

Liaison Pivot

Paliers Lisses – Roulement radiaux

Équipe pédagogique CONAN

Objectifs

OBJECTIF: concevoir et dimensionner la liaison pivot du vilebrequin avec le bâti d'une pompe moyenne pression

Peut-on trouver une solution de guidage avec un palier lisse?

Comment assurer la protection et l'étanchéité ?

Les coussinets autolubrifiants

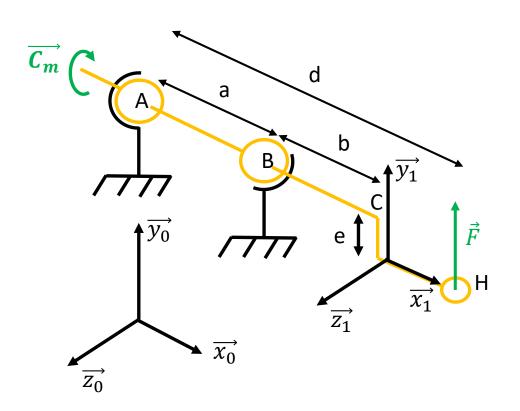
Quel type de montage adopter?

Avec ou sans collerette?

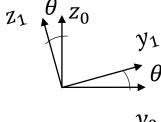
Les coussinets composites type "glacier"

Les coussinets polymères (Nylon, PTFE, acétal...)

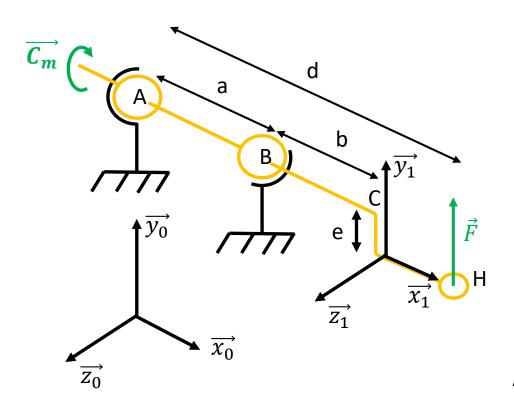
Peut-on trouver une solution de guidage des roulements?


Méthodologie Efforts dans les liaisons **Paliers lisses Roulements** Type de roulement Type de palier Capacités de charges Choix matériaux Choix dans catalogue Choix dans catalogue

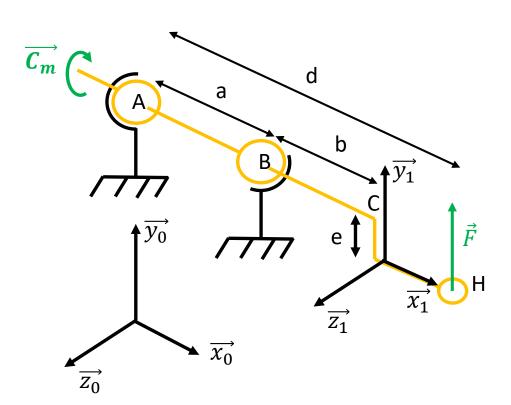
Montages

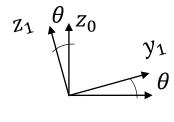


Montages


Modèle rotule - rotule car on souhaite un guidage précis (pompe soumise à des vibrations), pas de nécessite de rattraper des jeux car faible dilatation de l'arbre

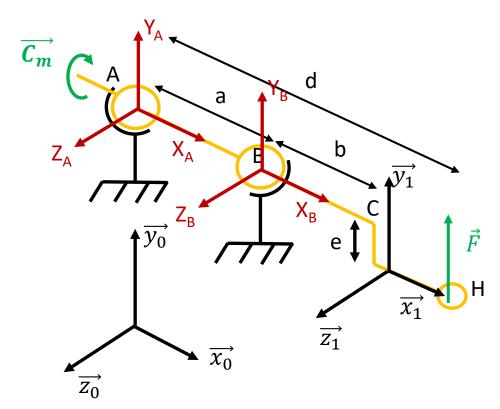
Hyperstatisme?

