfies (12.4). 

12.3. The microscopic equilibrium conditions 

The equilibrium conditions for the stress field, Eqs. (12.1) and (12.2), are the continuum limit of 
the local microscopic equilibrium conditions 

. [Rg-~JRjI_ (Ri - R j ) :  _f/ext (12.5) 
J 

at all sites i (Eq. (3.23)). Both the bulk continuum equations (12.1) and the bulk boundary conditions 
(12.2) arise from the continuum limit of Eqs. (12.5). 

Like the continuum equations for the stress fields the discrete microscopic equations are also 
incomplete. For N panicles the Nd equations (12.5) cannot determine both the ~b bond tensions, 
~J-~j, and the Nd components of the positions, R;. One gets a complete set of defining equations only 
when one supplements Eqs. (12.5) by the nb defining equations for the bond tensions, Eqs. (3.28) 

~g({r})  (12.6) 
~,-j({R}) : -  ~ i j ( {Rbond} )  = ~rij {Rbond} 

which also relate the same variables. In general the solution of this combined set of equations is 
unique. 

In this form this is quite general. In the continuum theory of elasticity one achieves the same 
result by "closing" the continuum equations by adding the linear stress-strain relations, Eq. (12.3). In 
contrast to Eqs. (12.6) this procedure assumes an unstressed underlying reference state with respect 
to which the strains and elastic constants can be defined. Our microscopic formulation is not subject 
to such restrictions. 

12.4. Uniqueness o f  stressed equilibrium states of  floppy networks 

We saw that for models defined on floppy networks all the states belonging to the manifold of 
free DOF, o({Rbond}), have the same energy, 8({R}bona). They also all have the same bond tensions 
for all the bonded pairs [i j]. One can therefore define a set of initial bond tensions 

(~i ini)  : { . . . ,  ~ i / J ,  . .  .} : {~iini}({R}bond) (12.7) 

which is common to the whole manifold o({Rbond}). Different points of o({Rbond}) describe different 
geometrical states of the network but the bond tensions are the same for all of them. 

This result holds for any manifold. It applies to stressed manifolds for which J,y # 0 for some 
of the bonds just as it applies to unstressed BH manifolds for which the bond tensions all vanish: 
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~,.j = 0 .  In this sense all the states which are consistent with the bonded distances, {Rbond}, are 
always equivalent and this equivalence is not affected by the fact that the initial bond lengths 
describe a stressed state for which the tensions do not vanish. But this does not mean that the states 
of  the manifold are all equilibrium states. 

12.4.1. Unstressed B H  reference state are deoenerate 
For an unstressed BH manifold, oBH({Rbond}), the mechanical equilibrium conditions, Eq. (12.5), 

are trivial. By definition there are no external forces and no bond tensions in {R}BH and therefore, 
in equilibrium, no forces on the particles. 

~j_-_-0 ~ f , : - 0 ;  f°xt-0.  

All the states belonging to a BH manifold are automatically equilibrium states. 
All the states in a BH manifold can therefore, in principle, appear as reference states. As we have 

shown in Section 10 they can also transform into each other freely via the free eigenmodes of  the 
unstressed floppy network which correspond to its geometrical FDOF. Because of  this the properties 
of  such reference states can be quite strange. They do not even necessarily describe microscopically 
rigid solids - this depends on the specifics of  the problem and on the anharmonicities. 51 

12.4.2. Stressed equilibrium states are unique 
The equivalence of  all the states on the manifold 6({Rbond}) disappears when one considers the 

mechanical equilibrium conditions of stressed states. 
For stressed manifolds mechanical equilibrium is no longer automatic. When there are initial bond 

tensions the general condition for mechanical equilibrium is that there are no net forces at any site. 
All atoms must be in equilibrium - Eq. (12.5). This is a set of  N vectorial equations which depends 
on the specific vectors Rij and therefore on the specific arrangement of  the N points in space, 
{R}. This arrangement is different for each state in 6({Rbond}). The external forces f.,xt which, for a 
given set of  bond tensions {:-bond}, assure equilibrium for the state {R} will, in general, not assure 
equilibrium for another state which belongs to the same manifold {R'}. The fact that {R'} and {R} 
belong to the same manifold o({Rbond}) and therefore have the same bond tensions {oa-bond } is not 
sufficient to assure that they are both equilibrium states. 

The external forces are 

{ fext } = { fleXt,f2~xt,... ,f/ext,... ,f~xt }. (12.8) 

We assume that the network is in equilibrium in the reference state {R} so that 

-~/j .l~ext 
-~; Ri j  = - J i  , R i j  = R i - R j  (12.9) 

bonds U 

for all i. If  another equilibrium state say {R'} is also an equilibrium state the equilibrium conditions 

E ~ i J R t  ~'-'~ ~ iJ  R .~/cxt ij = L "-'~"-( ij 21- •ij) = -- " ( 1 2 . 1 0 )  
bonds zj bonds * ' i j  

Sl Depending on the detailed structure unstressed floppy reference states can, e.g., have a secondary non-linear buckling 
instability with respect to the formation of internal stress fields. Alternatively a maeroscopically floppy network can also 
describe a rheological fluid which utilizes "free" collective shear modes to flow in response to applied shear stresses. 
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must also hold. If {R'} belongs to the same manifold it has the same bonded distances and therefore 
also satisfies 

[RI~/[ = IR~j + u~jl = IR,jl = eij 

for all the ~b bonded pairs. 
Since 

(12.11) 

ilij = Hi - -  lg j 

Eqs. (12.10) and (12.11) can be written as a set of Nd +nb homogeneous equations for the Nd 
components of the ui. Subtracting Eq. (12.9) from Eq. (12.10) gives Nd equations 

fi /u. .  = 0  (12.12) ~ 
R~j 'j 

J 

- the conditions that {R} and {R'} (={R + u}) are both equilibrium states for the same set of 
external forces. 52 In addition Eqs. (12.11) amount to ~b non-linear homogeneous equations 

(2R~+uu)uu=O (12.13) 

one for each bond. Altogether there are thus 

~b 7t- N d  (12.14) 

homogeneous equations, (12.12) and (12.13), for the Nd components of the u;. This over-determined 
set of homogeneous equations can have non-zero solutions only in exceptional cases. 

We have thus demonstrated that, in general, the equilibrium state is unique. The set of external 
forces {ffxt} picks out a unique state {R} which is the only equilibrium state on the manifold, 
o({Rbond}) for this particular choice of forces. The other states which belong to the same manifold 
a({Rbond}) have the same energy 

e ( { e t } )  : ~ ( { e } )  = ¢~({Rbond}) 

but are not equilibrium states. One needs a different set of forces { f ,  ext} to assure equilibrium in 
each state of the manifold, {R'}. Thus the high degeneracy which characterized the reference states 
of floppy bonded networks disappears when the reference state is stressed. 

We have not explicitly distinguished external and internal stresses in the above discussion but, 
obviously, the argument also applies when the external forces, {fext}, all vanish and the stress field 
is therefore purely internal but does not vanish. 

To avoid misunderstanding we emphasize that this result does not imply that the internal stress 
field itself is unique. Different solutions of the continuum equations (12.1) and (12.2) with the 
same boundary conditions and the same external forces correspond to different solutions of the 
microscopic equations (12.5). All we have shown is that these different stress fields not only differ 
in their equilibrium configurations but always also in their bonded equilibrium distances 

{R} ¢ {Rf}, {Rbond} ¢ {R~ond) • (12.15) 

s2 Evidently the ui are not necessarily small in these equations which relate any two equilibrium states on the manifold. 
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/ /  

Fig. III.1. The two configurations shown have the same elastic energy 8({r}) and the same bond tensions, ~/j but only 
the stretched configuration, a, is an equilibrium configuration. 

They therefore belong to different manifolds even when the external forces { f ,  ext} and the energy 
8({r})  are identical. We have shown that on each of  the (microscopic) manifolds, {Rbond}, {R~nd},... 
there is a unique equilibrium reference state. 

12.4.2.1. Examples. A simple example is a linear chain of  springs as in Fig. III.1. When forces 
are applied at the ends of  the straight chain, as in III. 1.a in the figure, all the separate springs are 
stretched and aligned. This is obviously an equilibrium configuration. 

The energy of  this equilibrium state is the sum of the energies of  the separate springs, and therefore 
depends only on the distances between their ends ri, i+l. In configuration III. 1.b these distances remain 
the same and the energy is thus not changed. 

The configurations a and b belong to the same manifold as a and have the same energies and 
the same bond tensions. However, obviously, b does not describe an equilibrium state when the 
strings are stretched and exert forces at their ends. The two configurations are equivalent equilibrium 
configurations only in the unstretched BH limit. 

We have seen another somewhat less trivial example of  this in our discussion of  the square foam 
in Section 8.1. As discussed in detail in Section 8.1.3 the "external forces" in this example are the 
forces exerted by the pressure of  the fluid in the cells on the outer vertices of  the lattice. The network 
energy, the energy of  the springs which constitute the network, is the same for all the continuum of  
configurations in the manifold of  the square lattice but the internal pressure, the volume constraint, 
picks out the square lattice in which all the cells have their maximum volume. This is the unique 
reference state in the manifold 53 which minimizes the total energy - the energy of  the stressed 
network plus the energy of  the compressed fluid in the cells. 

Something similar happens in other cases. Thus Panyukov and Rabin (1996) find by an explicit 
analysis o f  random polymeric network gel models that the reference state is uniquely determined by 
the chemically quenched crosslinking structure of  the network. 54 

53 We note that in this example the origin of the "external" forces is internal - the pressure of the fluid in the cells. As 
a result one retains translation-rotation symmetry for the stressed reference states. 

54I am grateful to Drs. Panyukov and Rabin for making me aware of this result and explaining it to me. 
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13. Stress-induced stability of floppy networks 

We now want to discuss the linear stability of  the reference state. If we assume, as usual, that 
the BH dynamical matrix is stable this becomes a condition on the stress field which can destabilize 
soft, or free modes or, if the network is floppy, stabilize the free modes. This obviously depends on 
the way the stress field is related to the BH rigidity of  the reference state. 

In the following we shall only discuss the effects of  stresses on the free modes of  floppy networks. 
We believe this is more translucent and focuses attention on the importance of  soft collective modes 
in tenuous solids. 55 

We saw in Section 10 that the floppy eigenmodes have no harmonic force constants in the BH 
approximation, that is as long as the direct effect of  the stresses on the harmonic expansion is 
neglected. The stability of  the vibrational modes which correspond to the FDOF of a geometrically 
floppy network is determined by the initial stresses. The force constants of  these modes are deter- 
mined completely by the relevant initial bond tensions. The linear stability of  the stressed reference 
state is a requirement on the initial bond tensions, 3~) ni, and on the way they are related to the 
reference state - separate from the equilibrium conditions - Eqs. (12.5). 

We want to discuss these conditions. 

13.1. Stability of the microscopic free modes 

The special stress induced contribution to the harmonic expansion which describes the direct effect 
of  the stresses is 

1 ~-~J 2 (13.1) ~i~sealar = -4 ~.. R ~  u ij 
tj 

2 __ - Eq. (6.13). The continuum limit of  (13.1) is the contribution of  the second order strain, e ~ -  

1 ~r ~u~ur ,  to the elastic energy 2 

~i~elastic 1 J [ dr .  ~ ~/~ 
= - -  - -  ttini(r ) • O~u~(r). O~u~(r) (13.2) 

4 

- Eq. (6.20). 
Eqs. (13.1 ) and (13.2) describe the terms in the expansion around a stressed reference state which 

are qualitatively different. These terms are responsible for the effects of  the stresses on the linear 
stability of  the stressed reference state. 

Eq. (13.1) can be written in the form 

= (13.3) 

We saw in Section 10 that when K ~ is added to the BH dynamical matrix 

[[KBHII IIKII = HKBHII + IIX ({:})II (13.4) 

55 The question when a realistic model can be adequately approximated by a floppy network, how one should check this 
and how one should go about the construction of such a floppy network goes beyond the scope of our discussion here. 
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the geometrically free degrees of  freedom of  floppy networks are no longer dynamically free. When 
the stresses are neglected the force constants, xf~, which correspond to the free DOF of  the floppy 
network must vanish. When the reference state is stressed they can be finite and, moreover, can 
have either sign. The stressed reference state is stable when 

Ct 
xf~ee > 0  (13.5) 

for all the free eigenmodes. We are interested in the conditions which assure this. 
The reason for the qualitative change when the direct effect of  the initial stresses is included is 

that the projection of  K~'({J-}) into the free subspace, [q/]fre~, 

IIKeroo II = IIK~olI({~}) (13.6) 

does not vanish. These are the only terms of  the total dynamical matrix in this subspace. 
For small bond tensions it is sufficient to consider the eigenvalue equation in the free subspace 56 

IIK ll[u ) o- • . - xf~e[u )fre~ (13.7) 

The force constants of  the free modes, x~r¢¢, the eigenvalues of K ~ ,  depend on the specific set 
of  bond tensions {~'-}bond. In particular their signs depend on the signs of  the ~-~j. If we change the 
signs of  all the bond tensions 

{:}bond --{:)hood 

then the signs of  the X~r~e will also reverse. 

The limiting cases are simple: 
(1) If all the bonds are stretched so that 

(13.8) 

for all the bonds then all the x~r~e are also positive 

Kg({,~bond}) > 0 (13.9) 

and the stressed reference state is therefore stable. 
The inequality (13.8) also implies that the bonds cannot push the boundaries. Like stretched 

strings and drumheads a stretched three-dimensional bulk solid exerts a pull on all its boundaries. 
The external forces on the boundaries which balance these network forces, Eq. (12.2), have to be 
stretching forces directed outward. 

Following standard conventions this corresponds to a negative network pressure in the continuum 
limit or, more generally, to negative network stresses 57 for which the principal axis components of  
the stress are all negative 

o ~ < 0 .  (13.10) 

56 The other parts of K ~' only have higher order effects. 
57 We use a sign convention in which the pressure has the same sign as the trace of the stress tensor. 
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( 2 )  The converse of ( 1 3 . 8 )  - negative bond tensions 

~-~j < 0 (13.11) 

imply instability 

/£~t({~bond}) ~ 0 (13.12) 

for all the free eigenmodes. 
The network stresses are then positive 

tC~>0 (13.13) 

and exert forces on the boundaries which are directed outward. For bulk solids this situation is easier 
to realize. It describes, e.g., situations where a positive external compressing stress is applied. 

13.2. General stability conditions 

In principle one would like to determine the conditions on the microscopic set of  initial bond 
tensions {~ond} or on the stress fields, which assure that all the eigenmodes in the stressed reference 
state are stable. It is however difficult to formulate any general conditions for stability in terms of  
the J~j themselves. 

The inequality (13.8) is sufficient to assure stability but is much too restrictive. To see this we 
note that a floppy network need not be floppy everywhere. The network can be floppy and still 
contain parts which, on their own, are BH rigid and can therefore support considerable negative 
bond tensions and positive stresses. The network can nevertheless contain other regions which are 
floppy. Thus, in general, the overall stability of a floppy network is consistent with having some 
negative bond tensions. The argument shows that a full stability criterion must depend on the detailed 
bond structure and on the actual distribution of the bond tensions in the network. It cannot simply 
be a condition on the numbers of positive and negative tensions. 

Instead of  attempting to analyze this very complex problem we will discuss the direct effect of  the 
stresses from a continuum point of  view. We shall look for criteria which assure that all regions of  
the solid have shear rigidity on their own. For regions which have no BH shear rigidity this requires 
suitable negative stabilizing stresses. Implicitly this assumes averaging over regions which are large 
enough so that one can define smooth position dependent stresses and elastic constants and that the 
expansion in the shears, ~u~, the gradient expansion in the deviations, makes sense. Roughly this 
means that we will loose the information on very local floppiness - on scales comparable to the 
lengths of  the bonds. 

13.3. Stress-induced macroscopic shear rigidity 

We first consider solids which are described by macroscopically floppy networks and have macro- 
scopic shear rigidity which the unstressed network does not have. We called this macroscopic flop- 
piness in Section 7. We described several examples in Section 8. 
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13.3.1. Macroscopic floppiness 
In Section 7.3.2 we defined macroscopic floppiness (MaF) as a property of  floppy networks. 

A solid which is described by a MaF network has no shear rigidity in the BH approximation. 58 It 
can only exhibit macroscopic shear rigidity when there are initial stresses. A familiar example of  
such a network is the square lattice - Section 8.1. We want to formulate this a little more precisely. 

