
Bertrand Massot bertrand.massot@insa-lyon.fr

GEA-4-IF4: Event-based programming on
microcontrollers

1

Course of the sessions: 10 x 2h sessions mixing theory, practical, exam and project

2

Foreword

Session title Date / Time

1 Introduction 12/09

2 Input / Output 02/10

3 Interrupt #1 07/10

4 Interrupt #2 – Time Management 08/10

5 Time Management (2) 06/11

Session title Date / Time

6 Interrupt #3 – Peripherals 02/12

7 Exam (50 mn), Project setup 10/12

8 Project #1 11/12

9 Project #2 15/01

10 Project #3, Exam (50 mn) 19/01

Use A.I. wisely – from ChatGPT itself

Why avoid AI in learning embedded programming?

• Essential foundations: risk of copying without understanding (hardware, registers, interrupts).

• Autonomy: learning debugging and problem analysis.

• Real-world constraints: AI may ignore memory limits, real-time, power consumption.

• Reliability: generated code can look correct but be wrong or incomplete.

• Critical thinking: reading datasheets, understanding trade-offs → lasting skills.

3

Foreword

Introduction to STM32U585 family

4

General introduction to the device, hardware and software used in this course

Microcontrollers are small integrated computers (Core + Peripherals)

5

Microcontrollers and C programming

Key figures :

• > $15 billion market in 2020

• Automotive, Industrial, Consumer Electronics,
Healthcare, Aerospace & Defense

• > 80% programmed in C language

• > 46 000 references on Mouser / Digikey

Most new microcontroller architectures are based on ARM (M0+, M4F, M23, M33)

6

Microcontrollers and C programming

Ultra-low power Most deployed, FPU M4 + Security

7

STM32 MCUs portfolio

STM32U585 are 32-bit microcontrollers based on Cortex-M33 core

8

Introduction to STM32U585 architecture

STM32U585 are programmed using STM32CubeIDE

9

Introduction to STM32U585 programming

STM32U585 are programmed using STM32CubeIDE – and Cube MX

10

Introduction to STM32U585 programming

STM32U585 are programmed using STM32CubeIDE

11

Introduction to STM32U585 programming

Toolbar in “C/C++” view Build, program the board and start debugging

Build your code and check for erros

Navigate inside your project files

Edit your source files

STM32U585 are programmed using STM32CubeIDE

12

Introduction to STM32U585 programming

Toolbar in “Debug” view

Start, pause, stop program execution

Step by step execution when program is paused

Place breakpoints into your code to pause execution and check values

Manual switch perspective

STM32 programming is done in C language (or C++)

• Learned in 3GEA

The microcontroller peripherals are accessed using hardware registers

• You simply write a value at a specific address in memory to control a peripheral

• All registers are described in the Reference Manual (3637 pages)

13

Introduction to STM32U585 programming

Program instructions

Data memory (variables)

Peripheral control

Peripheral Access Register: example for reading / writing digital input / output

What do you think ?

14

Introduction to STM32U585 programming

32-bit MODER register at address 0x42021C00 controls pin direction of port H pins

(*((uint32_t *)(0x42021C00))) |= 0x01; // set PH.0 as output

GPIOH->MODER |= 0x01; // same using stm32u585xx.h definition

32-bit ODR register at address 0x42021C14 controls output logic level of port H pins

(*((uint32_t *)(0x42021C14))) |= 0x01; // set PH.0 level high

GPIOH->ODR |= 0x01; // same using stm32u585xx.h definition

Access device’s peripheral functions through a software development kit :
Hardware Abstraction Layer (HAL) library

• Instead of raw registers access

• Improve readability and portability of your code

• Easier procedures for complex peripherals

15

Introduction to STM32U585 programming

void blink_led_reg(void)
{

GPIOH->MODER |= 0x01;
GPIOH->OTYPER &= ~0x01;

while(1)
{

GPIOH->ODR ^= 0x01;
volatile i = 7500000;
while(i--);

}
}

void blink_led_hal(void)
{

GPIO_InitTypeDef GPIO_InitStruct =
{

.Pin = GPIO_PIN_0,

.Mode = GPIO_MODE_OUTPUT_PP
};
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);

while(1)
{

HAL_GPIO_TogglePin(GPIOH, GPIO_PIN_0);
HAL_Delay(500);

}
}

Register level programming Hardware abstraction layer programming

What can we achieve using B-U585I-IOT02A board ?