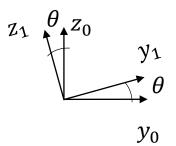



Modèle rotule - rotule car on souhaite un guidage précis (pompe soumise à des vibrations), pas de nécessite de rattraper des jeux car faible dilatation de l'arbre

Hyperstatisme? h=Is-Es+m

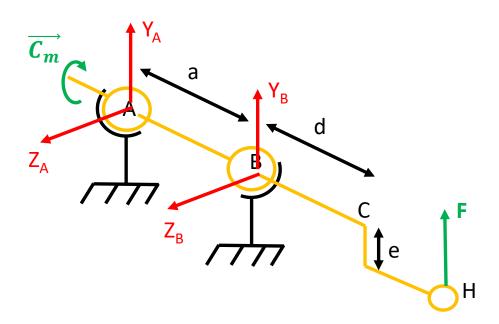
Arrêt axial suivant l'axe x réalisé 2 fois



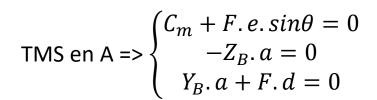

PFS en A

Remarques: w constant et effets dynamiques négligés

PFS en A:


TRS =>
$$\begin{cases} X_A + X_B = 0 \\ Y_A + Y_B + F = 0 \\ Z_B + Z_A = 0 \end{cases}$$
 HYPERSTATISME

TMS en A =>
$$\begin{cases} C_m + F.e.\sin\theta = 0\\ -Z_B.a = 0\\ Y_B.a + F.d = 0 \end{cases}$$



$$\overrightarrow{AH} = d\overrightarrow{x_{0,1}} + e\overrightarrow{y_1}$$

TRS =>
$$\begin{cases} X_A + X_B = 0 \\ Y_A + Y_B + F = 0 \\ Z_B + Z_A = 0 \end{cases}$$

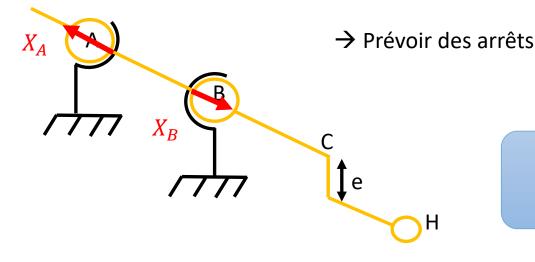
$$a$$
=30 mm ; d =100 mm ; e = 12mm ; \mathcal{O}_{Piston} = 20 mm

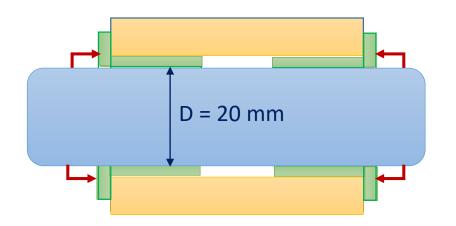
$$F_{\text{max}} = Pmax.S = 1413N$$

$$Y_B = -4710N$$

$$Z_B = 0N$$

$$Y_A = 3297N$$
$$Z_A = 0N$$


Rappel: $1 \text{ bar} = 10^5 \text{ Pa}$



Type de palier

- Effort axial lié au montage et aux défauts de fabrication
- Utilisation de coussinets avec collerettes

→ ½ rotules →
$$0.4 \le \frac{L}{D} \le 0.8$$
 Poly p47

Problématique :

- Choisir le matériau
- Choisir la longueur L
- Coussinet catalogue (d_{int} fixé)

 $8mm \le L \le 16mm$

Туре	V _{max} (m/s)	T _{max} (°C)	P _{max} (MPa)	(PV) _{max} (W.mm ⁻²)	Prix coeff
Bronze plomb	7 à 8	< 180	15 à 60	35	7,5
Bronze étain	7 à 8	< 250	3 à 100	35	8,5
Bronze alu	7 à 8	< 250	15 à 30	30	10
Bronze zinc	7 à 8	< 250	8 à 10	30	6
Fonte ft14	-	-	1	2	1 à 20
Textolite	-	< 90	20	40	1 à 20
Autolubrifié fer	-	< 80	25	1,2 à 2,5	0,6
Autolubrifié bronze	-	< 80	25	1 à 1,8	1,3
Graphite	13	< 400	4	0,55	5
Nylon	-	< 90	6	0,04	2,5

Informations matériaux (poly p44)

Palier usiné dans un brut

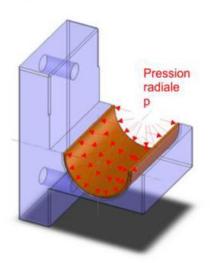
Palier fritté

Palier roulé

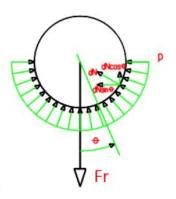
Polytétrafluoroéthylène!