Macroscopic shear rigidity describes the response of the elastic energy to deformations which 
shear the boundary of  the solid. Two points on the boundary, rl and r2, move so that 

u/~(r l )  --  u / ~ ( r 2 ) =  Z ( r l  --  r2)~- ~ u ~ ,  (13.14) 
Ct 

where ~u~ is the average shear 

' /  ~u~ = ~ d r .  O~u~(r). (13.15) 

The average linear strain and the average second order strain which are relevant to the macroscopic 
rigidity are both defined in terms of  these average shears 

e~# = 51 (~ccUfl ..~ ~flUct) , (13.16) 

- -  1 
~ =  ~ ~ ~u~ .  ~/~u~. (13.17) 

When a solid is macroscopically floppy and has no macroscopic BH shear rigidity this means that 
the coefficients in the expansion in the average shears 

2i  -2 1 ~.ez# = ~ . ~ .  (~zu# + ~#uz) 2 (13.18) 

must vanish 

~ = 0 .  (13.19) 

Eq. (13.19) defines macroscopic floppiness (MaF). 
We recall that the coefficient in (13.18), the macroscopic shear modulus ~, is not the volume 

average of  the local shear modulus. In general 

1/ 
-< = V d r . . ( r ) .  

Equality holds only when the deformation is uniform: 

~u~(r) = ~u~ (13.20) 

which requires that #(r)  is constant. For a macroscopically floppy network this can happen only 
when the solid is uniformly floppy so that 

= (#) =/~(r) --- O. (13.21) 

58 For convenience we only mention the transverse shears which dearly distinguish solids from fluids. In considering 
the longitudinal strains O~u,, one obviously has to distinguish between the volume change and the traceless shear strains. 
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13.3.2. Affine shears 
If we shear a uniformly floppy solid affinely, Eq. (13.20), then the stress-induced macroscopic 

elastic energy is 

-~//" ~ - ~  
= O'in i y~  ~u~. ~flu 7 (13.22) 

or, in the principal axis system of the average stress 

~ =  _~//- ~ ~i~ ~ (~-~)2.  (13.23) 
ct 7 

The condition for stress-induced stability of the macroscopic shears is obviously 

~i~ < 0.  (13.24) 

More precisely, if a shear normal to the g direction, say ~,u~, is BH floppy 

D ~r~ = 0 

then the linear stability of these shears in the stressed state requires that the component of the initial 
stress in this direction, --~O'ini, is negative. If  any component of  the average stress - say -flflo'in i - is 

positive then the coefficient of  ~flu7" in Eq. (13.23) is negative and the shears aau r are destabilized 
by the stress. If the BH shear modulus for these shears vanishes then they are linearly unstable in 
the stressed state. 

If, in particular, the solid has no BH shear rigidity at all, Eq. (13.19), then the stressed reference 
state is macroscopically stable only if the inequality (13.24) holds for all principal axis components 
of  the average stress. This is a condition on the average stress. All the principal axis components 
of the average stress must be negative. We shall call such a stress a neoative stress. 

A negative stress cannot be a pure traceless, shear stress because 

Tr tr = y ~  b--~= 0 

implies that at least one principal axis component is positive. The inequality (13.24) implies a 
negative initial network pressure 

1 
"Pnet = d E °'i~] < 0  (13 .25)  

which is large enough to assure that (13.24) holds for all components. 
The normal force exerted by a stress on a surface is 

f . n= ~-[ o~ ^2 " n o t  ~ 

~t 

where h is the outward pointing unit vector normal to the surface. A negative average network stress 
exerts an inward pull on all the boundaries of  the solid. Since these pulling forces must be balanced 
in equilibrium one needs some external forces, distinct from those exerted by the network itself, for 
mechanical equilibrium. These forces can either pull on the boundaries, from outside, or push on 
them from inside. A macroscopically floppy network can have stress induced rigidity only when it 
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is exposed to such stretching forces. The external forces which act across the boundary determine 
the average stress 

~ini = ( 2 - - ~ )  fboun [Jimi(r)*r+r*fmi(r)]ds (13.26) 

as in Eq. (4.12). 

13.3.3. Non-affine shears 
When the solid is not homogeneous fluctuations can be important. These show up in Eq. (13.2) 

in two ways: 
(a) The initial stress field need not be uniform 

O'ini(r) = ~ini + t~O'ini(r) (13 .27)  

In addition 
(b) the response to deformations of  the boundary need not be affine 

~u~(r) = ~u~ + 6~(r ) .  (13.28) 

Substitution into (13.2) gives the corrections to the affine elastic energy (13.23) 

r<: 
t~ain i t~fl? dr - (~ain i 6~ r g#~ (13.29) 

which determines the deviation field 6~(r).  Evidently a uniform initial stress 

C~O'ini(r) ~ 0 (13 .30)  O'ini(r) = ~ini , 

implies affinity 

6~p(r) = O . (13.31) 

Eq. (13.23) describes the elastic energy correctly as long as the stress is uniform because the 
response is then affine. When there are fluctuations in the initial stress field they generate non-affme 
fluctuations in the shear which are correlated with the fluctuations in the initial stresses. This always 
reduces the elastic energy compared to the affine value - Eq. (13.23) - for the same average shear. 
The expression (13.23) is thus an upper bound on the elastic energy and is a necessary condition 
for stability. 59 

13.3.4. Anisotropic floppiness 
It is by no means necessary that a network is simultaneously floppy with respect to all the nine 

strains O~u# which appear in the summation (13.23). A network can very well be floppy for some 
shears and, at the same time, remain rigid for others. This happens when some but not all o f  the 
average BH elastic moduli vanish. 

59 We believe that the corrections can probably only reduce the magnitude of the shear rigidity but cannot reverse the 
sign of the coefficient in the elastic energy. We are however unable to prove this. 
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B 

Fig. III.2. 

For an isotropic material the BH shear modulus, #, can vanish, while the bulk modulus, K, remains 
finite. This means that the pure traceless shears are BH floppy but the simple longitudinal strains 
~,u~ are not because they are also affected by the bulk modulus. 

One can also have situations where only the shears perpendicular to one axis, say 

~zUx , 8zUy 

are free. It is then sufficient for stability to have a negative uniaxial stress 

tr = < 0 . 

Shear rigidity in the plane perpendicular to z is then assured by 

- azz[( zUx) a + ( zuy)2]. (13.32) 

The signs of  the other components of the stress tensor are not important as long as they are 
not large enough to overcome the BH shear rigidity for the corresponding shears. An example is a 
hexagonal lattice consisting of  rigid triangular planes stacked on top of  each other - with nearest 
neighbor interactions. Another example is a smectic B mesophase. 

13.4. Homogeneously rigid networks 

13.4.1. The shear rigidity o f  a region 
The stability condition on the macroscopic stress which we derived above, the inequality (13.24), 

applies to any floppy network which is macroscopically floppy (MaF). One can therefore also apply 
it locally, to networks which describe parts of  a solid. 

Consider the part of a solid which is enclosed by the boundary, B - Fig. 111.2. If  the network 
formed by the internal bonds in this region is not geometrically rigid in the sense of  Section 7.3.2 
then this internal network is MaF and has no average BH shear modulus: 

~B = 0  (13.33) 

in complete analogy to (13.19). When (13.33) holds the network in B is macroscopically floppy. 
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The stability of the shears of this region then depends on the average stress in B. The network in 
B has shear rigidity only when the configuration of  the bonds, the distances {rq}, describe a stressed 
state and the average stress in B satisfies the inequality (13.24), i.e., 

~ = (a~}B < 0 .  (13.34) 

We can use this to define a local floppiness. 

13.4.2. Homogeneous shear rigidity 
We define a homogeneously rigid solid (HRS) as a solid which has shear rigidity at all scales. 

Every part of  such a solid, separately, has shear rigidity. 
Proper tightly bound solids are HRS. The elastic constants in their BH energy 

dr ~_~ D ~' r~(r) . e l~(r )  • e~(r )  ( 1 3 . 3 5 )  

are such that any part of  the solid has shear rigidity even if all the bonds which connect it to the 
rest of  the solid are disconnected. For any region B the average elastic constants one calculates from 
(13.35) are such that all the average shears in 

y~ D~ ~'~ . (~ua)s(~ru~}B (13.36) 

are stable. 60 Most ordinary solids are homogeneously rigid in this sense. Evidently this requires that 

~ B > 0 .  

There are no floppy regions in a homogeneously rigid solid. 
If there are floppy regions then the shear modes of  these regions are only rigid if they are stressed. 

Stability then requires that the average stresses in any region which has no BH rigidity is negative - 
Eq. (13.34). This assures that the stressed floppy solid has shear rigidity everywhere and is therefore 
homogeneously rigid only when one adds (13.2) to the ordinary elastic energy, Eq. (13.35). 

The requirement that a solid should be homogeneously rigid is obviously closely related to 
the microscopic linear stability requirements but the two conditions are probably not completely 
equivalent. 

13.5. Homogeneously floppy networks 

If  a network is sufficiently floppy then all the separate pieces into which it can be divided are 
separately floppy with respect to shears. This is the reverse situation from that which we considered in 
defining homogeneously rigid solids. We shall call such a network a homogeneously floppy network 
(HFN). A HFN is geometrically floppy and has no BH shear rigidity on any scale. Every piece of  
a HFN separately is also MaF. 

60 As in our discussion above the shears in (13.36) are the averages one sees at the boundaries but the average coefficients 
D~ ~'~6 have to be determined by minimizing (13.35). 
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HFNs have no shear moduli of the ordinary BH type 

/ ~ ( r )  - 0 

down to some microscopic cutoff scale. If  they have shear rigidity it must be stress induced in all 
directions and at all scales. The only term in the elastic energy responsible for the shear rigidity of  
a HFN is the term in which the initial stress multiplies the second order strain - Eq. (13.2). 

Since the shear rigidity of a HFN is stress induced at all scales the stability of  the reference state 
requires that the stress field satisfies the continuum limit of  (13.34) 

a ~ ( r ) < 0  (13.37) 

everywhere. We will call such stress fields homooeneously negative stress fields (HNSF). 
The average of  a HNSF over a region is obviously also negative. A HNSF always exerts a pull 

on all boundaries - including the external boundaries of  the solid 

f , =  ~--~ ~ 2 .  

In mechanical equilibrium these forces have to be balanced by external forces. This amounts to a 
very serious limitation on HFN models which describe real solids. An intrinsic mechanism which can 
stretch the boundaries and cancel the forces exerted by the negative network stresses is an essential 
ingredient for such models. This requirement and the fact that the shear rigidity has the form (13.2) 
and cannot be written as an expansion in the linear strains are peculiarities of  HFN solids. 

HFN describe a large class of  materials. An example of  HF networks are the polymeric networks 
which appear in the standard Flory models for rubbers and gels. These networks are floppy at all 
scales down to the mesh size. Other "soft" solids are also, almost always, described by HFN models. 
We will discuss the mechanical properties of  soft matter from this point of view in Section 14 mainly 
emphasizing the origin of the negative stresses and the peculiarities. Our analysis generalizes the 
ideas we presented a long time ago (Alexander, 1984, 1985) and puts them in a wider context. 

14. Soft solids 

Most of  the solids one ordinarily thinks of are solid down to the molecular level and have rigid 
reference states in which the atoms have fixed positions. Our discussion above, and in particular 
Section 2, assumed or at least suggested this picture. There are other types of  solids. In particular 
there exists a large class of materials, soft solids, which are not rigid at the molecular level and 
which can nevertheless be described by a CB expansion at a larger scale. Soft solids also seem to 
be the only three-dimensional materials whose macroscopic shear rigidity is predominantly due to a 
stabilizing initial network stress and not to a standard BH shear modulus. 

14.1. Between liquids and solids 

Nature confronts us with large classes of  materials which are somehow intermediate between 
regular solids and fluids. As macroscopic matter they behave as solids but they are definitely not 
solid at the molecular level. 
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A piece of  rubber, a boiled egg, a cup of  custard and a piece of  biological tissue can all be 
classified as macroscopic solids. They all have shear rigidity and develop restoring forces when 
extemaUy applied forces deform them. These solids are however quite different from ordinary solids 

- metals, ionic crystals, minerals or even glasses. Their most obvious peculiarity as solids is that 
they are soft. They are easier to deform and require smaller stresses for a given strain. Typically 
they can also sustain much larger strains reversibly and also before they break. 

The origin of  the difference between these soft solids and other solids is microscopic. In all the 
cases we have mentioned the soft solids are not completely rigid in the sense that they are not rigid 
down to the microscopic molecular level. One cannot define a rigid molecular reference state for 
any of the soft solids we have mentioned. 

One distinguishes between solids and liquids as condensed states of  interacting atoms. In a tightly 
bound solid the positions of  the atoms are fixed - there exists a rigid atomic reference configuration 
which describes the equilibrium state of  the solid. This makes it possible to disregard most entropy 
considerations and to describe their mechanical properties by a Cauchy-Born expansion. There is 
no such reference configuration for the atomic positions in a liquid. One describes a fluid in terms 
of  averaged quantities, like the particle density, which involve statistical averaging over the atomic 
positions. A static liquid can sustain a stress, pressure, and also has a static elastic constant, a 
compressibility. But they cannot be related to deviations from a rigid atomic reference configuration. 

Soft solids are in a way intermediate between liquids and solids. They are solids from a macro- 
scopic point of  view because they have shear rigidity but are not solid at the atomic level. A rigid 
atomic reference frame does not exist - the fluctuations in the atomic positions are very large. This 
is similar to what one finds in liquids. One can, however, define a rigid reference frame at a larger 
scale alter some partial statistical averaging. The reference frame which is responsible for the shear 
rigidity is defined a posteriori after this averaging over the positions - in terms of the positions 
of  the cross-linking junctions in the polymeric network and not in terms of the positions of  the 
monomers and of  the solvent molecules in a gel. 

The correctness of  this description is most clearly seen in the actual theories one uses in describing 
the mechanical properties of  specific soft solids. One thinks, in particular of  the classical Flory- 
Graessley-Edwards theory of  rubber elasticity (Flory, 1953, 1976; Graessley, 1975; Pearson, 1977; 
Deam and Edwards, 1976) and of the "infinite cluster" percolation theory of  gelation of  Stockmayer 
(1943, 1944; Zimm and Stockmayer, 1949) and its generalization by Stauffer (1976) and deGennes 
(1976). We also mention a very recent development of  these theories (Panyukov and Rabin, 1996) 
which greatly enhances the sophistication of  the statistical analysis. 

These theories use models which incorporate a lot of  physical insight and also have a lot of  
predictive power. They use explicit "network" models which ascribe shear rigidity to a bonded 
network which permeates space. They also contain very successful schemes for calculating the shear 
modulus and other quantities. They are however constructed in a way in which the relationship to 
the general CB theory and even the need for a rigid reference frame is not obvious. 6~ 

6m We single out these theories because they are capable of explicit predictions of shear rigidity. Along a different line 
one has less explicit theories, such as the Flory mean field theory (James and Guth, 1943; Flory and Rehner, 1943; Flory, 
1953) and its development in the deGennes "c* theorem" description (deGennes, 1979b) which in essence identify the 
shear modulus with the bulk modulus (compressibility) and avoid any explicit mechanical evaluations. 
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The models describe, in one way or another, the geometry of the "networks" and it is obvious 
that they are floppy and cannot have any significant BH shear rigidity. Thus, e.g., the Flory theory 
of  rubber elasticity (Flory and Rehner, 1943; James and Guth, 1943) incorporates large fluctuations 
in the positions of  the monomers. These unquenched fluctuations are implicitly important in the 
theory in defining the so-called "osmotic pressure" and in allowing one to treat the polymer chains 
between the crosslinks as Gaussian and therefore as entropic - rather than mechanical - springs. 
This would not be consistent if the monomer positions were fixed in a rigid CB reference state and 
the positional fluctuations of  the monomers were therefore quenched. 

These theories describe solids in terms of  homogeneously floppy networks which, as we have 
shown in detail above and already in Alexander (1984, 1985), can only develop shear rigidity when 
their bonds are stretched. We will argue in the following that the fact that they are more or less 
fluid at the molecular level is essential because it is the source of  their negative network stresses. 

14.2. The Lindemann ratio 

One analyzes the mechanical properties of  solids by studying the CB expansion of  their mechanical 
energy around a microscopic reference configuration. The consistency of this expansion procedure 
is not obvious. When it is applied one assumes, at least implicitly, that fluctuations - both the 
thermal fluctuations and those appearing in macroscopic shears - are small enough. We have already 
discussed this in Section 2.3. One can regard the requirement that the fluctuations calculated from 
the harmonic expansion are small as a consistency criterion which checks the consistency of  the CB 
expansion procedure. 

The need for consistency is of  course quite general. It turns out however that for solids with 
reference states which are rigid at the atomic level consistency is assured in a fairly trivial way by 
the Lindemann melting criterion because such solids melt before the fluctuations become large. Thus 
the incorporation of fluctuations into the theory has no dramatic effects. 

As we will show large ergodic fluctuations are an essential ingredient of  the description of  soft 
solids. Under the conditions one envisages in the description of soft solids the interatomic interactions 
do not fix all the atomic positions but the macroscopic properties are nevertheless those of  a solid. 
It is therefore necessary to discuss carefully how this is possible. 