16

Hardware setup

USB Programmer / Debugger

Push button

Red and Green LEDs

Light

Bluetooth Low Energy

Humidity / Temperature

Pressure

Magnetometer

Accelerometer / Gyroscope

Blue Led

Reference documentation (everything is on Moodle)

• B-U585I-IOT02A User Manual

• This gives you details on the board peripherals / interconnections

• ST website link

• STM32U5 HAL User Manual

• This explains all the functions contained in the HAL library for peripheral usage

• ST website link

• STM32U585 Datasheet

• Describes which peripherals are implemented in this specific STM32U5 reference

• ST website link

• STM32U5 Reference Manual

• Provides details about core / peripheral opertions

• ST website link

17

Hardware setup

https://www.st.com/resource/en/user_manual/um2839-discovery-kit-for-iot-node-with-stm32u5-series-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2911-description-of-stm32u5-hal-and-lowlayer-driver-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32u585ai.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf

Objectives :

• Create a program which makes red and green LEDs blink alternately at 2 Hz

18

Practical #1

Constraints :

• Use HAL functions

General Purpose Inputs / Outputs (GPIO)

19

Handling digital inputs and outputs of the STM32U585

General Purpose Inputs / Outputs

20

Introduction to STM32U5 architecture

133 over 169 pins on the STM32U585AII6Q are GPIOs

21

General Purpose Inputs / Outputs

Most of them have alternate functions other
than just being a logic input or output : PWM,
serial bus, ADC input, etc.

Basically, each GPIO can be configured in one
of the following possible states :
• Input floating (Hi-Z, default)
• Output low or high (logical 0 or 1)
• Analog
• Alternate function input / output

Input or Output mode can also be configured
with an internal pull-up or pull-down
resistance

22

General Purpose Inputs / Outputs

Reminder on pull-up / pull-down inputs

• Useful for open-drain or open-collector devices which drives only one state (low / high)

• Commonly found in logical buses (SPI or I2C buses, SD Cards, etc.)

• Useful for switch buttons

23

General Purpose Inputs / Outputs

This output can be High-Z or low

This input can be High-Z or low

Reminder on pull-up / pull-down inputs

• Useful for switch buttons

• In most microcontrollers, those resistors can be set internally (no need for external components)

24

General Purpose Inputs / Outputs

This input can be high or low

Logic is “active low”

This input can be high or low

Logic is “active high”

Cube MX configuration

25

General Purpose Inputs / Outputs

• With Cube MX (.ioc), configuration / initialization is automatically generated

• With the HAL library, register access is handled by the library

26

General Purpose Inputs / Outputs

// Functions for writing pins as output
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_13, GPIO_PIN_SET); // or GPIO_PIN_RESET (= 0)
HAL_GPIO_TogglePin(GPIOE, GPIO_PIN_13);

// Functions for reading pins as input
GPIO_PinState pin_state = HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13);

Parameters are simple, readable constants, such as GPIOA, GPIO_PIN_0, GPIO_PIN_SET
(see stm32u5xx_hal_gpio.h)

Cube MX also enables user labels for GPIOs (LED_GPIO_Port, LED_GPIO_Pin)

27

General Purpose Inputs / Outputs

HAL_GPIO_WritePin(LED_RED_GPIO_Port,
LED_RED_Pin,
GPIO_PIN_SET);

28

STM32CubeIDE – Hints

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

NEVER write code outside
of BEGIN / END zones

• Only code within BEGIN / END zone will be
kept after new generation from Cube MX

• Code outside will be overwritten

Cube MX configuration

29

STM32CubeIDE – Blank project

Objectives :

• Implement a program to control color of the red, green and blue LED using the switch button

30

Practical #2

Constraints :

• Start with empty Cube MX (select STM32U585AII6Q)

• Use HAL library (no direct access to peripheral registers)

• Use GPIO input / output only

USER B3 button pressed

LED colors

31

Practical #2

Red and Green LEDs

Blue Led

Push button

32

Practical #2

Interruptions - Part #1

33

Basic mechanisms of interruptions and event-based programming principles

Executing a program sequentially without interrupts is called polling

34

Introduction to hardware interrupts

• Events occurring during execution, such a button pushed, are detected by successive testing of the inputs in a loop.