Polyoxyméthylène

		0-	On	0	(80	0
	Solid bronze	Sintered bronze	Wrapped bronze	PTFE composite	POM composite	PTFE polyamide	Filament wound
Temperature range, °C	-40 +250	-10+90	-40+150	-200 +250	-40_+110	-30 +110	-50 +140
Friction coefficient, µ	0,08 _ 0,15	0,05 0,10	0,08 0,15	0,03 0,25	0,02 0,20	0,06 0,15	0,03 0,08
Permissible load, N/mm² - dynamic	25	10	40	80 (v ≤ 0,02)	120 (v s 0,02)	40	140
- static Permissible sliding velocity, m/s	0,5	0,25 5	1,0	250 2,0 (p s 1,0)	250 2,5 (p s 1,0)	1,0	0,5
Shaft tolerance	e7 – e8	f7 – f8	e7 – f8	f7 – h8	h7 - h8	h8-h9	h8
Housing tolerance	H7	H7	H7	H7	H7	H7	H7
Shaft roughness R _{ar} µm	0 1,0	0,2 0,8	0,4 0,8	00,4	0.0.8	00,8	0,2-0,4
Shaft hardness, HB	165 - 400	200 - 300	150 - 400	300 - 600	150 - 600	100 - 300	> 490
Assortment and product series designation	PBM	PSM	PRM	PCM E	PCM M	PPM	PWM
					0		
	PBMF	PSMF	PRMF	PCMFE	PCMWM	PPMF	
				PCMWE	PCMS M		
				PCMSE			
Catalogue S	KF						



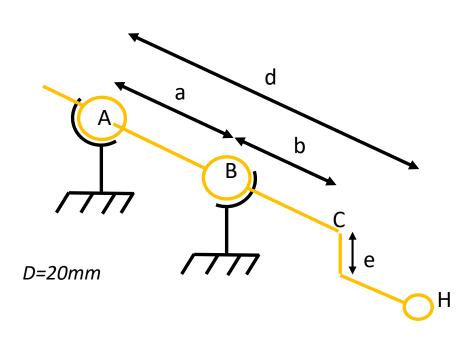
Choix matériaux : Pression admissible

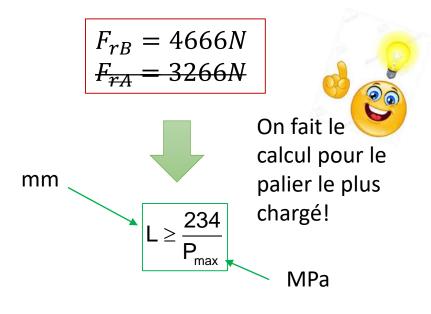

Rappel de cours

Le problème est identique au contact direct. <u>Mais le modèle retenu pour la répartition de pression est celui d'une pression uniforme</u>. Ce modèle permet un calcul aisé qui en contrepartie sous estime la pression de contact maximale. On a alors dans <u>le cas général</u> de chargement :

$$p = \frac{Fr}{L.d} + \frac{6C}{dL^2} < p_{adm}$$

La pression admissible est une donnée constructeur qui tient compte du modèle de répartition uniforme. Elle dépend du matériau choisi pour le coussinet, des conditions de température.




$$\begin{cases}
X & 0 \\
Y & M \\
Z & N
\end{cases}$$

- La charge radiale (Y²+Z²)^{1/2} que par la suite on appellera Fr
- La charge axiale X
- Le moment fléchissant C = (M²+N²)¹/²