14.2.1. The general rigidity criterion 
The Cauchy-Born procedure, the expansion in positional deviations, {u}, from a reference state, 

{R}, does not make sense as a mathematical procedure when the reference configuration {R} is not 
well defined. The fluctuations around the reference state must be so small that the reference state 
retains its microscopic structure in the presence of  fluctuations. This means that the fluctuations in 
the distances between the particles must be small: 

R----~. 4 1 ,  (14.1) 

Eq. (2.4), so that the reference configuration defined by {R} remains reasonably well defined. It is 
natural to formulate this in terms of  the Lindemann ratio 

~#~.: = (u~ ) /R~:. (14.2) 
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which compares the fluctuations of  atoms i and j relative to each other, (u2.), to the equilibrium 
separation of  these atoms in the reference configuration Rij. 62 

The general criterion for the rigidity of  the reference state {R} in the presence of fluctuations 
is that the Lindemann ratio which one calculates from the harmonic expansion is small for all the 
1 N ( N -  1) pairs [i j] 

~ i j ~  1. (14.3) 

This general rigidity criterion (GRC) assures that the microscopic reference configuration {R} is 
rigid and describes the reference state of  the solid adequately. 

As we explained in Section 2 the formal CB theory of the mechanical properties of solids which we 
described in Part I assumes a rigid reference configuration and therefore assumes, at least implicitly, 
that the inequality (14.3) holds. If this inequality does not hold for all pairs one cannot be sure 
that the expansion of the energy in the deviations from the reference configuration {R} is indeed a 
convergent expansion. One can therefore regard the inequality (14.3) as a formal  criterion for the 
possibility of describing the mechanical properties by a Cauchy-Born expansion. 

In the following it will be convenient to regard the Lindemann ratio as a function of  the distance. 
We shall therefore write 

~ ( r )  = (~ij) 6(r -- Rij), (14.4) 

where the brackets indicate averaging over the pairs [/j]. 

14.2.2. The short range limit o f  the Lindemann ratio 
The reference configuration {R} defines a microscopic minimal distance a. The general rigidity 

criterion (14.3) implies that the Lindemann ratio has to be small down to this scale 

~a(a) <~ 1. (14.5) 

In many cases a is also comparable to the range of the interactions. 
As a criterion for the validity of  the expansion procedure the inequality (14.5) is the most important 

part of  the general inequality (14.3). It does not make sense to describe an interaction of  range a by 
the leading terms in its expansion around a configuration with an equilibrium separation comparable 
to a if the inequality (14.5) does not hold. 

The meaning of the short range rigidity criterion (14.5) is of  course simply that the material is 
rigid at the atomic level. Ordinary solids do indeed represent rigid arrangements of  their constituents 
and it therefore seems almost obvious intuitively that the neighboring atoms in a solid must be 
strongly bound to each other. 63 From this point of  view it is therefore somewhat surprising to 
notice that (14.5) is quite dramatically violated at the atomic or molecular level, i.e., at scale a, for 
large classes of  materials which have shear rigidity and are therefore macroscopic solids - namely 
for soft solids. 

62 We call the quantity defined in Eq. (14.2) the Lindemann ratio because of its obvious relation to the Lindemann 
melting criterion (Lindemann, 1910). 

63 See, e.g., Peierls (1954, p. 53). Note added in proof. 
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14.2.3. Macroscopic rigidity 
The short range rigidity - the inequality (14.5) - is not formally necessary to assure shear rigidity. 
A material is conceived as solid if  it has macroscopic shear rigidity. This is a macroscopic require- 

ment. The condition that a solid has shear rigidity must also be macroscopic. It is a requirement on 
what happens at large, macroscopic length-scales. Fluctuations in the relative positions of  particles 
separated by macroscopic distances, L 

L/a >> 1 

have to be small if the reference configuration is to describe a solid. The macroscopic rigidity of  a 
solid depends on the long range limit of  the Lindemann ratio, Eq. (2.5), 

lim ,~q~'(L)--O. (14.6) 
L ~  

One cannot conceive a solid for which this does not hold. We can even regard this macroscopic 
rigidity criterion (MRC) as a general formal definition of a solid which more or less coincides 
with one's intuitive concept of  a solid. It is evident that the macroscopic fluctuations of  a solid can 
only be small when the shear modulus, /.t, does not vanish. Because of  this the inequality (14.6) is 
equivalent to the requirement that there is a finite shear rigidity. 64 

One can be a little more specific without loss of  generality. The long range fluctuations in a solid 
are dominated by acoustic phonons with a linear dispersion and are therefore universal. This follows 
from translational invariance. The standard calculation gives for a d-dimensional solid 

5f(L ) cx (kT/p) (alL) d (14.7) 

which uses 

ad f (u(O)u(Z)) (qZ) a-' d ( q £ )  
1 - c o s ( q Z )  a d 

(qL)  2 oc Zd_2 . (14 .8)  

It follows from (14.7) that the Lindemann ratio is small at macroscopic distances for all solids. 
This does not assume the microscopic inequality (14.5) and does not depend on it. The fluctuations 
at scale a can be large. 

14.2.4. Long range order 
The MRC is a very weak criterion for a solid. 
Solid state physics texts usually define a solid by long-range-order (LRO) which compares the 

long-range fluctuations, (u(O)u(L)), to the minimal atomic separation, a. Thus LRO requires that 

< ( u ( o )  - u(Z)) 
a 2 

1 (14.9) 

for macroscopic distances L. From Eq. (14.8) one finds 

( ( u ( 0 )  - -  u(L)) 2) = 5¢(L) oc (14.10) 
a 2 

64 One could also say that the fluctuation in (14.6) are related to the shear modulus by the fluctuation dissipation theorem. 
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Thus LRO is a much more stringent condition then the MRC which we defined above. One notes: 
1. LRO is not consistent with large fluctuations in the atomic positions. 
Long range correlations in the fluctuations are small so that 

((u(O) - u(L)) 2) ~ 2 (u 2) (14.11) 

and the inequality (14.9) therefore implies 

~ [  \uZ----L ~ 1, (14.12) 
a 2 

where (u 2) is the mean square fluctuation in the position of  a single atom. 
Macroscopic rigidity is not restricted in this way. It is consistent with fluctuations which are large 

compared to the interatomic distances, a, but still not macroscopic 

L 2 ~ (u 2) ~ a 2 (14 .13)  

which is consistent with (14.6) but not with (14.9). 
2. LRO is also a much more stringent criterion for a solid in a universal and deeper sense which 

we mention for completeness even though it is not really relevant to our discussion. 
One knows (and teaches) that one-dimensional and two-dimensional crystals are impossible be- 

cause their fluctuations are too large so that they have no LRO (Peierls, 1934; Landau, 1937a; see 
Eq. (14.10) above). This is taken to mean that there are no solids for these dimensions. This is how- 
ever a question of the definition of  a solid. There is obviously no restriction on the dimensionality 
of  a solid if one is satisfied with the weaker MRC, Eq. (14.6). One- and two-dimensional crystals 
are solids according to this weaker criterion because, obviously, for d < 2. 

(a/L) a ~ l but (a/L) a-2 ~ l . 

LRO appears naturally as a criterion in the theoretical discussion of  crystalline solids. It expresses 
the requirement that the periodicity of the crystal is maintained over long distances. Formally LRO 
can also be defined for amorphous solids which have no crystalline periodicity. One can always 
compare the fluctuation in Rij to the microscopic length-scale a as in (14.9). In this context the 
meaning of  this comparison is however less evident. It is not clear why one should require that 
the fluctuations at the macroscopic scale L, should be small compared to the microscopic length a. 
This length plays no obvious role in the macroscopic behavior when there is no periodicity. It is 
even difficult to construct an experiment which would detect the presence, or absence, of  LRO in 
an amorphous solid. For crystals the shape of  the Bragg peaks is a clear indication of  periodicity. 
Detecting the effect of  fluctuations on the speckle pattern is a much more delicate thing. 

It is therefore not obvious that one should require LRO in this context. We believe that for most 
purposes the MRC is a more meaningful general definition of  a solid than LRO, especially when 
one is interested in amorphous solids. 

14.2.5. Consistency and the Lindemann meltin9 criterion 
The short and long range inequalities for the Lindemarm ratio - Eqs. (14.5) and (14.6) - and 

LRO - Eq. (14.9) - all follow from the familiar Lindemann criterion for the melting of a solid 
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(Lindemann, 1910) 

<U2>T - -  < 0 . 1 ,  T < T m ,  (14.14) a 2 

where (U2)T is the sinole particle mean square deviation calculated from the harmonic expansion at 
temperature T and Tm is the melting temperature. 

It is well known that the Lindemann (1910) melting criterion, the inequality (14.14), implies 
LRO because long range correlations in the fluctuations are weak, Eq. (14.11). The microscopic 
inequality (14.5) follows, a forteriori, because the nearest neighbor motion is strongly correlated 
below the melting temperature so that 

(uZ)R,i~a = 2 ((u 2) - (ui-uj)R,j~a) ~ 2 (u2) .  (14.15) 

It follows that for most solids the Lindemann melting criterion assures that all the consistency 
criteria we have discussed are satisfied throughout the existence range of the solid. If one uses the 
harmonic expansion to calculate the fluctuations of  a solid at high temperatures 

T >  Tm 

one can of course formally find arbitrarily large fluctuations. For solids which obey the Lindemann 
melting criterion this does not mean that one is dealing with large fluctuations in the solid state. 
It simply means that one is using the wrong theoretical approach. One is trying to describe a liquid 
as though it were solid - by expanding around a reference state which does not really exist. Formally 
this is of course possible. The energy g( r )  which describes an ice cube also describes the liquid 
formed by the same molecules and therefore can define an apparent equilibrium state {R} around 
which one can formally expand. But this expansion does not describe the mechanical properties of  
the melt. 

Fluctuations are never large for solids for which the Lindemann melting criterion holds. Because 
of this the need for using the Lindemann ratio explicitly as a consistency check for the expansion 
procedure does not arise when this melting criterion applies. 

The Lindemann melting criterion applies to most solids and describes their melting quite accurately. 
It is, however, not useful in describing soft solids. It is obvious that soft solids can often have 
fluctuations in the atomic positions which are much larger than the nearest neighbor separations as 
in Eq. (14.13). In general soft solids do not melt and they also do not obey the Lindemann melting 
criterion when they are solid. 

The physical reason for this difference between soft and rigid solids is model dependent. Soft solids 
are complex materials with a hierarchy of  different interactions. Thus, e.g., polymeric networks are 
not rigid at the monomer level because the intermolecular interactions between monomers belonging 
to different chains are relatively weak above the glass temperature. This only changes at the glass 
temperature which can be considered as a "melting temperature" for the inter-chain nearest-neighbor 
interactions between monomers. At high temperatures these interactions induce no strong short dis- 
tance correlations in position. Only the strong chemical interactions inside the polymer chains and 
at the crosslinks have to be considered when one wants to describe rubbers. 

For wet gels the solvent is liquid and the solvent molecules obviously also have no fixed reference 
positions. 
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In simpler materials which do not have such complex internal structures and such radically different 
types of  interactions one can almost always identify local atomic rigidity with the appearance of 
macroscopic solid properties. 

14.3. The parametrized free energy 

We recall that we introduced the general rigidity criterion (14.2) initially as a purely formal 
criterion for the applicability of  the CB expansion technique. We argued that one can describe the 
mechanical properties consistently by expanding the many particle energy 8({r})  around a reference 
state only when one can find a reference state, {R}, which is rigid. This means, in particular, that 
the short range criterion (14.5) must hold at the minimum distance of  {R}. If one cannot find such 
a reference state then it is not possible to construct the theory in this way by a CB expansion 
around {R}. 

This by no means always implies that the model cannot describe a solid at larger scales. It may be 
possible to coarse-grain the model and thus obtain a formulation for which one can define a consistent 
CB reference state. 

14.3.1. The averaging procedure 
When the direct expansion of the energy g({r})  shows large fluctuations at the initial atomic 

level one has to perform some prior statistical averaging, prior to the definition of  a reference frame. 
This averaging replaces the microscopic energy g({r})  by an averaged functional which we will 
call a parametrizedfree energy (PFE) (Alexander, 1985). 

We only write schematically 

r, v,. . .)  

= kTlog ( f D{r} .116(xi- x,({r}))exp - l[g({r})-  p. V,...]). (14.16) 

Like the usual definition of  a free energy this describes statistical averaging subject to thermodynamic 
constraints designated T, V, . . . .  We call it a parametrized free energy because of the extensive set 
of  M microscopic constraints 

xi = xi( {r} ) (14.17) 

which define the positions of M new reference points {x}, which remain as parameters, and are 
defined as functions of  the N positions of the original particles {r}. 

The parametrized free energy, ~-({x}; T, V,...) is a thermodynamic potential in that it results 
from a statistical averaging process and depends explicitly on thermodynamic variables T, V, . . . .  
The statistical averaging is however only partial. The parametrized free energy, ~ ( { x } ;  T, V,...), is 
also a function of the M microscopic positions 

{X} : {Xl , . . .  ,X~ . . . . .  XM}. (14.18) 

One can consider the averaging process (14.16) as a decimation process on the original microscopic 
variables 

{r} ~ {x},  g({r})  ~ ~ ( { x } ;  T,V, . . . ) .  (14.19) 
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The number M, the number of entities whose position are the x,, is an extensive quantity proportional 
to the volume like the number of atoms, N. In this process the number of microscopic degrees of 
freedom is reduced from N to M. 

The purpose of this reduction in the number of degrees of freedom is to construct a function for 
which a CB expansion can be carried out consistently. The basic assumption of this procedure is 
that the N - M  degrees of freedom which are eliminated by the averaging procedure, (14.16), are 
ergodic and therefore have to be treated by ensemble averages as in the statistical description of 
a liquid. Only the remaining variables can be considered as labeled particles in a CB expansion. 

An example is the replacement of the N monomer positions, denoted by (r}, by the positions of 
the M cross-linking junctions, {x}, in polymeric network models. One (implicitly) averages over 
the positions {r} using the positions {x} as constraints on the averaging process. Discussing the 
mechanical properties of rubbers and gels in terms of the positions of the cross-linking junctions, 
{x}, rather than in terms of the positions of the monomers and solvent molecules, {r}, means, in this 
terminology, that one is constructing a theory based on a parametrized free energy ~({x} ;  T, V,...) 
rather than in terms of an energy ~({r}). 

14.3.2. Consistency conditions on the expansion of  PFE 
The purpose of the prior averaging was to obtain a function - the PFE, ~ ( ( x } ;  T, V,...) - which 

can be expanded consistently. The derivation of a parametrized free energy necessarily involves 
averaging over some internal modes or DOF. These modes contribute to the large fluctuations in 
the expansion of the energy g({r}) but do not appear as fluctuating modes in the expansion of 
the parametrized free energy ~({x} ;  T, V,...). This reduces the fluctuations in the expansion of 
~ ({x} ;  T, V,...) in comparison to those in the expansion of the energy g({r}). If one has performed 
enough prior averaging so that the fluctuations in the expansion of ~-({x}; T, V,...) are small than 
one can use the CB expansion of this function consistently. 

We can make this explicit. 
The parametrized free energy ~({x} ;  T, V,...) determines an equilibrium state 

from 

(14.20) 

] +f; =0 (14.21) v , . . . )  ex, 

{x} 

for all the M sites ~. {X} is a microscopic equilibrium state of ~ ({x} ;  T, V,...), exactly as {R}, 
Eq. (3.12), is defined as a microscopic equilibrium state of g({r}) by Eq. (3.13). 

The expansion of the parametrized free energy ~-({x}; T, V,...) around the equilibrium reference 
state {X} can be carried out exactly like the expansion of the energy g({r}) described in Part I. 
In analogy to the consistency requirement (14.3) for the expansion of the energy one requires for 
the consistency of the expansion of ~ ({x} ;  T, V,...) around {X} that 

L,e~ = 2 2 (14.22) 

for all pairs [aft]. 
The inequality (14.22) is a consistency requirement on the expansion around {X}. It can also be 

considered as a condition on the amount of statistical averaging which was necessary in deriving 
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the function ~({x} ;  T, V,...). In the context of the transformation, Eq. (14.19), this is a condition 
on the functional form of the constraints x~ = x~({r}) and on their number, M. 

14.3.3. The Born-yon Kdrmdm rigidity length 
The averaging which replaces the N atoms with positions ri by the M new particles at the positions 

x~ can be regarded as a coarse-graining process. We have eliminated some degrees of freedom by 
the averaging process so that 

M/N ~ 1. 

Thus the density of the new points is lower. This defines a coarse-graining length which we have 
called the Born-von Kfirmfin length (BvK1), ~BvK (Alexander, 1984, 1985). The parametrized free 
energy is defined so that 

~(~BvK)< 1 (14.23) 

when the fluctuations are computed from the expansion of ~ ({x} ;  T, V,...) around {X}. 
The model does not describe a solid on smaller scales: 

a<r<¢BvK. (14.24) 

Conceptually one can think about this as a crossover. The Born-von Kfirrnfin length is a cross- 
over length. Relative fluctuations are large locally, at scale a, but become small when one averages 
over regions larger than the BvK1. A piece of material larger than ~Bv~:, will be rigid and its shape 
will only exhibit small fluctuations. On the other hand, small pieces of the same material, smaller 
than ~BvK, are not rigid. The interactions internal to such a small region do not create a rigid 
configuration. Their mechanical properties can therefore not be treated by techniques and concepts 
which assume the existence of a rigid reference frame. These small scale properties can only be 
analyzed by statistical averaging techniques which do not require a rigid reference configuration. 