• When an event is detected, an appropriate function is called to handle the required behavior

• Meanwhile other events can not be detected anymore !

• CPU is always busy

Task 1Event 1 Event 2 Task 2

Other

yes

no

yes

no

Main loop

On events, interruptions can stop the current running program and execute a sub-program

The current program will be resumed after execution of the sub-program.

35

Introduction to hardware interrupts

Other

Task 1 Task 2

Event 1 Event 2

• Whatever the program is doing, events will be detected and handled accordingly

• This provides much more reactivity for tasks with high priority

• The CPU can be put in idle state if there is no action to do, except waiting for events

Such a sub-program is called an Interrupt Service Routine (ISR) or an Interrupt Handler

Main loop

ISR 1 ISR 2

A dedicated hardware block is responsible for handling interrupts

This block is called the Nested Vector Interrupt Controller (NVIC)

• The NVIC collects all interrupt signals from peripherals

• Saves current CPU state (registers, stack, etc.)

• Sets the next instruction pointer to the address of the interrupt service routine

• Restores previous saved CPU state when the ISR returns

36

Interrupt handling in STM32U585

37

Serving a single Interrupt Request (IRQ)

Peripheral

NVIC

CPU

Interrupt Request

Interrupt Flag

Thread Execution

main mainsave restoreIRQ handler

Pulse interrupt
request

Context
switching

38

Serving a single Interrupt Request (IRQ)

Peripheral

NVIC

CPU

Interrupt Request

Interrupt Flag

Thread Execution

main mainsave restoreIRQ handler IRQ handler

Flag is cleared when
interrupt is served

39

Serving a single Interrupt Request (IRQ)

Peripheral

NVIC

CPU

Interrupt Request

Interrupt Flag

Thread Execution

main save IRQ handler

Level interrupt
request

IRQ handler IRQ handler

What is happening ?

40

Serving a single Interrupt Request (IRQ)

Peripheral

NVIC

CPU

Interrupt Request

Interrupt Flag

Thread Execution

main mainsave restoreIRQ handler

Interrupt flag
cleared by user

Some examples of interrupt sources:

• An input pin changing state (low to high, or high to low)

• ADC end of sample conversion

• Timer expiration

• Data received on serial bus

• Etc.

41

Interrupt handling in STM32U585

Most of the peripheral events which occur in your program can be detected with interruptions !

It is then possible to build your application based on events without continuously checking them

Using STM32 Cube MX, code is usually already generated for flag clearance

The NVIC contains an Interrupt Vector Table, which stores addresses of ISRs for each interrupt source

42

Interrupt handling in STM32U585

When an interrupt occurs, the main program is immediately stopped, and the corresponding handler is called

Interrupt Number in the table Interrupt Source

-15 -

-14 Reset

-13 Non Maskable Interrupt

-12 Hard Fault

-11 Memory Management

[…] […]

-1 SysTick

[…] […]

11 EXTI1 (GPIOx Pin 1)

12 EXTI2 (GPIOx Pin 2)

[…] […]

Specific / CPU exceptions (1 – 15)

External / Peripheral interrupts (16 – 255)

Interrupts can be configured and activated from Cube MX depending on peripheral configuration

43

Interrupt handling in STM32U585

Interrupts can be configured and activated from Cube MX depending on peripheral configuration

44

Interrupt handling in STM32U585

All GPIO ports share same line interrupts ! Two GPIO interrupts for the same pin of different ports
can not be enabled at the same time

Example : GPIOA Pin 1 interrupt and GPIOB Pin 1 interrupt can not be enabled at the same time.