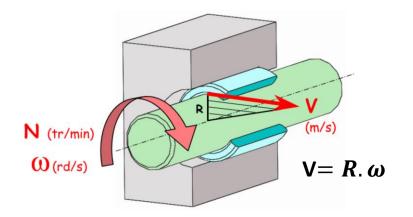
Choix arbitraire: on prend les 2 coussinets identiques

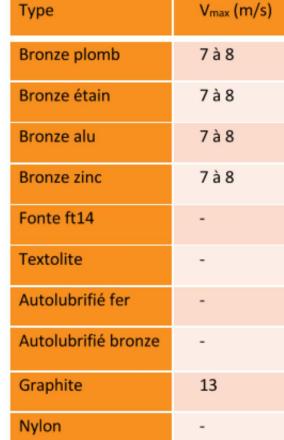


Poly Conan p43

$$P_{D} = \frac{F_{r}}{L.D} + \frac{6.C}{DL^{2}} \le P_{max}$$

Remarque : $MPa = N / mm^2$




 $8mm \le L \le 16mm$

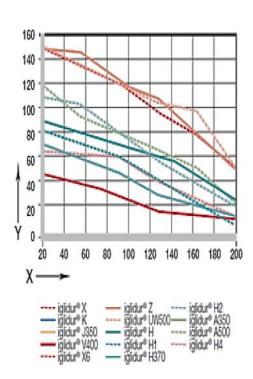
Choix matériaux : Vitesse périphérique

	-		-	-5	0		. 0
	Solid bronze	Sintered bronze	Wrapped bronze	PTFE composite	POM composite	PTFE polyamide	Filament wound
Temperature range, °C	-40 +250	-10+90	-40 +150	-200 +250	-40 +110	-30_+110	-50 +140
Friction coefficient, µ	0,08_0,15	0,05 0,10	0,08 0,15	0,03 0,25	0,02 0,20	0,06 0,15	0,03 0,08
Permissible load, N/mm ²							
- dynamic	25	10	40	80 (v ≤ 0,02)	120 (v s 0,02)	40	140
- static	45	20	120	250	250	80	200
Permissible sliding velocity, m/s	0,5	0,25 5	1,0	2,0 (p s 1,0)	2,5 (p s 1,0)	1,0	0,5

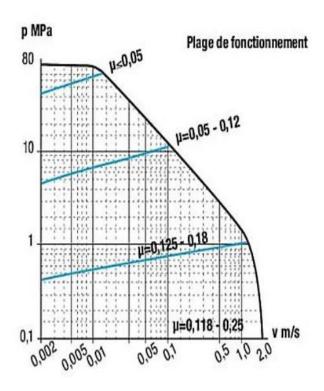
Montage paliers lisse

N = 600 tr/mn $\Rightarrow \omega$ =62,5 rad/s $\Rightarrow V = 62,5*0,01=0,62$ m/s

	Solid bronze	Sintered bronze	Wrapped bronze	PTFE composite	POM composite	PTFE polyamide	Filament
Temperature range, °C	-40 +250	-10+90	-40+150	-200 +250	-40+110	-30 +110	-50 +140
Friction coefficient, µ	0,08_0,15	0,05 _ 0,10	0,08 0,15	0,03 0,25	0,02 0,20	0,06 0,15	0,03 0,08
Permissible load, N/mm ²							
– dynamic	25	10	40	80 (v ≤ 0,02)	120 (v ≤ 0,02)	40	140
- static	45	20	120	250	250	80	200
Permissible sliding velocity, m/s	0,5	0,25_5	1,0	2,0 (p ≤ 1,0)	2,5 (p s 1,0)	1,0	0,5

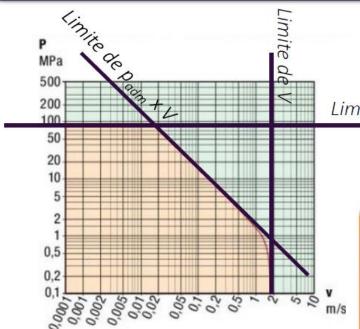

$$qm = \frac{Spiston * e * w}{\pi}$$

Voir TD de mécanique générale du PC2



Choix matériaux : Puissance aréolaire

Exemples de pression admissible


P_{adm} en fonction de la température *Source IGUS*

P_{adm} en fonction de la vitesse de glissement Source Prud'Homme Transmissions

On constate dans le graphique précédent que la pression admissible chute fortement avec la vitesse de glissement. Cela amène un nouveau critère dimensionnant (pV)_{adm}: la limite de (pV) admissible