14.4. The special features of  a parametrized free energy 

We have made a considerable effort to discuss the formal meaning of a parametrized free energy 
~({x}) ;  T, V,...) and of its derivation from the bare energy ¢({r}). We justified this by point- 
ing out that soft solids cannot be described by expanding their "bare" energy, ¢({r}), around an 
atomic reference configuration {R}. They can only be described as solids by the CB expansion of 
a statistically averaged quantity, the parametrized free energy ~({x} ;  T, V,...), around the reference 
configuration {X}. This is of course just a formal description of what one does conventionally in 
the Flory theory and in other microscopic models for soft solids. 

The purpose of this detailed discussion was not to construct a formal averaging procedure. The 
motivation for discussing the distinction between an energy and a parametrized free energy is to 
emphasize the real differences, the real effects of the prior averaging process which make soft solids 
different. We want to emphasize the qualitative theoretical differences between soft solids, described 
by a PFE and tightly bound solids which can be modeled directly by the expansion of their atomic 
energy. 
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14.4.1. Similarity of  the expansion 
In a general theory one is interested in the most general formal expansions. 
At first sight it would therefore seem that the distinction between "parametrizedfree energy" soft 

solids and tightly bound "energy" solids cannot be very important. The free energy ~-({x}; T, V,...) 
is a translation-rotation invariant function of the positions {x} and this determines the general form 
of its expansion in these variables - j u s t  as translation-rotation invariance determines the most 
general form of the expansion of ~({r}) in {r}. Everything we did in Parts I and II applies to 
the expansion of ~-({x}; T, V,...), when considered as a function of the positions {x}, just as it 
does to the expansion of 5~({r}) as a function of {r}. It therefore does not seem to matter very 
much if one calls the function one is expanding an energy, #({r}), or a parametrizedfree energy, 
~({x};  T, V,...). Certainly the general form of the expansion of the energy g({r}) in the ui and 
uij, will not look different from the expansion of the parametrized free energy ~-({x}; T, V,...) in 
the respective variables u: and u~. The form of this expansion will not allow one to make any 
distinction. 

14.4.2. Network and non-network stresses 
The most important difference between an energy and a PFE is the dependence of ~-({x}; T, V,...) 

on thermodynamic variables. 
The dependence of the energy 5~({r}) on the atomic positions {r} describes the mechanical 

properties of the system of N particles completely. Because of this the CB expansion of the energy 
around the reference configuration, {R}, gives a complete description. It defines the microscopic 
dynamics, the stresses in the reference state and the elastic constants. 

The CB expansion of the parametrized free energy ~({x};  T, V,...) also describes the mechanical 
properties of an N-particle system but, because it also depends on thermodynamic variables, this is 
not a complete description. We have indicated this by including the volume, V, as an explicit variable 
in (4.16). 

The network stresses are determined by the procedure we described in Section 4. The expansion 
of ~-({x}; T, V,...) around {X} defines stress tensors at the sites exactly as in Eq. (4.11) 

1 X-" (X~#,X~#) (14.25) 
' 

where the bond tensions are defined by the derivatives 

[ ~ - ({x} ;  T, V,...)I (14.26) 

as in Eq. (3.27). The bond tensions appear in the harmonic energy, Eq. (6.11), and the site stresses 
define a network stress field, anet(x). This network stress is uniquely determined by the expansion 
of the parametrized free energy ~({x};  T, V,...) around the reference state {X}. In the continuum 
limit the network stress multiplies the first and second order network strain in the elastic energy 

/-)afl'/5 exactly as in Sections 4 and 6. Similarly the network elastic constants ,--,et are defined by the 
second derivatives of the parametrized free energy ~({x}; T, V,...) with respect to the distances x~ 
exactly as in Eqs. (5.23) and (5.26). But these are only the network contributions to the stresses 
and to the elastic constants. 
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Because the PFE depends explicitly on thermodynamic variables there are additional contributions. 
There are additional, liquid-like contributions to the stress and compressibility 

pliq = ~ ( { x } ;  T, V,...) gliq = O2.,~({x); T~ V,...) (14.27) 
~V ' ~V 2 

which are separate from the network contributions - the network pressure pnet, and the network bulk 
modulus, K net. 65 

The total pressure, ptOt, the isotropic part of  the total stress in the soft solid is therefore a sum 

ptOt=  p n e t +  pliq . ( 1 4 . 2 8 )  

ptOt is the pressure which exerts a force on the external boundaries and has to be balanced by 
external forces, but only the network pressure pnet multiplies the second order strain - a term 

pnet ~ (~u~)2 (14.29) 

in the elastic energy. Because of this the second order strain can appear in the bulk elastic energy 
of  soft solids which are not stressed by any external forces. We have thus shown that a soft solid 
can have stress-induced shear rigidity even when the average total stress vanishes. 

ptOt = 0 (14.30) 

does not imply that the network pressure vanishes but only that there are no forces on the boundaries 
and 

pliq z --  pnet . 

We discussed an example, the square foam, in Section 8.1.3. 
Because of  these intrinsic network stresses stable soft solids can be described by HFN. 
The total bulk modulus is of  course also a sum of  two contributions: 

K =/£net _~_ Kliq • (14.31) 

This means that the bulk modulus can be very different from the elastic constants which determine 
the shear rigidity which is often observed. But these are only quantitative effects. 

14.5. Entropic interactions 

The interactions which appear in the expansion of f f ({x};  T, V,...) result from statistical aver- 
aging and can have entropic contributions. This means that they can look very different from the 
microscopic bare interactions between atoms. 

We are interested in polymeric network models. The entropic interactions there are described 
by flexible polymeric chains which can be elongated by large factors compared to their equilibrium 
separation. Because of this the internal stresses in rubbers and gels can become much larger compared 
to the BH interactions than in tightly bound solids with microscopic atomic interactions. 

65 The argument can of course be generalized to situations where there are other liquid stresses besides the pressure. 
An example could be a gel in a nematic solvent. 
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One has to compare the coefficients in the stress-induced terms 

~ n i  

Rij (u~)2 (14.32) 

- Eq. (6.9) - to the coefficients in the unstressed harmonic terms 

~ i j /  II x2 tu~;) (14.33) 

as in Eq. (5.5). The dimensionless ratio of  the coefficients in these expressions 

~//ji ni ini (14.34) 
Rig" ~ ;  -- ~ij 

can be interpreted as an effective bond strain 

t l i n i  t~iij i 
ij - ~-~,j, (14.35) 

where 61ff i is the elongation of the bond [i j] required to give the initial tension ~ini. 
The quantum mechanical interactions responsible for binding in tightly bound solids are asymmet- 

rical and have relatively large anharmonic terms. They become soft for large elongations so that the 
maximum elongation they can sustain is relatively small 

ini qij '~ 1 .  ( 1 4 . 3 6 )  

Thus when the interactions are atomic positive bond tensions cannot become large enough to be 
important in the harmonic energy compared to the Born-Huang terms. 66 

In contrast one can very easily have large bond tensions for Gaussian chains because 

~-//jini kB T 
- - ~ j - -  (14.37) 

Rij N 

so that 

ini qij "~ 1. (14.38) 

The stress-induced terms in the harmonic expansion can therefore become large and important. 
The fact that Gaussian chains can be stretched by a large factor, which we used in (14.38), 

explains that the large elastic range observed in rubber elasticity is familiar. We invoke the same 
property of polymeric chains here to show that the internal stresses in polymeric networks can 
potentially become large. This means that the stress-induced terms in the harmonic expansion can 
become important for rubbers while they are never really important for the bulk properties of  tightly 
bound solids. 

66 Atomic interactions are very asymmetric and large destabilizing negative bond tensions are certainly possible as in 
the materials in geophysical conditions under large external pressures. We shall discuss this in detail in Section 15. 
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15. Random packing and structural buckling 

15.1. Positive stresses 

15.1.1. The nature o f  positive initial stresses 
For a number of  reasons the role of  positive initial stresses in a solid is very different from that 

of  negative stresses. 
In the context of  our discussion in Sections 13 and 14 the most obvious of  these is that the 

direct effect of  positive stresses is destabilizing. For this reason the magnitude of  the stresses in 
open structures is limited by structural buckling. If the positive stresses become too large any open 
structure will buckle to a denser structure which can support the stresses. 

On the other hand, there is no real limitation on the magnitude of  positive stresses at the 
microscopic level. For this reason compact structures can support very large stresses. Large pos- 
itive stresses are also relatively easy to produce by external or internal compressional forces. 

This means that positive stresses are not compatible with tenuous or floppy structures - they can 
only appear in stable reference states in structures which have a BH rigid bond structure. 

Since positive stresses can be large one also cannot neglect the induced indirect effect of  the 
stresses, Section 6.1.1, on the BH coefficients and elastic constants. As we will show this effect 
tends to be stabilizing and, moreover, is much larger than the destabilizing direct effect of  the same 
stresses. 

One therefore expects positive stresses to have two important functions: 
1. When solidification occurs initially in relatively tenuous, floppy structures stress-induced struc- 

tural buckling will dominate the process leading to the final stable reference state. 
2. For sufficiently large stresses the BH interactions are predominantly due to the indirect effect 

of  stresses on the repulsive cores. 
To show how this works we will discuss the mechanical properties of  packings of  rigid particles 

with contact interactions. For simplicity we will also assume that the stresses are purely external, 
imposed stresses. 

As formulated this is directly relevant to the description of  granular matter - e.g. sand - from 
a microscopic point of  view. We just note that geometrical packing considerations of  atoms with 
reasonably well-defined atomic radii are also central to the interpretation of  structural information 
even in crystallography (see, e.g., Evans, 1966, in particular Section 3.10 and ch. 9) and that 
attractive interactions are often of  much longer range than the repulsive interactions. For this reason 
similar considerations can be applied in many other contexts. 

15.1.2. Structural bucklin9 
When the initial stresses are all positive their direct effect is destabilizing - Section 13.2. Because 

of  this floppy networks cannot support positive stresses. Solids can only sustain destabilizing stresses 
when the destabilizing effects of  the stresses are weaker than the BH terms which stabilize the same 
deformations. The most familiar example of  this effect is the Euler buckling of  loaded columns 
(Euler, 1755; Landau Lifshitz, 1970, Section 21). 

For three-dimensional structures the analogous effects mean that the structure becomes linearly 
unstable for some limiting stresses. This instability sets a limit to the positive stresses which the 
structure can sustain. When the stresses exceed this limit some deformational modes become unstable. 
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Fig. III.3. Structural buckling in a double well potential. 

The structure buckles to a different structure which is stronger and is stable at the given stresses. 
It is natural to call this instability structural buckling. 

A network which is macroscopically floppy, i.e., not completely rigid, cannot support any positive 
stresses. The free shears of  such a network become unstable in the presence of  positive stresses. 
As soon as one applies stresses the floppy modes of  the network buckle. The result of  the buckling 
must be a new structure which is BH rigid and not floppy. We describe a simple example in 
Appendix E. 

15.1.3. Double-well buckling - an example 
The simplest example of  structural buckling are transverse modes with negative tension - e.g., the 

librational modes of  a hexagon in the honeycomb model of  Section 11. As a function of  distances 
the energy is 

arij + a 4 + . . .  

For a transverse mode we substitute 

6r , /~ (u~)2/2Ro 

which gives a double well potential 

(u I ~2 ~ j  .4 
2--~i," " " + < u i /  

" = 0 is then unstable and the mode buckles when the bond tension is negative. The equilibrium at u~j 
to one of  the minima. See Fig. III.3. 

This is of  course schematic and oversimplified. One does however expect that, quite generally, 
some stabilizing anharmonic terms will eventually dominate. It is, e.g., easy to see that for the free 
torsional mode of  a hexagon which we considered in Section 11.1 - Fig. II.15 - the anharmonic 
terms we included will limit the torsional amplitudes and make the torsional potential into a double 
well potential. 

15.1.4. The buckling edge 
Assume one starts from a floppy network state with large BH interactions. Even small stresses 

will cause buckling which will continue until a geometrically rigid reference state is reached. This 
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follows from our analysis in Section 10 because all, or at least most of the free DOF will disappear 
by buckling. One therefore expects that a state which is just barely rigid will be reached. Such 
a state is in a way critical because it represents a balance between the stress induced destabilizing 
effects and the stabilizing BH interactions. We call this a stress-induced structural buckling edge. 
At the buckling edge one expects that the destabilizing effect of the positive stresses, Eq. (13.23), 

- ~  (Gu~) 2 

is approximately equal to the stabilizing effects of the BH interactions for the same reference con- 
figuration 

lt(a)(8,u~+8,u~) 2, i.e., ~ ( { R } , ~ ) ,  

where {R}~ is the new BH rigid reference state, the final state of the buckling process. 
This is quite general. In the following we shall discuss structural buckling and the rigidity of 

the stable reference state for a specific model - the packing of rigid particles. We emphasize the 
peculiarities of a reference state which results from a structural buckling process. 

15.2. The packing model 

We consider the most simple mechanical model. 
The particles are assumed to be in contact - both before and after the buckling. All "free volume" 

and rearrangement entropies are neglected. The interparticle forces are all repulsive contact interac- 
tions. The particles interact only through the energies of  their stressed contacts. The arrangement of  
the particles and their contacts defines a reference state for the elastic properties. 

Since there are no attractions the initial stresses in the reference state are homogeneously positive. 
We shall call such a model a packing. 

15.3. Geometrical rigidity of  a packing 

The interactions in a packing vanish with the external forces. In the zero stress limit the reference 
state becomes a purely geometrical packing of the constituent particles which are considered as hard 
objects having their unperturbed shapes. The unstressed limit of the reference state is a packing 
of these hard objects with unstressed contacts. Because there are no forces the contacts are point 
contacts. The rigidity of this unstressed packing is a purely geometrical problem. 

In Sections 7 and 9 we defined the geometrical rigidity of  a graph, a bonded network of point 
objects. A bonded network is geometrically rigid if it cannot be deformed without changing the length 
of any bond. In analogy one can define the geometrical rigidity of  a packing of hard, undeformable 
objects. One can ask if the packing can be deformed continuously by rotating and translating the 
constituent grains without deforming any of  them and without breaking the contacts between any 
two grains. A packing is geometrically rigid if it cannot be deformed subject to these conditions. 
This defines the rigidity of a packing as a purely geometrical property of the arrangement of rigid 
particles and is a generalization of  the definition of  geometrical rigidity in Section 7.2. 

The geometrical rigidity of a packing depends only on the shapes of  the packed hard objects and 
on the arrangement of their contact points. 
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Fig. III.4. A packing of discs and the bonded network of their centers. 

15.4. Geometrical rigidity o f  packings of  spheres 

We consider the packing of hard spheres first. 

15.4.1. Packin 9 constraints 
Quite generally we can describe a packing of  spheres by the positions of  the centers of the spheres 

rg. When the spheres i and j are in contact one must have 

( r ,  - rs ) 2 = ( p ,  + pj)2, (15.1) 

where p~ and pj are the radii of  the sphere i and j ,  respectively. This is the condition that the two 
spheres are in contact. A packing of  spheres must satisfy an equation like this for every contact 
point between spheres. 

Since the spheres are hard they cannot overlap and one must also satisfy the inequalities 

( r  i --  I'j) 2 >(,O i q-/gj)  2 (15.2) 

for a / /pairs  [i j] which are not in contact. 
Any solution of Eq. (15.1) which also satisfies the inequalities (15.2) describes a possible con- 

figuration of  the packing of spheres. 

15.4.2. Mapping on a bonded network 
The solutions of Eq. (15.1) describe the configurations of the centers of the spheres 

( r )  = ( r , , . . . , r ,  . . . . .  • ( 1 5 . 3 )  

The graph of the centers of the spheres connected across the contact points is a bonded network 
with a "bond" of length 

Rij = Pi + Pj (15.4) 

associated with each contact point [i j]. We illustrate this in Fig. III.4. 
The geometrical rigidity of this bonded network is a necessary condition for the rigidity of 

the packing. If  the bonded network is not geometrically rigid, then the packing cannot be rigid. 
The packing can then be deformed continuously without changing the set of contact points, {[ij]}, 
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Fig. III.5. Restriction on the freedom of three discs with two contact points. 

also satisfy the excluded volume inequalities. For the rest of  the circle the discs 1 and 3 overlap 
and the inequality 

rl3 > P l  + P3 

is violated. 
This effect always amounts to restrictions on the deformations of  the packing. Some of  the bonded- 

network solutions of  (15.1) cannot be realized as packings. The excluded volume restrictions can 
even become so severe that none of  the solutions of (15.1) satisfies all the inequalities (15.2). When 
solutions exist the floppiness of the bonded-network always implies the floppiness of  the packing. 
When the network is floppy the packing must also be floppy over some finite range - if it exists. 