45

Interrupt handling in STM32U585

GPIO interrupts are special GPIO mode in Cube MX

46

Interrupt handling in STM32U585

void EXTI13_IRQHandler(void)
{

/* USER CODE BEGIN EXTI13_IRQn 0 */
/* USER CODE END EXTI13_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(USER_BUTTON_Pin);
/* USER CODE BEGIN EXTI13_IRQn 1 */
user_button_interrupt();
/* USER CODE END EXTI13_IRQn 1 */

}

Implement service routines in your code that can be called from generated interrupt handlers

• Create a custom function in main.c

• Declare the function prototype in main.h

• Call the function from the interrupt handler in stm32u5xx_it.c

47

Implementation of interrupts in STM32U585

/* USER CODE BEGIN PFP */
void user_button_interrupt(void)
{

// Do something useful here !
}
/* USER CODE END PFP */

/* USER CODE BEGIN EFP */
void user_button_interrupt(void);
/* USER CODE END EFP */

main.c

main.h

stm32u5xx_it.c

Objectives :

• Implement a program to control color of the red, green and blue LED using the switch button

48

Practical #3

Constraints :

• Start with empty Cube MX (select STM32U585AII6Q)

• Use HAL library (no direct access to peripheral registers)

• Use GPIO input / output only

• Use interrupts – the infinite while loop must be empty !

USER B3 button pressed

LED colors

49

Practical #3

Interruptions - Part #2

50

Nested interrupts, priorities

51

Serving a single Interrupt Request (IRQ)

NVIC

CPU

Interrupt Flag

Thread Execution

main save IRQ 1 handler

What happens if two interrupts occur closely / simultaneously ?

IRQ 2

IRQ 1

52

Serving a single Interrupt Request (IRQ)

In Cortex-M4 core, interrupts have priorities

A lower priority interrupt handler can be interrupted by a higher priority one

Source Priority

-15 Reset 0

-14 Non Maskable Interrupt 0

-13 Hard Fault 0

-12 Memory Management 0 – 15

[…] […] […]

-1 SysTick 0 – 15

[…] […] […]

11 EXTI1 (GPIOx Pin 1) 0 – 15

12 EXTI2 (GPIOx Pin 2) 0 – 15

[…] […] […]

User programmable priorities

The lower the number, the higher the priority

Priority value is comprised between 0
(highest priority) and 15 (lower priority)

53

Serving a single Interrupt Request (IRQ)

NVIC

CPU

Interrupt Flag

Thread Execution

main save IRQ 1 handler

What happens if two interrupts occur closely / simultaneously ?

IRQ 2

IRQ 1

IRQ 2 handler mainrestore

Tail chaining

IRQ 1 priority value ≤ IRQ2 priority value

54

Serving a single Interrupt Request (IRQ)

NVIC

CPU

Interrupt Flag

Thread Execution

main save IRQ 1 h.

What happens if two interrupts occur closely / simultaneously ?

IRQ 2

IRQ 1

IRQ 2 handler mainrestore

Nested interrupt

IRQ 1 h.

IRQ 1 priority value > IRQ2 priority value

Time Management

55

SysTick, Basic and General Purpose Counters

A basic software time counter can be done using CPU loop

56

Time management on microcontrollers

void Timer(uint32_t time)
{

volatile uint32_t i;

while (time > 0)
{

for (i = 100000; i > 0; i --);
time --;

}
}

Adjust value according to time unit

• The time counting is not precise (system clock frequency, compiler optimization)

• This function is blocking

• This is a terrible timer…

Hardware timers enable parallel counting and let the CPU free

57

Time management on microcontrollers

Category of timers in STM32U585

58

Time management on microcontrollers

Labels Type Comments

SysTick 24-bit (down)
Simple

Always active, interrupt already
enabled, 1 kHz default frequency

TIM1, TIM8 16-bit (up/down)
Advanced Timer, Counter, PWM

Complex PWM generators

TIM2, TIM3, TIM4, TIM5, TIM15,
TIM16, TIM17

32-bit (up/down)
Generic Timer, Counter, PWM

Connected to input / output

TIM6, TIM7 16-bit (up)
Timer only

No input / output
Only to count time

LPTIM1, LPTIM2, LPTIM3, LPTIM4 16-bit (up)
Timer, Counter, PWM

Active in low power modes

59

SysTick Timer

void SysTick_Handler(void)
{
HAL_IncTick();

}

SysTick timer is simple, convenient timer to use for time counting

• Already configured and started by the system

• Interrupts is activated and used to increment a counter

• Default period is 1 millisecond

60

Time management on microcontrollers

uint32_t delay_ms = 10;
HAL_Delay(delay_ms);

uint32_t ticks_num;
ticks_num = HAL_GetTick();

Increment an internal variable

Wait for a number of tick

Get number of ticks since beginning

stm32u5xx_it.c

Objectives :

• Implement a program to blink the red led using SysTick timer interruption at 1 Hz.