Limite de p_{adm}

Le produit $p \times V$ est un indicateur de la chaleur de friction générée par le palier. Cette chaleur a une valeur limite au-delà de laquelle le palier se détériore. On doit donc vérifier que le produit $(p \times V)$ soit inférieur au produit $(p \times V)$ _{adm}

$$(pV) = \left(\frac{Fr}{L.d} + \frac{6C}{dL^2}\right) \times r\omega < (pV)_{adm}$$

$$(pV) = \frac{\omega(Fr.L + 6C)}{2L^2} < (pV)_{adm}$$

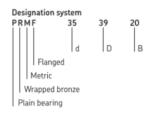
$$(pV) = \frac{\omega F_r}{2L} < (pV)_{adm} \qquad \qquad L > \frac{\omega F_r}{2(pV)_{adm}} \qquad \qquad \blacksquare$$

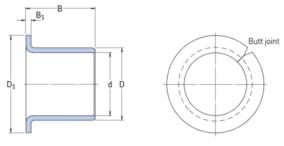
	mm	146	
lm		$\overline{(pV)_{adm}}$	W.mm ⁻²

Туре	(PV) _{max} (W.mm ⁻²)	L (mm) >
Bronze plomb	35	4
Bronze étain	35	4
Bronze alu	30	4,86
Bronze zinc	30	4,86
Fonte ft14	2	73
Textolite	40	3,65
Autolubrifié fer	1,2 à 2,5	121
Autolubrifié bronze	1 à 1,8	146
Graphite	0,55	265
Nylon	0,04	3650

Le bronze convient

	Solid bronze	Sintered bronze	Wrapped bronze	PTFE composite	POM composite	PTFE polyamide	Filament wound
Temperature range, °C	-40 +250	-10+90	-40+150	-200 +250	-40_+110	-30 +110	-50+140
Friction coefficient, µ	0,08 _ 0,15	0,05 _ 0,10	0,08 0,15	0,03 0,25	0,02 0,20	0,06 0,15	0,03 0,08
Permissible load, N/mm² - dynamic - static	25 45	18 20	40 120	80 (v ≤ 0,02) 250	120 (v s 0,02) 250	40	140 200
Permissible sliding velocity, m/s	0,5	0,25 _ 5	1,0	2,0 (p s 1,0)	2,5 (p s 1,0)	1,0	0,5
Shaft tolerance	e7 - e8	f7 – f8	e7 – f8	f7 – h8	h7 - h8	h8-h9	h8
Housing tolerance	H7	H7	H7	H7	H7	H7	H7
Shaft roughness R _a , µm	0 1,0	0,2 0,8	0,4 0,8	00,4	0_0,8	00,8	0,2-0,4
Shaft hardness, HB	165 - 400	200 – 300	150 - 400	300 - 600	150 - 600	100 - 300	> 490
Assortment and product series designation	PBM	PSM	PRIM	PCM E	PCM M	PPM	PWM
	PBMF	PSMF	PRMF	PCMFE	PCMWM	PPMF	




Solution palier lisse

Choix catalogue

SKF wrapped bronze – flanged bushings d 20 – 100 mm

 $8mm \le L \le 16mm$

	Designation	d	D	В	D ₁	B ₁
		mm	mm	mm	mm	mm
_						
	PRMF 202316	20	23	16	30	1,5
	PRMF 202320	20	23	20	30	1,5
	PRMF 252815 PRMF 252825	25 25	28 28	15 25	35 35	1,5 1,5
	PRMF 303420 PRMF 303430	30 30	34 34	20 30	45 45	2 2
	PRMF 353920 PRMF 353935	35 35	39 39	20 35	50 50	2 2
	PRMF 404425 PRMF 404440	40 40	44 44	25 40	55 55	2 2
	PRMF 455030 PRMF 455045	45 45	50 50	30 45	60 60	2,5 2,5
	PRMF 505530 PRMF 505550	50 50	55 55	30 50	65 65	2,5 2.5