The number of  bonds in a bonded network is fixed - by definition. The number of  contact points 
of  the packing remains fixed for the whole range of allowed deformations which satisfy Eqs. (15.1 ) 
in the open range defined by the inequalities (15.2). 67 

15. 4. 4. Decreasin9 the number of  contact points 
The second difference between the rigidity of  packings and the rigidity of  bonded networks con- 

cerns a decrease in the number of  contact points. 
The bonded network describes deformations in which spheres in contact move around each other. 

It does not describe normal displacements in which the number of contact points is decreased because 
the centers of  the spheres move away from each other. 

Deformations which decrease the number of  contact points 

I r i - ~ l  = pi+ Pj =~ Ir~-O[>p~+ pj (15.7) 

are not allowed by the bonded network constraints (15.1) but are allowed by the packing conditions 
- the excluded volume constraints: 

It,. - rj] _> Pi + pj .  (15.8) 

67 New contact points are of course formed on the boundaries of the excluded volume region where some of the 
inequalities (15.2) become equalities. 
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following the deformations of the bonded network until one reaches the boundaries defined by the ex- 
cluded volume inequalities (15.2), where spheres start to overlap. On these boundaries new contacts 
are formed. 

The FDOF of the bonded network describe deformations in which the centers of the spheres move 
and the contact point between any two spheres slides on their surfaces. In such a deformation the 
positions of  the spheres change but no 2-sphere contacts are broken. Any two spheres which are 
in contact remain in contact. It follows that one can apply the rigidity considerations of Section 9 
to the geometrical rigidity of packings of spheres. In particular the "bond counting inequality" on 
the average number of bonds per vertex, Eq. (9.8), becomes a condition on the average number of 
contact points per sphere 

(ncp) > 2d.  (15.5) 

This contact point count&9 inequality (CPCI) is a necessary condition for the geometric rigidity 
of the packing just as the BCI, Eq. (9.8), was a necessary condition for the rigidity of a bonded 
network. When there are fewer contact points 

(ncp) < 2d (15.6) 

the packing must be floppy. 
There are however two important differences between the rigidity of a packing of hard spheres 

and the rigidity of the corresponding bonded network. 

15.4.3. Excluded volume inequalities 
The first is rather obvious and concerns the role of the excluded volume inequalities (15.2). 
When the bonded network is geometrically floppy, Eqs. (15.1) define a hypersurface 

{[ijl}, {p,}) 

in the Nd dimensional space spanned by the positions of the centers as discussed in Section 10.4. 
All points on this surface describe allowed configurations of the bonded network of centers for 
which the "bonds" across the contact points have the lengths required by (15.1). The other distances 
between centers vary on the surface o({r}; {[ij]}, {p/}). 

The hypersurface o({r}; {[ij]},{pi}) consists of parts of  the "bonded-network" surface o({r}; 
{Rij}bond) defined by the bond lengths (15.4). In general some of the excluded volume inequalities 
(15.2) are violated for the configurations described by large parts of the "bonded-network" surface. 
These configurations of the bonded network cannot be realized by the centers of the spheres in a 
packing of  spheres because some spheres overlap. The range in which one can deform a packing 
of spheres is much more restricted than the range of deformation of  the corresponding bonded 
network. 

We illustrate this for a simple example in Fig. III.5. 
The drawing shows three discs - 1,2, 3 - with two contact points [12] and [23]. This corresponds 

to two distances for the bonded network of  the three centers. For the bonded network the center of 
the third disc, the open circle 3, can be moved over a whole circle keeping the two distances r12 and 
r23 constant. In contrast only the marked arc describes possible states of  the packing of discs which 
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Fig. III.6. Freedom in the packing of discs, the Hilbert condition. 

Rij is not a proper "bond" whose length cannot be changed. The two hard spheres can be moved 
away from each other, disconnecting the contact [ij] if this is possible without violating any of  the 
excluded volume inequalities (15.2). 

The most familiar manifestation of this is the Hilbert local rigidity condition for a single sphere 
in a packing (Hilbert and Cohen-Vossen, 1952, which we discussed in detail in Section 9.3.3 above) 

ncp _> d + 1. (15.9) 

In d-dimensional space d bonds are sufficient to determine the position of  a junction when the 
positions of all the other junctions are fixed but one needs d + 1 contact points to fix the position 
of a single sphere when the rest of  the packing is fixed. One needs the "last" (d + 1)th contact to 
prevent free motions of the sphere which break contacts. 

We illustrate this in Fig. III.6. 
The two "bond lengths" r13 (=Pl +P3) and/'23 (-----P2+P3) fiX twO distances and therefore the position 

of  the center of  the disc 3 in the plane. In the packing problem one only has the inequalities (15.8). 
The packing of Fig. III.6a is not rigid when r~ and r 2 are fixed even though the corresponding 
bonded network is rigid. 

In our discussion below we will assume that the packings are also rigid in this additional sense. 
This means that the Hilbert conditions are satisfied for all spheres and that the generalization of 
these conditions to the rigid motion of  clusters of  spheres is also assured. 

15.5. Geometrical rigidity for grains of general shape 

The generalization of  the above consideration to the packing of  particles of arbitrary shape compli- 
cates the detailed geometrical considerations considerably. The differences concern the effect of  the 
orientational degrees of  freedom of  a rigid object of  general shape on the rigidity of  the packing. 68 

Formally one can generalize the BCI argument: 
A rigid body has d(d + 1 )/2 degrees of  freedom in d dimensional space. Of these d-DOF describe 

its position, say the position of its center of  mass r;. The remaining d(d - 1 )/2 degrees of  freedom 

68 The orientation of a sphere obviously drops out of the rigidity considerations. Only the positions matter. 
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are orientational - ~b. In a rigid configuration all these degrees of freedom must be fixed by the 
contact points. 69 

The position and orientation of  particle i are described by 

[Xi) = [ri, ~)i) ( 1 5 . 1 0 )  

and the shapes of  the particles by functions which describe their boundaries 

Ir(~) - ri[ = pi(~k), (15.11) 

where ~. describes the d ( d -  1)/2 angular coordinates of the boundary point r(~g) in an intemal 
coordinate system of  the particle i. 

The condition that the two particles i and j are in contact is, in general, some function of  the 
vector connecting their centers, r i -  rj, of their orientations in space, ~bi, (~j and of their shapes pi(~b) 
- say 

t[l[r i -- rj, ~)i, ~)j; Pi( ~" ), P i ( ~ ) ]  z 0 (15.12) 

which replaces the inequality (15.1 ) for spheres. This has to be supplemented by the excluded-volume 
inequalities 

- O;  bi, pj( j))>o (15.13) 

which replace (15.2). 
There is one condition of the type (15.12) per contact point and one therefore requires, in general, 

(ncp) >_d(d + 1) (15.14) 

contact points to determine all the rigid-body DOF of  the particles. 
Because of  the additional orientational degrees of  freedom one requires more contact points - 

at least 6 contact points per grain in two dimensions and 12 contacts in three dimensions. This 
replaces the much weaker BCI condition for spheres - 4 contacts in 2-D and 6 contacts in 3-D - 
the inequality (15.5). 

The very large number of contact points which is necessary for the rigidity of  a packing of 
anisotropic objects is somewhat surprising. Nevertheless, we do not see how one can avoid the 
conclusions of  the elementary argument above. 

15.5.1. The Hilbert condition for 9eneral shapes 
The generalization of the local Hilbert argument to general rigid bodies is a little easier to visualize 

and seems to agree with the simple "counting" philosophy of the above. 
One requires 4 (=3 + 1) contacts to fix the three DOF - the position and the orientation - of an 

ellipse in the plane (see Fig. III.7). This suggests that the trivial generalization of  (15.9) to general 
shapes 

d(d + 1) + 1 (15.15) ncp ~ 

is valid as a generalized local rigidity condition. 

69 Contacts on whole lines or surfaces are also possible for some particle shapes. 
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Fig. III.7. Hilbert local rigidity condition for ellipses. 

15.6. Stressed packings of spheres 

As we saw in Section 15.4 an unstressed packing of  spheres can be mapped on the bonded 
networks of their centers. We will assume that the dominant interactions in the packing can be 
described by the two-body interactions of  the bonded network. 

This neglects many-body interactions, which is probably not always justified, but is reasonable 
for the Hertzian contacts of  elastic spheres at small pressures. It also neglects tangential friction - 
a problem to which we shall return. 

We describe the energy as a function of  the distances between the centers as we did in our 
discussion of bonded networks in Section 10. Under stress the spheres are deformed and the distance 
between their centers decreases. The distance between the centers of two touching spheres in the 
stressed reference state is no longer given by Eq. (15.4) but is smaller: 

R~j = Pi + Pj - (~ij. (15.16) 

The stressed reference state is described by the R~j or equivalently by the 6,j. 
In the equilibrium reference state the two spheres exert a repelling force on each other 

whose magnitude is given by the negative bond tension in the stressed reference state. 

~' i j  = ~-"ij( aij ) < 0 . 

We expand the energy around the stressed state 

g({r})  = e({6 + q}),  rij = p, + pj - 6~j - qij (15.17) 

so that 

1 
e ---- e({6}) + ZJ-ij({6}).~hj + ~ Z :~ij({6)). r/2 + . . . .  (15.18) 
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We note that the expansion around the unstressed state 

aii ~ 0 

is restricted to positive deviations t/ij _> 0 and is therefore irregular. There is no formal problem with 
the expansion around any stressed reference state. In particular the unstressed limit 

{a} 7 0  
of the expansion coefficients is well defined: 

~--(6)  oc fie + h.o.t., (15.19) Y-(6) ~-61+~ , o~(6) - ~6 

where the index ~ depends on the elastic properties of the particle. One expects the spring constant 
to increase with the pressure and therefore 

~>_0. (15.20) 

An example are Hertzian contacts between elastic spheres for which 

~'(X--# pl/2 a3/2 

1 which means ~ = ~. 
The leading terms in the expansion of the energy around the stressed equilibrium reference states 

are  

 j(a) ±): 
(u v + :lgiij(a)(u v , (15.21) 

where the first term is the destabilizing direct contribution of  the stresses and the second term is the 
BH contribution. It follows that for small compressions for which 

alp  < 1 

the coefficients of  the stress induced-destabilizing terms are small compared to the coefficients of  
the two-body BH terms 

Y- 6 
~ - ~ l . p  (15.22) 

It follows that the BH interactions are always larger. The destabilizing effect of  the stresses 
is therefore only important in tenuous configurations - for anomalously soft or free modes. Any 
geometrically rigid reference state of  the stressed packing is stable. In particular, increasing the 
stresses cannot make such a state unstable or cause structural buckling from one rigid state to another 
because the stress-induced destabilizing terms remain small when the stresses are increased. 7o 

15. 7. Structural bucklin9 

15. 7. I. The bucklin9 instability 
Any packing of spheres which is not geometrically rigid becomes unstable when a positive stress 

is applied. 

70 This assumes that the deformations 6/p remain small. 
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Fig. III.8. Instability of a column of three spheres under uniaxial stress. 

The instability can be removed only by a structural buckling process which creates new contact 
points. The end result of  this structural buckling process is a state of the packing which is stable. 
This is illustrated by the simple example in Fig. 111.8. 

Assume that the initial packing is floppy so that the final state is reached by a structural buckling 
process. The buckling continues until the packing becomes geometrically rigid and therefore stable. 
The packing of spheres which results from the buckling process describes a new structure which must 
be geometrically rigid. This means that it has enough contact points and also that their arrangement 
assures stability. A necessary condition for this is the contact point counting inequality (15.5) 

(ncp) > 2d.  

The rigid state reached by buckling under stress remains stable when the stress is increased. 
Increasing the stress does not generate new instabilities because, as we saw in Eq. (15.22), the 
destabilizing effects of  the stress for a geometrically rigid packing are always small. 

Evidently this does not mean that increasing the applied stresses has no effect. But this is no 
longer a linear instability under stress which, in principle, can occur for arbitrarily small stresses. 
For finite stresses the deformations of  the spheres are finite and this can cause structural changes. 
The point we want to emphasize is that this is a qualitatively different process from the structural 
buckling process. 

15. 7.2. The rigidity threshold state 
The structural buckling process we described does not depend on the magnitude of  the stress. The 

stable state reached by the structural buckling process in the small stress limit 

a~---~0 + (15.23) 

is special. 
This state is a property of the geometrical packing of hard spheres itself and is reached by 

a continuous process which only involves linear instabilities and the hard core repulsions between 
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spheres. This defines a unique riyidity threshoM state (RTS). The RTS depends only on the geometry 
of  the initial state from which the system buckled. 

We conjecture that for the RTS the CPC inequality, (15.5), becomes an equality 

(r/cp) RTS ~ 2d (15.24) 

and that the RTS describes a "critical" state of  the packing. We also suggest that the RTS has no 
macroscopic shear rigidity. 

Note. We described the RTS as a unique well-defined state. 
Our discussion above assumed that a specific realization of the configuration of the particles was 

the initial preparation state. It also assumed that this initial state determines a unique structural 
buckling process and therefore a unique final state. 

The first of  these assumptions means that buckling starts in a quenched state which is unstable 
but in which the liquid like mixing dynamics is already suppressed. This raises no serious problems. 

The second assumption is clearly untenable if taken literally. A large random packing can obviously 
not be specified so accurately that a complex structural buckling process will lead to a unique final 
state. Even for a specific realization of the initial state of the random packing the structural buckling 
process is a quenching process which more or less randomly selects one out of  a very large number 
of  possible RT states. 

15.8. Shear modulus near the rigidity threshoM 

In the model we have described the shear rigidity near the RTS depends on an applied external 
pressure for two reasons - the dependence of  a typical BH force constant on the applied pressure 71 

pW (15.25) 

and the effect of  the stress on the reference state itself. 
For a definite reference state, ~b, one can write 

#~ oc dO ,,U, (15.26) 

where d ~  is a constant which can in principle be calculated from the geometry of the hard spheres 
packing, q), and ~ is a typical BH force constant as in (15.25). 

Near a rigidity threshold the reference packing depends on the pressure. If the RTS is indeed 
critical one expects 

d ( p )  c< pS, NRTS = d ( 0 )  ---- 0. (15.27) 

One therefore predicts 

t~(P) oc p=. pW. (15.28) 

One should be able to check this with experiments or simulations. 
There exist quite accurate estimates of w for different models in the literature, e.g., Levine (1997) 

and deGennes (loc. cir.). We are not aware of  attempts to study the GRS in detail. 

71 An example is the discussion of packings of grains with Hertzian contacts in deGennes (1996). 
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15.9. The role of  friction 

We have neglected friction completely in our discussion. We assumed that linearly unstable modes 
amount to mechanical instabilities which are realized. This was the essence of  the structural buckling 
process which we described. For macroscopic grains the main limitation of  this argument is that it 
neglects the role of  friction in the structural buckling process. Solid friction has no effect on intrinsic 
stability of a configuration. Its main effect is to inhibit the dynamics and thus increase the range of 
stability. Friction can clearly inhibit the structural buckling process. As a result the packing can get 
stuck in states which are not stable, the route of  the buckling process can change and the final state 
of the buckling can be a state which is not critical RTS. Just how important this is depends on the 
specific situation. 

We have discussed the description of  the mechanical properties of packings of  bubbles from a 
similar point of  view in detail in Levine and Alexander (1997) and in Alexander (1997). 

16. Glasses - solids with quenched reference states 

16.1. General approach 

We want to describe glasses as solids, i.e., in terms of a Cauchy-Born expansion around a rigid 
reference state. The reference state for the CB expansion in the glass is the outcome of the quenching 
process which produces the glass. This means that it is not a global minimum of  the energy but also 
not an arbitrarily disordered random state. It must be a realization of  the random quenching process 
which produces the glass from the liquid. 

Every realization of  the reference state of  the glass must be a stable equilibrium state of  the 
interaction energy, g({r}),  down to the atomic level. In this sense the molecular configuration in 
the glass is qualitatively different from the arrangement of  the same molecules in the liquid from 
which the glass emerged. We want to try to understand the properties of amorphous glasses as the 
properties of an expansion around such a reference state in the same sense in which one understands 
ordered crystalline solids in Bom-von Karman lattice dynamics without worrying about the way a 
liquid actually freezes. 

The most important new, and presumably controversial point in our description is the emphasis 
on the role of  stresses in the quenching process which produces the reference state of  the glass and 
in the "lattice dynamics" of  the glass. We will argue that one cannot understand what happens in 
a rapid quench and the nature of  the reference state of the glass which it produces without taking 
into account the role of structural buckling caused by internal stresses in the dynamic restructuring 
process which produces the reference state. We also claim that one has to take into account the role 
of  the internal stresses in the eventual reference state of the glass if one wants to understand the 
peculiarities of  this reference state which distinguish glasses from other solids. 