• Implement a blocking loop in a Switch interruption (code stays in the interrupt while button is pushed)

• Use priorities to force or prevent the Switch interrupt to block SysTick timer interrupts

61

Practical #4

Do nothing
Toggle LED at 1 Hz Loop until switch is released

SysTick interrupt Switch 1 interruptMain loop

SysTick IRQ Handler Switch 1 Port IRQ Handler

62

TIM6, TIM7 simple timers

TIM6 and TIM7 timers are simple 16-bit up timers with no input / output connectivity

• Their practical usage is reserved for internal clock counting

• They can trigger interrupts when reloading

• They are clocked with APB1 Timer Clock

63

Time management on microcontrollers

TIM6 and TIM7 contains one 16-bit counter, counting up in 2 possible configurations

64

Time management on microcontrollers

Periodic mode (One Pulse Mode disabled)

Auto-reload when
reaching 0

Period - 1
value

Period value is
configurable

Interrupt can occur

Maximum counter value is 65535

0

TIM6 and TIM7 contains one 16-bit counter, counting up in 2 possible configurations

65

Time management on microcontrollers

One-shot mode (One Pulse Mode enabled)

Stop counting ! …

Period - 1
value

Interrupt can occur

… Until timer is
manually reloaded

Maximum counter value is 65535

0

TIM6, TIM7 clock speed

66

Time management on microcontrollers

Timer counts at APB1 Timer clock speed, default is 4 MHz

TIM6, TIM7 clock speed

67

Time management on microcontrollers

Timer has an internal pre-scaler to reduce counting frequency

Counting frequency is 4 MHz / 40000 = 100 Hz

Usage of TIM6 and TIM7 with interrupts

• Ensure interrupts are enabled in NVIC settings

• Implement a interrupt service routine and declare it in main.h

• Call your ISR from the Timer handler function in stm32u5xx_it.c

• Start the timer with HAL_TIM_Base_Start_IT function

68

Time management on microcontrollers

Objectives :

• Blink the green LED at 2 Hz using TIM6 (250 ms ON – 250 ms OFF)

• Blinking must not be blocked by user button

• Red LED blinking at 1 Hz using SysTick has to be blocked by user button

69

Practical #4b

Constraints :

• Start from Practical #4 project

• Main “while” loop is empty

70

TIMx generic timers (other than TIM6 & TIM7)

• PWM signals are convenient for driving analog/digital peripherals

• LED intensity

• Motor speed, drone flight controls

• Sound generation

• period is constant

• frequency is 1 / (PWM period)

• uptime is variable

• duty cycle is uptime / period

71

Reminder on Pulse Width Modulation signals (PWM)

period

uptime

Average value of PWM is an analog signal proportional to duty cycle

Capture / Compare counters like TIM1, etc. can be used to generate PWM

TIMx are 16-bit or 32-bit timers/counters

Time management on microcontrollers

An interrupt can be generated when counter loops back to 0

Prescaler

Channel output

Up/down counter

An interrupt can be generated when counter reach channel CC register

Each TIMx possesses capture/compare registers (CCy)

73

Time management on microcontrollers

Capture mode: made to measure time or events

• The current value of the counter is stored in the CC register on rising /
falling / toggle of external input TIMx_CHy

Compare mode: made to generate PWM

• The outputs TIMx_CHy are set/reset when counter reaches the
corresponding CCy register

Details on the PWM Mode

This mode is dedicated to generate PWM signals using timer period and CC register.