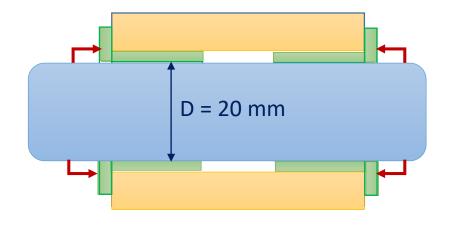
Complément : couple de frottement

$$C_f = \frac{3.\pi}{8} . r. f. F_r$$
 Poly p 47

Palier B

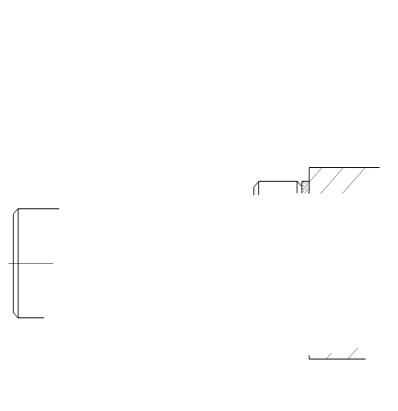
$$C_f = \frac{3.\pi}{8} * 0.01 * 0.15 * 4666 = 8 N.m$$

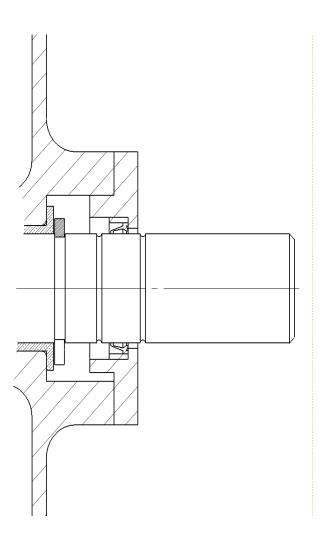
Palier A


$$C_f = \frac{3.\pi}{8} * 0.01 * 0.15 * 3266 = 6 N.m$$

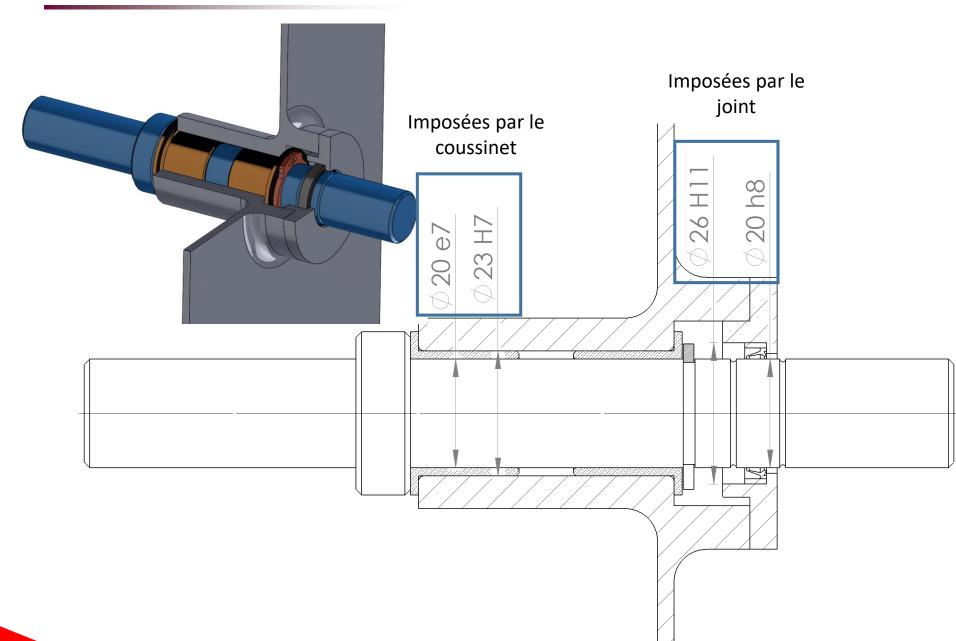
TMS en A devient alors =>
$$\begin{cases} C_m + F.e.\sin\theta - C_{fA} - C_{fB} = 0 \\ -Z_B.a = 0 \\ Y_B.a + F.d = 0 \end{cases}$$