16.1.1. Treatin9 glasses as solids 
From a phenomenological point of  view the motivation for treating glasses as solids is fairly 

obvious. As we explained in Section 2 glasses are solids according to any reasonable criteria for 
defining what a solid is. The mechanical properties of glasses are the mechanical properties of  solids 
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and not of  fluids. Glasses are macroscopic solids. They have a static zero-frequency shear modulus 
which describes their elastic response in exactly the same sense in which crystalline solids have such 
a modulus. Glasses are also microscopic solids and have reasonably rigid microscopic reference states 
which define the atomic positions in the glass. Like all other solids glasses do of course "flow" to 
some degree but their "fluid" properties like irreversible changes in shape in response to applied 
forces and microscopic molecular self-diffusion are not dramatically different from what they are in 
crystalline solids. 72 

This means that it must be possible to derive the properties of  glasses from a consistent CB 
expansion around a microscopic reference state in the sense of the consistency conditions which we 
discussed in Section 2. As in the description of crystalline solids the deviations from this atomically 
rigid picture in glasses can be treated as a relatively small correction which does not change the 
basic picture. 

If this is true then the numerous and important differences between the mechanical and thermo- 
dynamic properties of  amorphous glasses and those of crystalline solids must reflect the difference 
between their respective reference states. They should be explained by the difference between the 
CB expansion around a "typical" realization of the isotropic and random reference state of  a glass 
and the expansion around the ordered periodic reference state of a crystalline solid. 

16.1.2. The quenched reference state o f  the 9lass and the internal stresses 
The essence of  the microscopic theory of glasses which we will describe is that the reference state 

of the glass cannot be regarded simply as an arbitrary random state. The reference state has very 
special properties because it is produced by a glass-forming quench. The reference state of the glass 
is a stable equilibrium state which is produced by the rapid quenching of a liquid. Rapid quenching 
suppresses single particle rearrangements. We therefore claim that the dominant restructuring process 
which creates the reference state of the glass is a hierarchy of solid-like structural buckling processes 
controlled by the internal stress fields in the glass. The distinguishing feature of the reference states 
of the glass is in the role of  buckling in producing them and in the presence of  tenuous, or even 
floppy inclusions. 

This scenario predicts very special reference states for the glass in which the internal stresses are 
correlated with the local structure in a non-trivial way. It predicts that the quenched reference state of 
the glass is very different from the "random medium" which one obtains by simply introducing a large 
amount of uncorrelated disorder into a homogeneous medium and in which one can neglect the effect 
of  stresses. For this reason the properties of the expansion around such a quenched reference state are 
also predicted to be very different from those of the CB expansion around a BH "random medium". 73 

The essence of the difference between glasses and other solids is in the role of stresses in the 
process which creates the reference state of  glasses and in its stability. 

16.1.3. The initial stresses in a 9lass are internal stresses 
As we saw in Sections 14 and 15 the initial stresses are also important in understanding 

other types of amorphous matter. In soft solids - Section 14 - we saw that the shear rigidity is 

72 This is certainly true at low temperatures but also, though perhaps less dramatically, fairly close to the glass transition. 
73 Studied, e.g., by John et al. (1983), Grest and Webman (1984), Webman and Grest (1985) and much earlier in the 

pioneering work of Thouless. 
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dominated by the negative average stresses and for random packings we found - in Section 15 - 
that the direct effect of  the positive stresses is responsible for the structural buckling which produces 
the eventual stable structure. Glasses differ from this because there are no "external forces". The 
initial stresses in glasses must be internal stresses with a zero average. The stresses in a glass are 
therefore stabilizing in some regions, or for some modes when the relevant stresses are negative and 
destabilizing in other regions and for other deformational modes for which the relevant stresses are 
positive. This combination of structural buckling similar to that we discussed for packings which is 
induced by the positive parts of  the internal stresses and stress-stabilization by the negative parts of 
the same internal stress produces a very peculiar reference state for the glass. After deriving the prop- 
erties of such a reference state we will then analyze the properties of the expansion around such a 
state. 

16.1.4. Some special properties of  glasses which appear naturally 
The results of this analysis of the glassy state are very encouraging. As we will show some of 

the most puzzling universal properties of the glassy state appear naturally from this microscopic 
description when one thinks about the reference state in this way. In particular we shall discuss 
three well-known peculiarities of glasses which are particularly striking and universal and which we 
believe to be most important: 

1. The microscopic origin of the large excess of soft modes in glasses which is responsible for 
the T 3 specific heat anomaly and for the "boson-peak" observed in neutron scattering - discussed 
and described extensively in Karpov et al. (1983), Karpov and Parshin (1983), II'in et al. (1987), 
Buchenau et al. (1991 ), Buchenau et al. (1992), Parshin et al. (1993), Gurevich et al. (1993), mostly 
in the context of phenomenological "soft-potential" models. 

2. The microscopic origin of the anomalously strong phonon scattering in amorphous mate- 
rials whose most thoroughly studied manifestation is the "plateau" in the heat conductivity of 
glasses (Alexander and Orbach, 1982; Alexander, 1984b, 1986). Using general dimensional and 
scaling considerations inspired by the fracton model (Alexander and Orbach, 1982; Alexander, 
1984a), we (Alexander et al., 1983) have suggested in the past that this is an effect of anoma- 
lously strong elastic scattering which is also reflected in the very large Joffe-Regel localization 
length. 

This picture is confirmed by the microscopic model we present below. 
3. The microscopic origin of the two-level systems which dominate the low temperature specific 

heat and long wavelength phonon scattering (Anderson et al., 1972). 
All these well-known and universal properties of glasses are usually discussed in the framework 

of phenomenological models, e.g., in the references we have just cited, but are not really related to 
any microscopic description. We will show that they appear naturally as properties of the expansion 
around a quenched reference state produced in the way we described above. 

We will discuss this model of glasses in this chapter. 
The fact that the stresses in a glass are purely internal plays a crucial role in this analysis. Since 

we are also not aware of an adequate discussion of the structure of internal stress fields we will 
discuss the internal stresses in an elastic continuum in some detail and in a very general way in 
Section 17 in a form which seems convenient for describing amorphous materials. We do this in 
a somewhat unusual way which avoids the usual emphasis on structural defects and the associated 
linearity assumptions. 
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Fig. III.9. Crystallization involves major rearrangement which requires single particle diffusion. 

16.2. Makin9 a glass 

Glasses are produced by rapid quenching from the liquid. The main effect of the rapid cooling 
is to suppress the single-particle diffusion processes. This is possible because the diffusion constants 
decrease rapidly with temperature - typically 

D c< e - E / T  . 

Sufficiently rapid quenching not only suppresses the ongoing rapid rearrangement of the molecules 
in the liquid state but also blocks the route to crystallization (see Fig. III.9) by nucleation and growth 
and even by spinodal instabilities. The atomic configurations in the liquid and in the periodic solid 
are, in general, so different that the transition cannot occur without major rearrangements which 
require diffusion at the single particle level. 

16.2.1. The "snapshot state" is not the reference state o f  the glass 
Sufficiently rapid quenching blocks the route from the liquid to the true global energy minimum 

which is presumably ordered and crystalline and tends to freeze-in the instantaneous configuration 
of the molecules in the liquid. The fact that the reference state is random must be a reflection 
of the randomness of the molecular arrangement in the liquid which is conserved in freezing into 
the glassy state. Ideally, for sufficiently rapid cooling rates, one might think that one could really 
freeze-in a "snapshot" of the instantaneous molecular configuration in the liquid at the time of the 
quench. 

The fact that elastic scattering of X-rays from fluids and glasses gives fairly similar structure factors 
demonstrates that this picture of the quenched reference state of the glass cannot be dramatically 
wrong. It shows that 

{g}glass ~ {r}snap : {r(tque)}liquid, 

where {r(tque)} describes the atomic positions in the liquid at the time of the quench, and {R}glass 
is the reference state of the quenched glass. 
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The large "missing" low temperature entropy one observes for glasses also supports this picture. 
But this cannot be quite correct. 
The reference state of  a glass is the reference state of  a solid and therefore must obey the standard 

equilibrium conditions 

~ [Ri~JRjl (R, - Rj) = 0 

- Eq. (12.5) and the linear stability conditions for such a reference state, Eqs. (13.5) which we 
discussed in detail in Sections 10 and 13. 

These are conditions on the expansion of the potential energy, ~({r}), around {R}gl~s. Since 
kinetic energy and entropy play an important role in the liquid, a representative configuration of  the 
liquid, {r(t)}, is obviously not a configuration in which the potential energy, 6~({r}), is in stable 
equilibrium. Thus the "snapshot" state does not satisfy the equilibrium and stability conditions which 
one requires for the reference state of the solid glass. To become a stable equilibrium reference state 
{r}~n~p must undergo a restructuring process which removes the instabilities and the deviations from 
equilibrium - no matter how fast and efficient the quenching is. We can write for this restructuring 
process: 

{r}sna p ~ {R}glass={R}glass({r}snap), o~({r}snap) ::~ e({R}glass ) (16.1) 

which emphasizes the distinction between the "snapshot" state and the stable equilibrium reference 
state of  the glass {Rglass}. 

One can also say this differently. One expects the snapshot state to be an open tenuous configura- 
tion with fairly large "bond-tensions" ~ j ,  and therefore interatomic forces and intemal stresses. Even 
when one has suppressed single particle diffusion such a state is still unstable and will restructure 
in a relatively rapid relaxational process. 

16.2.2. What happens in the ideal "infinitely fast" quench 
In describing the restructuring during the quench one has to distinguish between two distinct 

processes: 
1. the diffusive single particle motion which the quenching inhibits and 
2. the relaxation of  the potential energy to a stable equilibrium state. 
Ideally - for an "infinitely fast" quench - the diffusive processes would be completely suppressed. 

This leaves a solid-like relaxation process in which the snapshot state, {r}snap, relaxes to a specific 
stable equilibrium reference state {R}glass. The restructuring process then consists of  continuous 
deformations of  the many particle configuration {r} on the potential energy surface g({r}). 

One can regard this as the relaxation of  a "solid" from the initial distorted state {r}s,ap, to the 
ideal reference state {R}ideai, which is a stable equilibrium state. In this process the potential energy 
8({r}) decreases from to its value in the liquid state {r}snap, to that in the reference state of  the 
ideal glass {R}id, a~. We call this idealized process the ideal quench and the state which results from 
it the ideal reference state. 

The distinction between the ideal quench and a real quench can be seen clearly if we assume, e.g., 
that the interactions are short range so that the snapshot state can be represented by a well-defined 
bonded network. The ideal quench is then a relaxation of  the way this network is embedded in 
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space. The positions of the particles change but the bonded network remains the network defined in 
the snapshot state. Diffusion moves the particles and changes the bonded network. It cuts "bonds" 
and produces new bonds. 

The ideal quench is of  course an idealization. It corresponds to an infinitely fast quench. It differs 
from any real quench because diffusion plays no role whatsoever. The rate of  a real quench is of  
course always finite and the state which is actually reached then depends on the actual quenching 
process which is more or less well approximated by the ideal quench. 

The ideal quench is a relaxation process which realizes the transition from the snapshot state, 
{r}snap ' to  the ideal reference state of the glass, {R}ideal -- Eq. (16.1). 

The dynamic processes in the ideal quench are collective deformations driven by the forces on 
the atoms 

{f}{,} = {f~,f2, . . .  , f , . . .  ,fN}{r}, f = ~7ie({r)) • (16.2) 

These forces vanish in equilibrium 

f ( { r e q u } )  ~ 0 ( 1 6 . 3 )  

but are finite for non-equilibrium configurations. In a continuum limit the discrete forces { f } { r }  a re  

replaced by a continuum field, f ( r ;  {r}) which depends on r but also, implicitly, on the specific 
configuration of all the atoms {r}. This continuum force field is related to the tensorial stress field 
at r for the same atomic configuration, a(r; {r}), through 

f ( r ;  {r})  = V .  o-(r; { r } ) .  (16.4) 

For an equilibrium configuration, {r)equ, o n e  requires 

f ( r ;  {r}equ) = O. (16.5) 

But this is clearly not enough. 
Most of  the equilibrium states - the extrema of 8({r}) in the Nd dimensional space spanned by 

{r} - are saddle points which are stable in some directions and unstable with respect to collec- 
tive structural buckling instabilities in other directions in this space. These saddle points determine 
the route by which the glass evolves during the ideal quench from its specific initial state - the 
snapshot state {r}snap -- to a stable equilibrium state, the specific "ideal" reference state of the glass 
which is realized - {Rideal}({rsnap)). Qualitatively one can therefore think of the relaxation process 
(16.1) as a sequence of structural buckling instabilities which successively restructure the micro- 
scopic configuration until a stable reference state is reached. This is described schematically in 
Fig. III.10.74 

This "ideal" scenario treats the glass as a solid throughout the quenching process. The snapshot 
state is regarded as the distorted state of  a solid which then relaxes to its stable equilibrium ref- 
erence state {R}ideai. The solid is assumed to relax more or less smoothly from the distorted state 

74 This should of course not be taken too literally. In general the relaxation route will not go exactly through the 
equilibrium saddle points themselves. It only passes close to some of them. 
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Fig. III.10. The "ideal" route from the "liquid" snapshot state {r}snap to the stable equilibrium reference state of the glass 
{R}glass. The branching tree structure is meant to indicate that there are many possibilities and the choice can depend on 
very small changes. 

{r)snap, along a path determined by the structural instabilities which it encounters. We describe this 
schematically in Fig. III. 10. 

The ideal, infinite-rate quench is obviously an approximate and incomplete description of the real 
physical situation. The important points which this limit emphasizes are the distinction between the 
snapshot state, {r}s.ap, and the reference state of the glass which it produces, {R}glass, which must 
be a stable equilibrium state and the nature of  the process which restructures the glass. Since the 
snapshot state cannot describe a solid this restructuring must always occur no matter how rapid the 
quench. 

We believe that this idealized picture describes the essence of the quenching process which pro- 
duces the glass. In particular it focuses attention on the distinction between the snapshot state, an 
arbitrary configuration of  the molecules in the liquid, and the final stable equilibrium state {R}g~as~. 
The reference state of  the glass, {R}gJ~s, is a random state which "remembers" the quenched random 
arrangement of the atoms in the fluid. But the atomic positions have been modified by collective 
restructuring. In the reference state they are correlated with the interatomic forces and local stresses 
to assure stable equilibrium. 

16.3. Restructurin9 in internal stresses 

To make this more specific we need a more formal formulation. It will be convenient to do this 
in a continuum description. In essence we will do this along the lines of  the arguments we described 
in detail in Sections 13.4 and 15. 
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16.3.1. The elastic energy which drives the restructurin9 
The stability of  a configuration, {r}, with respect to deformations, u(r), depends on the balance 

between the BH elastic energy of  the system, 

and the stress induced energy 

E d i r ( { r } )  = - -  f dr ~ a~'(r, { r } ) ~  (~u~)  2 . 

(16.6) 

(16.7) 

This means that the spatial correlations between the BH elastic constants and the stress in the 
same vicinity are important. Positive stresses in the region around r imply a local buckling instability 
unless the configuration {r} is such that the elastic constants at r, K(r; {r}), are large enough and 
have the right structure to prevent the buckling. 75 The effect of  the restructuring during the quench is 
to create such a situation. The reference state {R}glass must be stable. Where a~(r; {r}) is positive 
and large enough buckling instabilities will modify the structure so as to increase its BH stability. 
In the final stable reference state positive tr~(r; {R}g~ass) are always correlated with rigid structures 
such that near r the K(r; {R}gl~s) are large enough to assure stability. Tenuous regions whose BH 
rigidity is small can survive in such a restructuring process only if  they are correlated with stabilizing 
negative stresses. 

16.3.2. Internal stresses 
To make this more specific we have to consider the stress field in more detail. 
In contrast to the situations we considered in Sections 14 and 15, there are no external forces 

acting on the glass in the configuration {R}glass - the stresses in the glass are purely internal. 76 
It follows that the average stress in the glass vanishes 

dr. (16.8) 

which implies that the sign of the stresses must change sign. In particular the pressure changes sign 
and the zero pressure surfaces 

1 
p(r)  = ~ ~ a~(r ;  {r}) = 0 (16.9) 

divide the solid into compressed regions where the pressure is positive and stretched regions where 

it is negative. 
The tensorial components of  the stress, a~(r; {r}), and its principal axis components a~(r; {r}), 

which determine the stability of  the elastic energy, also change sign. 

75 As in Section 13.4 we assume that the BH elastic energy is always stable. This is convenient and is usually justified. 
We only note that it is a somewhat stronger assumption here because it implicitly assumes that the BH energy is stable 
for all the unstable equilibrium configurations which determine the quenching path. 

76 This not only applies to the eventual stable reference state of the glass {R}glass, but also to all the intermediate 
unstable equilibrium states which control the structural buckling route from the snapshot state. 
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These properties of  internal stress fields are quite general. In Section 17 we shall derive them, and 
some other general properties of internal stress fields, from the mechanical equilibrium conditions 
for the stress. 

16.3.3. The correlation length o f  the random internal stresses in 9lasses 
The changes in the sign of  the stress follow from the fact the average stress of  the whole solid 

vanishes. In itself this tells us relatively little about the detailed structure of the field. We will assume 
that the alterations in sign of  the random stress field o-(r; {R}glass) can be described by a correlation 
length, 4, such that the stresses average out when they are averaged over larger distances - say 

(a)Le<~ d r . a ( r ) ~  , ~ 1 .  (16.10) 

We believe that in glasses the correlation length ~ is a microscopic distance. This, obviously, 
does not follow from the fact that the macroscopic average of the stress vanishes, Eq. (16.8), which 
would be consistent with sign-changes on macroscopic scales. It does however seem very plausible 
and almost inevitable for a stress field produced by a rapid quench. 