74

Time management on microcontrollers

PWM period is set by the timer period (Counter period setting in Cube MX)

Counter of the timer is incremented on each clock source rising edge until reaching the value stores
in the period register, where the counter restart counting from 0.

74

Auto-reload when
reaching 0 Possible Timer interrupt

Period - 1

0

75

Time management on microcontrollers

75

PWM duty cycle is set by the CC register value (Pulse setting in Cube MX)

An output is generated based on the comparison between current counter value and a value stored in
CC register. Pulse and Period is the ducty cycle.

Period - 1

CC Pulse

Output

Output

PWM Mode 1

PWM Mode 2

Configuration of Timer for PWM generation in Cube MX

76

Time management on microcontrollers

76

Select GPIO to be used for PWM output

Inputs and outputs for each Timer are fixed !

Configure the channel corresponding to GPIO

Select the right Timer

Adjust clock and period settings

Set Mode and initial Pulse (duty cycle)

Objectives :

• Find the correct function to call to start timer in PWM Mode

• Find how to modify duty cycle (look at the code generated by CubeMX)

77

Practical #5a

Objectives :

• Control Blue LED intensity using the user switch button

78

Practical #5b

Timer Blue Led

Switch IRQ

Constraints :

• Implement a PWM using a Timer to control Blue Led intensity

• Use the user button switch to increment the duty cycle by steps of 10%

Hints :

• Think about what should be the PWM clock and period ?

• A period of 100 enables to set duty cycle directly as a percentage (0: always off – 100: always on)

• With a period of 100, clock should be at least 100 * 1 kHz so a human eye can’t see off/on state but an average
of the intensity

79

Practical #5

Advanced:

• Change switch behavior so intensity varies if the switch is kept pushed

Interruptions – Part #3

80

Deferred interrupts, global event architecture

For safe code execution, it is always better to run code from the main thread rather than from an ISR.
When such code is triggered by an interrupt, a flag can be used to synchronize the interrupt event
(from the ISR) with the execution of code in the main thread.

81

Deferred interrupts

Generally, on MCUs it is not good practice to :

• Execute long code procedures within the ISR

• Calling external function from the ISR

Use it for code which must be triggered from an interrupt and:

• Take very long processing time

• Need to be interruptible by any IRQ (lowest priority)

• Must run in the main thread (safe execution)

82

Deferred interrupts

Sleep

Set Flag

Event 1

Main loop

ISR 1
Check flag

Clear Flag

Call Task

yes

no

Sleep until IRQ occurs

Stay awake after ISR

‘Flag’ is generally a global variable in the program so it
can be read/write from different function and execution
threads.

Code template

83

Deferred interrupts

/* This variable is declared out of a function, so it is global to the file */
uint8_t flag;

int main(void)
{

/* Initialize the flag */
flag = 0;

while(1)
{

/* Stop the CPU until next interrupt */
HAL_SuspendTick();
HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON,PWR_SLEEPENTRY_WFI);
HAL_ResumeTick();

/* After an interrupt occured, the CPU stay awake */
/* So we check the flag */
if (flag != 0)
{

/* Do what you want to do */
call_some_task();
/* Clear the flag */
flag = 0;

}
}

}

void myIRQ_Handler(void)
{

/* Set the flag */
flag = 1;

}

84

Summary of event-based programming

Event
handling type

High priority
interrupt

Low priority interrupt Deferred interrupt Event polling

Priority

Type
• Short code
• Lowest latency
• Not interruptible

• Mostly short code
• Low latency
• Interruptible

• Longer code
• No latency

constraint
• Interruptible

Do not use event
polling, please.