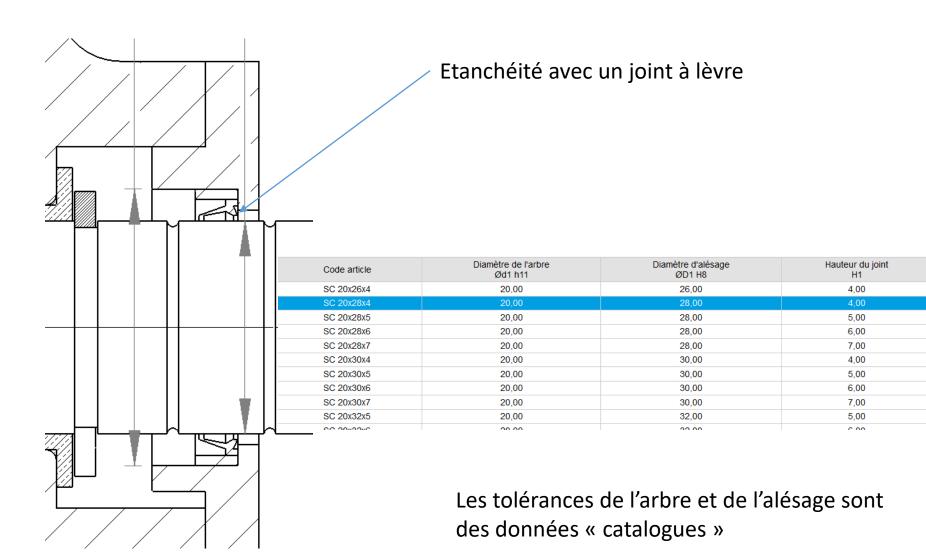
Proposition de conception

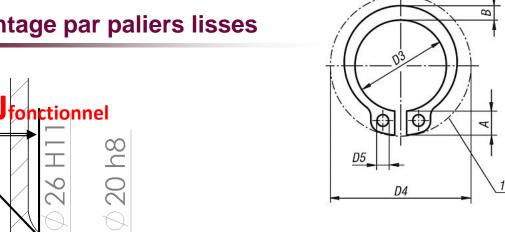

- Le coussinet est monté serré dans l'alésage
- Les tolérances sont fournies par le fabricant

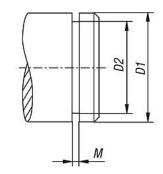

	Solid bronze	Sintered bronze	Wrapped bronze
Temperature range, °C	-40 +250	-10+90	-40+150
Friction coefficient, µ	0,08 _ 0,15	0,05 _ 0,10	0,08 0,15
Permissible load, N/mm ²			
– dynamic	25	10	40
- static	45	20	120
Permissible sliding velocity, m/s	0,5	0,25 5	1,0
Shaft tolerance	e7 – e8	f7 – f8	e7 – f8
Housing tolerance	H7	H7	H7
Shaft roughness R _a , µm	0 1,0	0,2 0,8	0,4 0,8
Shaft hardness, HB	165 - 400	200 - 300	150 - 400

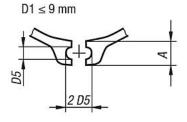
Montage des paliers lisses






Montage des paliers lisses





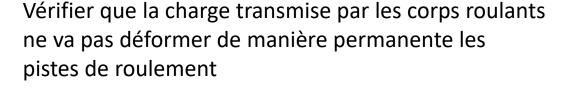
Type de roulement

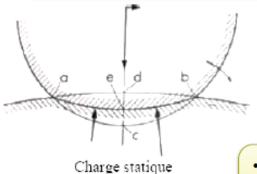
Le modèle proposé avec les deux rotules entraîne un effort axial indéterminé MAIS lié à la fabrication et à l'assemblage

Il est donc nécessaire de maîtriser lors de la fabrication le jeu axial dans le montage de roulement