In the snapshot state the internal stresses should reflect the correlation length of the fluctuations 
in the liquid. This means that one expects 4, to start out in {r}snap as a relatively small micro- 
scopic length. In the restructuring process the stress presumably undergoes some coarsening which 
increases 4. It is difficult to see how this increase could become very dramatic for a rapid quench. 
This would predict a correlation length for the stresses in glass which is comparable to that in 
the supercooled liquid which is quenched. This means a correlation length which is larger than the 
interatomic nearest neighbor distance but still microscopic. Say 

~ / a ~ 3 - 1 0  (16.11) 

just to make this more definite. 
We believe that this must be at least qualitatively correct but this is of  course just a tentative 

guess. To the best of our knowledge there are no measurements which check the variations in the 
internal stresses down to such small distances directly. We will discuss some indirect evidence for 
(16.11) below. 

We will now try to draw some conclusions about the reference state of  the glass from the general 
considerations we have listed. 

16.4. The quenched reference state is composite 

16. 4.1. The buckled rioid scaffoldin9 and the soft inclusions 
The quenched reference state of  the glass must have macroscopic BH rigidity. Since the average 

of  the internal stress vanishes, Eq. (16.8), the internal stresses cannot contribute to the overall 
macroscopic shear rigidity. It follows that the macroscopic elastic moduli which one measures, and 
which appear in the sound velocities, must be proper BH shear moduli. Contrary to the situation in 
soft solids which we considered in Section 14 they cannot be due to the direct effect of  the stresses. 

This is not a trivial result. 
The conclusion that the reference state of  the glass {Rgl~s} must have proper macroscopic BH 

elastic moduli implies that the reference state must contain a connected BH-rigid scaffolding which 
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p = td 

Fig. III.11. Schematic description of a 2-D quenched reference state. The stress in the soft white regions is negative. 
Forces on the boundaries of these regions are supported by the BH rigid scaffolding (light gray) which is responsible for 
the macroscopic rigidity. The stresses in the dark gray boundary regions are small. 

is sufficiently rigid to generate this shear rigidity. Moreover, the BH-rigid solid material which forms 
this scaffolding must be rigid enough to overcome the destabilizing effects of  positive stresses - the 
remnants of the stresses which caused the structural buckling and thus created this BH rigid material. 
Embedded in this scaffolding one can still have relatively soft regions which have not buckled and 
are correlated with the negative parts of  the internal stresses. 

In general such a structure can be very complicated. It is essential that the rigid scaffolding should 
be connected. Moreover, the mesh size of  this scaffolding should be the correlation length of the 
stress, ¢. One can also say that the size of  the soft negative stress regions is expected to be ~. 

Fig. III. 11 illustrates schematically what this model implies for the structure of the reference state. 
The rigid scaffolding, colored light gray, is responsible for the BH macroscopic rigidity of the glass. 

It supports all the destabilizing positive stresses. The white enclosures are soft and are stabilized by 
negative stresses. This picture makes several simplifying assumptions. It implicitly identifies the sign 
of the pressure with the sign of  the stress. This ignores the complications which can occur because of 
anisotropy when the principal axis components do not all have the sign of  the pressure. The drawing 
also assumes that the soft regions are confined to closed inclusions in the scaffolding. This is a 
geometrical necessity in two dimensions. In three dimensions one can of course have bicontinuous 
geometries where both the rigid scaffolding and the soft negative-stress regions are macroscopically 
continuous. 

16.4.2. Describin9 the 9lass as a composite 
This amounts to a description of the glass as a composite. The glass consists of  two types of 

solid materials which together constitute the glass. 
a. The BH-rioid buckled material which forms the rigid continuous scaffolding. 
b. The soft unbuckled solid in the inclusions. The stresses in these regions have to be negative 

and are important for their shear rigidity. 
The two regions are coupled through the stresses. The forces exerted by the negative stresses in 

the soft regions on their boundaries have to be supported by the BH-rigid scaffolding. 
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One also notes that the strength of  the couplings across the boundaries between the two regions 
define a limit on the magnitude of the negative stresses which they cannot exceed. Because the 
average stress vanishes this is automatically also a limit on the positive stresses in the buckled 
regions. 

16.5. Predictions and comparison to experiment 

16.5.1. Propagating sound, Rayleigh scattering and heat conduction 
If the reference state of the glass has the structure we have suggested then it is obvious that 

the bulk elastic moduli, in particular the bulk shear modulus, are properties of  the rigid scaffolding. 
Sound propagates on the scaffolding and for small wave vectors 

q . ¢ < l  (16.12) 

is relatively insensitive to the soft inclusions. 77 
Sound is scattered from the soft inclusions of  size ¢ which means that elastic Rayleigh scattering 

is anomalously strong 

q 2R(q) cx (q~)-3 (16.13) 

in three dimensions. Because of  the high power on the r.h.s this is a fairly dramatic effect. The 
predicted scattering is much stronger than the scattering from disorder at the atomic level, a. In the 
range we have suggested, (16.11), it amounts to an increase of 1-2 orders of magnitude. 

In particular one predicts that there will be a qualitative change in the nature of the eigenmodes 
when one extends the phonon branches beyond a cross-over frequency 

f2.~c/~, qo" ~ = 1. (16.14) 

This seems to agree qualitatively with the "plateau" in the heat conductivity observed in glasses, 
with measurements of  the scattering length and even with specific heat measurements - see, e.g., 
Alexander et al. (1983) and Alexander (1986). 

16.5.2. Soft modes 
It is well known that an excess of soft modes is observed in glasses. This shows up as an excess 

in the T 3 contribution to the specific heat and in the Boson peak observed in neutron scattering. 
Our model for the reference state predicts such an excess because of  the vibrations of the "soft" 
and stressed unbuckled regions of size ~ which we predict. 

16.5.3. Unharmonic two-level systems 
We have distinguished between a region where buckling has occurred because the stresses are 

positive and large enough and a soft region which has not buckled because the stresses are negative 
and stabilizing. On the boundary between these two regions, say the dark gray region in Fig. III. 11, 
the stresses are small and anharmonic terms are important. The effective potential for a vibrational 
eigenmode in this region would have the "canonical" form for 2-level systems as in Fig. 111.12. 

77 On the very qualitative level of the analysis it does not make sense to discuss the distinction between longitudinal 
and transverse modes. 



218 S. Alexander~Physics Reports 296 (1998) 65-236 

Fig. Ili.12. A small positive stress creates anharmonic two-level states. 

17. Internal stresses 

The fact that the stresses in the glass are purely internal so that their average must vanish and 
their signs have to change played a crucial role in our analysis in Section 16. In this discussion we 
used a very rough qualitative picture of  the stress field. To extend this analysis and make it more 
detailed and realistic one obviously needs a better understanding of the stresses. Our purpose here 
is to present some general results in this direction. We do this here because we are not aware of  
any detailed analysis of  internal stress fields which is appropriate for the description of  such stresses 
in glasses and in other amorphous solids. Even though we do not use them explicitly the results 
we derive here can be regarded as a background for the picture described in Section 16. They can 
also be regarded as a preliminary, introductory step in the development of  a more detailed theory 
of glasses along the lines we have indicated. 

17.1. The description o f  internal stresses in crystals and in amorphous materials 

In the physics literature intemal stress fields are usually derived from the structural defects which 
produce them rather than on their own. There are extensive discussions of the structural defects of  
crystalline solids in the literature, see, e.g., Friedel (1964), Landau and Lifshitz (1970, ch. IV) and 
Kleman (1977). In these monographs the defects are classified according to the structural singularities 
from which they arise - which perturb the discrete translation-rotation space group symmetry of the 
periodic crystal. Familiar examples are line defects like dislocations and disclinations and point 
defects like vacancies and interstitials. 

In this description the structural defects are the primary objects. When required one then calculates 
the stress fields associated with them from the strains assuming linear stress-strain relations. In this 
way the locations of  the singularities of  the structural defects - the defect lines or points - also 
appear as singularities of  the internal stress fields they produce. 

While this procedure is most familiar nowadays in the discussion of crystalline solids it actually 
originated in continuum elasticity and therefore, implicitly, in the description of the internal stresses 
in isotropic amorphous solids. Internal stress fields were first analyzed by Volterra (1907) and then 
by Love (1927a, #156A) in the context of  purely continuum elasticity long before they were applied 
to periodic lattices. The standard types of defects can all be generated from an unstressed solid 
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medium by variants of  the operational Volterra construction - making cuts and repairing them. 78 
Even the global, integral conditions on the strains are essentially the same. 79 The term "dislocation" 
was originally coined by Love (1927a) to describe continuum defects. Nevertheless, we believe that 
it is better to discuss the internal stresses in an amorphous solid directly, regarding the stresses 
themselves as the primary object, rather than to try to relate them to structural defects and strains. 
There are three main reasons for this: 

1. One is intuitive and fairly obvious. 
In a periodic lattice a structural defect has a clear and fairly obvious geometric meaning. The 

dislocation line in a lattice is, e.g., a well defined object and can be found by suitable microscopic 
inspection of  the atomic arrangement. In contrast one cannot really imagine or describe what a 
dislocation line in an amorphous solid would look like. Even conceptually the only reliable way for 
finding such a line is to measure the stress field. 

2. The second reason for preferring a description in which the stresses themselves are the primary 
objects is that in this way one does not need to refer to a "true" unstressed BH reference state. 
For an amorphous glass the definition of  a "true" reference configuration with respect to which one 
can define strains is quite difficult and ambiguous and not even obviously meaningful. 

Another way of saying this is that in an amorphous solid the deviations from an unstressed 
state can be very large - making the expansion in strains meaningless. On the other hand, as 
we demonstrated in Section 3, one can define the stresses unambiguously for any configuration. 
The fact that the solid is amorphous does not matter. 

3. The most important manifestation of the difference between the internal stress fields of  crystalline 
and amorphous materials is in the nature of the cores. In crystals a defect usually has a well-defined 
structural core at the microscopic level. The "core" region of  a crystalline defect is strongly strained 
and therefore cannot be described by the periodic lattice which describes the crystal far from the 
core. The core region is then qualitatively different from the bulk of  the same crystal which is only 
weakly strained. 

This does not carry over to structural defects in amorphous solids, where, in general, no "cores" 
can be identified. The strongly stressed material near the singularity of  a Volterra construction can 
simply rearrange itself into a different and non-singular configuration of the amorphous solid with 
no obvious distinguishing features. Thus the cores which mark the dislocation lines in crystals will 
in general not show up in amorphous materials. 

For all these reasons, and also because disordered amorphous solids are often much more deformed 
internally than crystals the internal stress fields in amorphous materials can be very complex even 
more complex than, say, the stress field of  a Frank network of  dislocations. It is therefore useful 
to study them in the most general way possible. It turns out that one can actually say some very 
general things about these fields. 

78 The generation of  line singularities, dislocations and disclinations, by gluing cuts is discussed in all texts. The creation 
of  point singularities by the action of  point sources or sinks is a little less familiar but not really very different. 

79 To avoid confusion we note that the continuum "Burgers vector" of  a dislocation has a continuous, rather than discrete 
set of  values. 
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17.2. The equilibrium conditions 

The microscopic form of the equilibrium conditions for a solid are Eqs. (12.5) 

~ .  I R 9  j ( R e - R j ) = 0  • - R j [  

The continuum form of these equations are the homogeneous mechanical equilibrium conditions 
for the stress field in the bulk - Eqs. (12.4a) 

xT. trint(r) = 0 (17.1) 

and the zero force boundary conditions - Eqs. (12.4b) 

n(r b ). o'int (rb) = 0 ,  (17.2) 

where t~(r b) is the normal at the point r b o n  the boundary. 
Since internal stresses exert no forces on the boundaries the averaoe internal stress must vanish 

( a in t )  = 1 fv dr. o'mt(r) -= 0. (17.3) 

17.3. The effect o f  the boundary conditions 

We first consider the implications of the fact that the average internal stress must vanish - 
Eq. (17.3). 

17.3.1. The pressure and the pure shear stress 
We divide the stress tensor, tr(r), into its scalar part, the pressure 

p(r)  = d -1Tr  tr(r) = d -l ~ tr~(r) (17.4) 
Ct 

and a traceless irreducible second rank tensor - the pure shear stress, o'she(r): 

tr~#(r) = p(r)  3(~fl) + o'she~/~(r). (17.5) 

The average pressure, (p), and the average traceless shear stress tensor, (0 "she) cannot cancel each 
other. It therefore follows from (17.3) that their averages have to vanish separately: 

(p) = V -1 f d r . p ( r ) = 0 ,  (17.6) 

(o "she) cx / dr.trshe(r)= 0. (17.7) 

If the average pressure vanishes the pressure must change sign. The zero-pressure surfaces de- 
fined by 

p ( r ) = 0  (17.8) 
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divide space into regions in which the pressure is positive 

p ( r ) > 0  (17.9) 

which, in general, one expects to be compressed and stretched negative-pressure regions for which 

p ( r ) < 0 .  (17.10) 

Since the average shear stress also vanishes, (17.7), it follows that the average of  each component 
of the shear stress must vanish separately 

(aZ)  f dr-oZ(r)--o. (17.11) 

17.3.2. The principal axis components of  the internal stress change sign 
As we saw in Section 13.4 the effect of  the stresses on stability is seen most clearly when we 

write the stress in its principal axis system. The contribution of  the stresses to the energy density at 
r is 

--Z/l'i~n~(¥)" Z (~Uv(r))2 
V 

which is stabilizing when o-'~(r) is negative and destabilizing when it is positive. 
The fact that the average pressure vanishes, Eq. (17.6), implies that the principal axis components 

a ~ ( r )  cannot all have the same sign. 
When the pressure vanishes 

p ( r ) ~ r ~  = 0 ,  

the stress is a pure shear stress and one must have diagonal components of both signs. 
If  the pressure is not everywhere zero it must change sign. In the positive pressure regions, (17.9), 

all components of  the stress can be positive but, in any case, there are positive o'er(r) whose sum is 
larger than the sum of the negative a~(r) - everywhere in this region. The reverse is true for the 
negative pressure regions, p(r)<0, for which the negative principal axis components of  the stress, 
a~(r) < 0, dominate. 

We have thus shown that both signs of the principal axis components of  the stress appear for any 
internal stress field. Internal stresses therefore always have both stabilizing and destabilizing effects 
for different shears or in different regions. 

17.4. Effect o f  the equilibrium conditions 

17.4.1. The principal axis components rotate 
We have discussed the properties of  the stress field which follow from the fact that the average in- 

ternal stress vanishes. An internal stress field also has to satisfy the bulk equilibrium conditions (17.1 ) 

f ( r )=~Ya(r )=O,  ~ ~ o ~ ( r )  = 0 .  (17.12) 
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When the principal axes do not rotate - the orientation of the axes of the stress field is the same 
everywhere and (17.12) becomes 

~a~(r )  = 0 

which implies 

a ~ ( r )  = const. (17.13) 

This generalizes Archimedes law of  liquid hydrostatics: 

p -- const. 

An internal stress field which exerts no force on the boundaries and whose principal axes are fixed 
in space must vanish identically. 

17.4.2. Classification of  the singularities of  the stress field 
Naturally, as one expects, this last result implies that internal stress fields can be classified in a 

way which is closely related to the topological classification of structural defects. In particular, one 
can classify dislocations and disclinations, the "first homotopy group" topological singularities of  the 
stress field (Toulouse and Kleman, 1976; Kleman, 1977, ch. 10) according to the rotations of the 
principal axis system of  the stress along closed paths. 

There are however two reservations to this general statement. 
• First is that the stress field or just some of its components can vanish. This is fairly obvious but 

it can restrict the power of the topological classification. 
• The second point is that the correspondence between the usual structural classification and the 

classification of the stress is not simple. 
Since this is an interesting point we want to show how the stress fields of edge dislocations and 

of disclinations created by Volterra constructions show up in this description. 

17. 5. The stress fields of  dislocations and disclinations 

We consider internal stress fields with cylindrical symmetry. 
From the symmetry we can then write 

a(r) = p(r) + a ( r ) .  O(q~), (17.14) 

where the pressure p(r) and the magnitude of the shear stress, a(r) ,  depend only on the radial 
distance, r. 

We start by assuming that the tensor 0(q~) can be written in the general form 

cosnq~ sin nq~ (17.15) 
On(~p) = sin n~o - cos nq~ 

which assures periodicity around the circle. Substituting Eqs. (17.14) and (17.15) into Eqs. (17.1) 
one derives for the force 

cos~0 ( mr(r)) c o s ( n -  1)q~ = 0  " (17.16) 
f ( r )  = p'(r), sin q~ + a'(r) + r sin(n - 1)q~ 
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a) edge dislocation b) disclination 

Fig. III.13. The Volterra construction for (a) an edge dislocation: and (b) for a simple disclination. The structural 
singularity is generated by closing the respective gaps and then gluing the flat surfaces together. 