85

Communication with remote computer

UART communication

UART Protocol :

• Asynchronous transmission (no clock)

• Usual baud rates : 9600, 57600, 115200 bdps

• Full duplex (independent data line for emitter and receiver)

86

Communication with remote computer

Emitter and receiver must be set to same speed

• UART1 TX pin is connected to PA9

• UART1 RX pin is connected to PA10

87

Communication with remote computer

This UART communication over USB port is called Virtual Serial Port (COM Port on Windows,
TTY/ACM on Linux / Mac OS)

UART1 is connected to ST Link debug probe

• On-board ST Link v3 is used both for programming / debugging

• It also has 2 GPIOs dedicated to UART communication between STM32U585 and computer

Check your peripheral manager (gestionnaire de périphériques)

88

Communication with remote computer

Virtual COM Port created by the STLink v3

You can connect to this serial port by using any terminal such as:

- Putty https://www.putty.org/

- Mobaxterm https://mobaxterm.mobatek.net/

- Tabby https://tabby.sh/ (cross-platform)

- Or go to https://bipes.net.br/aroca/web-serial-terminal/ using Chrome or Edge

Data sent from STM32 will be “readable” on a serial monitor ONLY if it is text

https://www.putty.org/
https://mobaxterm.mobatek.net/
https://tabby.sh/
https://bipes.net.br/aroca/web-serial-terminal/

89

Communication with remote computer

Configure PA9, PA10 and USART1 in Cube MX

USART1 is then initialized in main.c :

UART_HandleTypeDef huart1;
static void MX_USART1_UART_Init(void);

90

Communication with remote computer

Send bytes arrays using transmit function :

HAL_UART_Transmit(huart, pData, Size, Timeout);

&huart1

A byte array previously defined

uint8_t my_data[32];

Number of bytes to transmit
from the array

0xFFFF

91

Communication with remote computer

Send bytes arrays using transmit function :

// be sure that your array is large enough !
char byte_array[32];
int str_size = 0;
unsigned int value = 0;
while (1)
{

// put some text in the byte array
str_size = snprintf(byte_array, sizeof(byte_array), "Hello World ! %u\r\n", value);
HAL_UART_Transmit(&huart1, (uint8_t *)byte_array, str_size, 0xFFFF);
value = value + 1;
HAL_Delay(1000);

}

snprintf() is included with #include <stdio.h>

92

Communication with remote computer

snprintf() function specifiers to convert
numbers into characters

%d // signed 8 or 16 bits integer
%ld // signed 32 bits integer
%lld // signed 64 bits integer
%u // unsigned 8 or 16 bits integer
%lu // unsigned 32 bits integer
%llu // unsigned 64 bits integer
%[+][0][7][.3]f // float (must be enabled project properties, see above)
The value 1,1352 would be printed +01.135 (7 characters total, 3 decimals)
%s // character string
%% // write % character
\r\n // new line

93

Communication with board peripherals

I2C communication

Master sends the slave address with which (eg. the

memory bank) it would like to communicate. RW = 0 →

master wishes to write data

Slave ack
Master sends to slave (the memory bank here)

the address register (inside the memory!) it

would like to read

Slave ack

Slave ack

Master gets data Master ack

Master wishes to

terminate the current

transaction

End of transaction
Master sends the address of the slave that is being

ready now to communicate → master wishes to get

data (RW = 1) from the register which address is

declared above

I2C Protocol :

• Synchronous transmission

• Usual clocks: 100 kHz (Standard Mode), 400 kHz (Fast Mode)

• Half duplex (only one data line for emitter and receiver)

94

Communication with board peripherals

I2C2 is used to communicate MEMS on board

• SCL is connected to PH4

• SDA is connected to PH5

95

Communication with board peripherals

HTS221
Humidity & Temperature
8-bit addr. 0xBE

IIS2MDCTR
3-axis Magnetometer
8-bit addr. 0x3C

LPS22HH
Pressure & Temperature
8-bit addr. 0xBA

ISM330DHCX
6-axis Inertial Unit
8-bit addr. 0xD6

96

Communication with board peripherals

Configure PH4, PH5 and I2C2 in Cube MX

I2C2 is then initialized in main.c :

I2C_HandleTypeDef hi2c2;
static void MX_I2C2_Init(void);

97

Communication with board peripherals

// To read 2 bytes from peripheral's memory register 0x3D
uint8_t value[2];
uint8_t reg = 0x3D;
uitn8_t addr = 0xBE;
HAL_I2C_Mem_Read(&hi2c2, addr, reg, 1, value, 2, 0xFFFF);

Objectives :

• Read ID register of the 4 available sensors and print them in a serial monitor

• Check that IDs correspond to value provided in datasheet !

98

Practical #6