In general this can be interpreted as a balance between three forces 
cos tp ; 

• The radial force exerted by the gradient of  the pressure: p'(r) sin tp 

• The force exerted by the gradient of  the shear stress: tr'(r) c o s ( n -  1)~0 . 
sin(n - 1 )~0 ' 

• A "curvature" term which describes the effect of  the rotation of  the stress as ~o changes: 80 
2tr(r) cos(n - 1)tp . 

r sin(n - 1 )tp 
Evidently the scalar pressure only contributes when the shear stress tensor performs one full 2rt 

rotation around the circle, i.e., for n = 2 when the full cylindrical symmetry is maintained. Eq. (17.16) 
becomes 

6(n - 2) p'(r) + try(r) + 2~rn(r~) - 0 (17.17) 
r 

with the boundary conditions 

6(n - 2 ) p ( r )  + ~r.(r)=Pr (17.18) 

on a circular boundary of  radius r where Pr is the external pressure. 
The stresses for both edge dislocations and for the simple bending disclinations of  Fig. III. 13 must 

be solutions of  Eqs. (17.17) for n = 2 .  

17.5.1. The stress o f  an edge dislocation 
For large r, in the linear regime, the shear stress of  an edge dislocation (Fig. III.13(a)) must be 

proportional to the shear strain and therefore consistent with the 1/r dependence of  the transverse 
contraction. This is assured by setting 

p'(r) = try(r) (17.19) 

in Eq. (17.17) which gives 

~(ro)~,  p(r) = a + tr2(r). (17.20) ~2(r)  

80 This is analogous to the normal force exerted by a curved stretched membrane. 
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On the outside boundary one requires 

a + 2az(ro)ro/R2 = 0 (17.21) 

which fixes a. On a circle enclosing the core one finds 

1 2a(r°)r° (11 R2)= Pcore, (17.22) 

where Pcore is the pressure exerted by the material in the core on its outside boundary. We note that 
the form of  the stresses in the core does not matter. A purely hydrostatic, compressed or extended 
core can generate the stresses outside the core. 

17.5.2. Stress o f  a disclination 
We compare with a disclination. 
The shear strain of  a disclination is constant, independent of  r as can be seen for example in 

Fig. III.13(b). It follows that one is looking for solutions of  Eq. (17.17) for which the shear stress 
is constant 

a'(r)  = O, a(r)  = a .  (17.23) 

Only the scalar pressure is singular 

p(r )  = 2a log(ro/r) (17.24) 

and the boundary conditions are 

1 + 2 log(ro/R2) = 0,  2a log(R2/Rl ) = ecore • (17.25) 

One notes that the solutions are quite different. Both types of  solutions, and many others, can be 
generated by the same core pressure because the equations for the stress on their own are of  course 
not closed. 
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Appendix A. Description of the many-body interactions as angular and twist energies 

The expressions we derived in Section 5.2.3 for the many-body interactions, Eqs. (5.11 ) and (5.13), 
are in terms of  the longitudinal deviations, ui~. This is convenient because it emphasizes the dis- 
tinction between these terms and the stress-induced terms in Section 6 which cannot be written 
in this way. Writing the non-Cauchy interactions in this way is also convenient for the discus- 
sion of the continuum limit in Section 5.4. We want to show that angular (bending) and twist 
energies can indeed be written in this somewhat unusual way. We do this for completeness and 
also to assure the reader that the somewhat unconventional description in Section 5.2.3 is quite 
general. 

Rotationally invariant three-body interactions can only depend on the shape of the triangle [ijk] 
- Fig. A. 1 - and rotationally invariant four-body interactions on the shape of the triangular pyramid 
[ijkl] - Fig. A.2. We consider the three-body interactions in detail. 

The harmonic expansion of the interactions between the three particles i, j and k is an expansion 
in the nine components of the deviations ui, u/ and uk in three dimensions (or 6 in 2-D). But the 
rotationally invariant interaction energy g(r,-,r/,rk) is completely determined by the triangle [ijk], 
Fig. A. 1, which, for any dimension, is determined by three parameters. To derive the rotationally 
invariant expansion one can choose any three parameters which determine the triangle. This can 
be done in different ways and leads to harmonic expansions which look different. In particular the 
explicit many-body terms can be chosen in different ways. The final expansion in the components of 
the ui which one derives is of course independent of the parameters chosen to describe the triangle. 
In this final form of the expansion the rotational invariance and the distinction between two-body 
and three-body interactions is however no longer manifest. 

If we parametrize the triangle [ijk] in terms of the three distances rij, rik and rjk this leads to 
an expansion in terms of two-site interactions of the form of Eq. (5.8) and three-site terms of the 
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J 

r ik 

l r. j 

r il 

! 

rik 
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A.1. The triangle [iyk]. 

A.2. The pyramid [ijkl]. 

form (5.11). The most general harmonic expansion is 

1,2 , ,,2 , ,,2 ,, ~,~ ,, ,, , 
~iJk : ~ i ;  Uij -]- ~ j k  Ujk -~- ~k i  Uki Jr- ~ i ,  jk Uij " ~1- ~ j ,  ki Ujk Uji ~- ~ k  ij Uki '! Ukj '! (m, 1 ) 

which can of course be rewritten explicitly in terms of the components of the ui. 
Alternatively one can describe the same triangle in terms of the distances rig., rik and rjk, and of  

the angles ~pg, j~, ~pj,~, ~Pk, ij, (see Fig. A. 1). If one uses this parametrization the explicitly three-body 
terms in the harmonic expansion appear as angular interactions 

~(pi2'jk J {R} ( (~(19i'jk )2 = ~i, jk (~(t ~2 , ( A . 2 )  

where ¢~Oi,jk is the change in the angle ~P~,jk. One can thus write the harmonic energy of  the triangle 
as the sum of angular and Cauchy terms 

d ~ t k =  ~'Pt! it2 !' !12 !tUft2 ~ i j  uq + ~i'k uik + °~jk jk + ~,jk&P~jk + ~j, ki&pj2,k, + ~dk, qrq~k2,ij • (A.3) 

Eventually, to write the expansion in the positional deviations, ui, one then has to express the 6~Oi,jk 
in the components of  the u~. It is natural to do this using 

&P,,jk "~ uij/ uif (A.4) 
Rij Rik " 

The resulting expression must be equivalent to Eq. (A.1). The two explicit expressions, ~¢~k 
(Eq. (A.1)) and d ~ ,  (Eq. (A.3)) can differ only in anharmonic terms in the components of 
the u~. 

We want to show explicitly that the angular expansion ~'~, can be rewritten as an expansion 
in the ulj that is in the form of  Eq. (A.1). To be explicit we expand the angular bending energy 
Eq. (A.2). 
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We use 

4-4-r,.I 
cos q~, jk = 2 r~j r;~ 

to derive an explicit expression for the expansion of 6q)~,]~ in the 6rij: 

2 sin ~,,jk 6q~,jk = (R,-j R~k )(26rJk 6r~j 6r~k'~ \R~k + R,j - 2cos ~ijk 

R,j Ri,)(6r~j 6r~,) 
R,, ) \ R,, ) " 

(A.5) 

It can be seen that this substitution behaves properly except for the singular situations when sin ~;,jk 
vanishes. One can substitute 6q~i, jk from Eq. (A.6) into Eq. (A.2) and then replace the 6rij by the 
u~. The expression becomes simpler and somewhat more translucent if we set Rij = Rik = R in the 
reference state. Eq. (A.6) can then be written in a more explicit form 

( rrjk rr~j + rrik ) (A.7) 6~oi,jk =tan(~i, jk/2) 2 Rjk R " 

Finally, using 

I! 6r~j ~ uij 

in Eq. (A.7) and substituting in Eq. (A.2) one gets the angular contribution to the harmonic expansion 
in explicit form 

6qgi,jk= ~ tanZ(clgi,jk/2) " uik (A.8) 
[ J R " 

We have thus transformed the angular terms in Eq. (A.2) into an expansion of the form (A.1). 
Using the general form (A.6) instead of (A.7) gives more complicated expressions but has no 

qualitative effects. 
The analysis of the four-body interaction, ~U, Eq. (3.13), can be done in a similar way. The 

intuitive four-body interaction is a twist. Four points [ijkl] form a triangular pyramid as depicted 
in Fig. A.2. One has two-body interactions along the six edges, three-body angular interactions in 
each of  the four triangular faces and finally explicit four-body interactions between the four vertices. 
This explicit four body component can be described as a twist 

,, [ O2g ] 2 [ ~2g ] 2 r ~2g ] 2 
~jij'kl= ~ 6qgij, kl-k- ~ I~@ik, j l~-  ~ (~(tOil, kj, (A.9) 

where (~Oij, k l is the twist angle. We shall not describe the trivial and tedious algebra which shows 
that this can indeed be written in the form implied by (3.13), i.e., as a combination of contributions 
to the six two-body interactions along the edges, to the four three-body interactions on the faces and 
six four point interaction terms. 

(A.6) 
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Appendix  B. H o w  rotat ional  invariance is mainta ined  for stressed springs 

Consider the expansion of  the two-point interaction potential ~t~(r) around its value at equilibrium 
when r = R 

R--+ R + 6r. (B.1) 

Expanding qf(r)  in fir one has, to second order in 6r, 

~ ( R + ~ r ) - ~ I / - ( R ) = [  d~K'(r)] ~r 1 _[d2~//'(r)] ~r2+O(6r3) " (B.2) 
L dr Jr=R ~-2 L dr2 J~=R 

In general the "equilibrium" distance R will not correspond to the minimum of  ~//(r) so that 

3-- : [dq / ( r ) ]  
L--&-r J ~:R ¢ 0 (B.3) 

and one therefore has to keep the term linear in 6r in Eq. (B.2). 
So far rotational invariance is manifest because only the changes in the distance r, fir, appear in 

the expansion (B.2). For the harmonic expansion we have to rewrite this expansion in terms of  the 
components of  the relative deviation of the two end points 

u = u l  - u2.  (B .4 )  

Now to second order in these components 

6r = 61r + 6Zr + O(u3), 6lr = u" ,  62r = (u-L)2/2R (B.5) 

as illustrated in Fig. B.1. 
The second-order contribution to fir, namely 62r, is the difference between the transverse deviation, 

u ±, and the rotation &p. A purely transverse u 

u ± ¢ 0,  u" = 0 (B.6) 

implies a second order change in r, namely 62r, while the rotation, &p, obviously does not change 
r to any order. 

, u ~- l~.&~ ~2 (u l) 2 

R ~ -  : r = ~2R 

Y 
Fig. B.1. 
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Substituting 6r from Eq. (B.5) into Eq. (B.2) gives, to second order in the components of  u, the 
rotationally invariant expression for the change in energy 

~U(R + 6r) - ~U(R)= 3-u" + 3- (u±)2 1 (u , )  2 2R + 2 ~c- + O(u3), (B.7) 

where 

J l =  dr:  Jr=R" (B.8) 

The first term on the right-hand side of Eq. (B.7) is the term we considered in the first order 
expansion in Section 4 - Eq. (4.1). The third term gives rise to the harmonic Cauchy energy - 
Eq. (5.8). The second term on the right in Eq. (B.7) is the origin of  the tension induced terms in 
the harmonic energy, ~ - Eq. (6.11). One notes that these are contributions to the 6rq which are 
quadratic in the components of  the u i j -  6:r~j, Eq. (B.5). It is evident that this does not violate 
rotational invariance. Quite to the contrary, these terms have to be included in the harmonic expansion 
if one wants to maintain rotational invariance consistently to second order in the components of u~. 

We note that this is the only contribution of  62r to the energy in the harmonic approximation. 
When 62r is included in the (rr) z terms in Eq. (B.2) it only contributes to the anharmonicities, to 
third and fourth order in the components of the u~. 

We want to mention two more points 
1. The first concerns equilibrium. In equilibrium the forces f j  on any single atom, i, must cancel 

each other 

A g  = f ,  • u = Z f i j . u i  = 0  (B.9) 
J 

- Eq. (3.29). This is a condition on terms in the expansion which are linear in the 3~j but also 
linear in the components of the ui. The terms linear in the Ug must cancel. There is however no 
cancellation for terms which are linear in the 3-7q, but quadratic in the components of  the ui. In the 
stressed equilibrium state there is a restoring force for the transverse deviations of  a single atom 
when there is tension. 

2. The second point concems anharmonicity. In (B.2) we expand around an equilibrium separation 
R which, obviously, cannot be the separation for which the potential 3Z(r) has its minimum. In this 
expansion one evidently does not want any terms corresponding to higher powers of fir. Assume 
however that U ( r )  has a minimum 

~3v = 0  
~r r=Ro 

so that 

R ~Z~ Ro 1 ~3~ 3 - =  ~ =rR ~ + 2 6R2 ~r3 Ro + ' ' '  ' 

where 

fiR = R - R0. 

(B.IO) 

~ 23¢/" ~23U" R ~ 3 ,~/" 
~r2 R-  ~F2 Jr-fiR Or 3 Ro-+-'''' 

(B.11) 

(B.12) 
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Evidently the anharmonicities in the expansion of  3e~(r) around its minimum do show up. They are 
of  course related to the non-linear terms in the "unstressed" elasticity. These terms may or may not 
be important numerically. It is however evident that they are not needed to generate the tension J-. 

The example demonstrates that the tension induced terms are distinct from the anharmonicities 
one would expect in strained samples or - more precisely - that one has to define accurately what 
one means by these terms. 

Appendix C. The second order strain and the second order volume change 

It is instructive to look at the microscopic origin of  the stabilization by stresses for one square. 
A pure shear of  magnitude 

~yUx = 2u (C. 1) 

distorts a square of  unit magnitude and unit area. This is described in Fig. C.1. The two vertical 
edges are elongated by 

32r = 2 U  2 (C.2) 

but the area is clearly unchanged: 

~S = 32S ~ O. (C.3) 

For a p u r e  shear  the second order strain tensor has only one element 

e ~ 2  1 2 ~(~yUx) = 2u 2 . (C.4) 

Thus the isotropic part of  the second order strain which multiplies the isotropic pressure 

2 2 eis o --= eyy = 2u 2 (C.5) 

does not vanish. 

/ 
I 

® 

® 

/ 
Fig. C.I. 
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® 

Fig. C.2. 

Evidently this means that there is now a restoring force for the shear with a coefficient which is 
the network pressure: 

,~i~selastic / be 1 (~yUx) 2 (C.6) 
ealar / - -  ~ 4 Pnet 

This describes a term in the elastic energy which is isotropic but for which the deformation which 
multiplies the pressure does not describe a volume change to any order. 

In Fig. C.2 the deformation of  the same square is 

~ux/~y = - ~ u y / ~ x  = v/2 u (C.7) 

so that 

eZxx=e2y= - e 2 y = U  z . (C.8) 

This is an element of  the antisymmetric part o f  the deformation tensor - the z component o f  rot u 
and describes a rotation. 

Again, as in Eq. (C.5) the isotropic part o f  the second order strain does not vanish: 

ei~ o = ½[(~xUy) z + (~yUx) z] = 2 u  2 . (C.9) 

But, somewhat paradoxically, there is also a second order volume change associated with this first 
order rotation 

6:'V/V = u 2 . (C.10) 

In both cases the second order strain contributes to the shear rigidity. 
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For this simple example one can also see the meaning of  this directly. Assume the mechanical 
properties are described by a Cauchy model with nearest neighbor interactions. The unstressed square 
then has no linear shear rigidity. When there is tension in the bonds 5- the lattice is stressed. The 
stress is isotropic and amounts to a negative network pressure 

Pnet : --~-- (C. 11 ) 

in units in which the lattice constant is 1. The lattice stress exerts the force of one bond, Y ,  on a 
surface of  unit area. Consider now the effect of  the shear described in Fig. C.2. There is an increase 
in energy 

62 g = 2U2~-- = --2U2 Pnet (C. 12) 

due to the shear. This results in a restoring force which stabilizes the nearest neighbour square lattice 
against shear. 

Appendix D. Double-well buckling - an example 

Evidently the simplest example of structural buckling is a single bond with negative tension. Using 
only the inevitable anharmonic terms of  Eq. (10.18) one gets 

~ ±4 

- 2Rij (ui~)2 + ~ i j  uij (D.l) 

± =  0 is unstable and the mode buckles to one of  the - a double-well potential. The equilibrium at Uiy 
minima. See Fig. D.1. 

This is of  course schematic and oversimplified. One does however expect that, quite generally, 
some stabilizing anharmonic terms will eventually dominate. It is, e.g., easy to see that for the free 
torsional mode of  a hexagon which we considered in Section 11.1 - Fig. II.16 - the anharmonic 
terms we included in Eq. (D.1) limit the torsional amplitudes and make the torsional potential into 
a double well potential. 

~tate / 

\ i 
I % stable I 

v \ b~ckled l ~t reJerence l 

Fig. D.1. 
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