Effort axial limité

Choix: roulements à billes à contact radial


Choix arbitraire : on prend les 2 roulements identiques


Princ	ipal dime	ensions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass		Designation
	D	В	С	c_o	P _u	speed	specu			
nm			kN		kN	r/min		kg		-
12	21	5	1.74	0.915	0.039	70 000	43 000	0.0063		61801
_	24	6	2.91	1.46	0.062	67 000	40 000	0.011		61901
	28	8	5.4	2.36	0.1	60 000	38 000	0.021	*	6001
	30	8	5,07	2,36	0.1	60 000	38 000	0.026		16101
	32	10	7,28	3,1	0,132	50 000	32 000	0,037	*	6201
	37	12	10,1	4,15	0,176	45 000	28 000	0,06	•	6301
15	24	5	1,9	1,1	0,048	60 000	38 000	0,0065		61802
	28	7	4,36	2,24	0,095	56 000	34 000	0,016		61902
	32	8	5,85	2,85	0,12	50 000	32 000	0,03		16002
	32	9	5,85	2,85	0.12	50 000	32 000	0.03		6002
	35	11	8,06	3,75	0,16	43 000	28 000	0,045		6202
	42	13	11,9	5,4	0,228	38 000	24 000	0,082	*	6302
17	26	5	2,03	1,27	0,054	56 000	34 000	0,0075		61803
	30	7	4,62	2,55	0,108	50 000	32 000	0,016		61903
	35	8	6,37	3,25	0,137	45 000	28 000	0,038		16003
	35	10	6,37	3,25	0,137	45 000	28 000	0,038	•	6003
	40	12	9,95	4,75	0,2	38 000	24 000	0,065		6203
	40	12	11.4	5,4	0,228	38 000	24 000	0.064		6203 ETN9
	47	14	14,3	6,55	0,275	34 000	22 000	0,11	•	6303
	62	17	22,9	10,8	0,455	28 000	18 000	0,27		6403
20	32	7	4,03	2,32	0,104	45 000	28 000	0,018		61804
	37	9	6,37	3,65	0,156	43 000	26 000	0,037		61904
	42	8	7,28	4,05	0,173	38 000	24 000	0,05		16004
	42	12	9,95	5	0,212	38 000	24 000	0,067	•	6004
	47	14	13,5	6,55	0,28	32 000	20 000	0,11	•	6204
	47	14	15,6	7,65	0,325	32 000	20 000	0,098	_	6204 ETN9
	52	15	16,8	7,8	0,335	30 000	19 000	0,14	•	6304
	52	15	18,2	9	0,38	30 000	19 000	0,14		6304 ETN9
	72	19	30,7	15	0,64	24 000	15 000	0.41		6404
22	50	14	14	7,65	0,325	30 000	19 000	0,13		62/22
	56	16	18,6	9,3	0,39	28 000	18 000	0,18		63/22

Capacité de charge statique

$$C_0 > s_0 \times P_0$$

- C₀ est la capacité de charge statique du roulement
- s_o un coefficient d'application de la charge
- P_0 la charge radiale statique équivalente $P_0 = \max(X_0.F_r + Y_0.F_a; F_r)^1$

Mode de		I		Roulement à l'arrêt				
Fonctionnement		Exigence						
	Fa	ible	Nor	males	Είε	า <i>ข ด์ด</i> ธ	rs .	
	Billes	Rouleaux	Billes	Rouleaux	Billes	Rouleaux	Billes	Rouleaux
Régulier sans vibrations	0.5	1	1	1.5	2	3	0.4	0.8
Normal	0.5	1	1	1.5	2	3.5	0.5	1
Chocs prononcés	≥ 1.5	≥ 2.5	≥ 1.5	≥3	≥2	≥ 4	≥1	≥2

Coefficient de sécurité s_o (Source SKF)

$$Po = (F_r)_{max} = 4 666 N$$

Mode de		I		Roulement à l'arrêt					
Fonctionnement		Exigence							
	Fa	เช้โย	Non	rmales Elevées					
	Billes	Rouleaux	Billes	Rouleaux	Billes	Rouleaux	Billes	Rouleaux	
Régulier sans vibrations	0.5	1	1	1.5	2	3	0.4	0.8	
Normal	0.5	1	1	1.5	2	3.5	0.5	1	
Chocs prononcés	≥ 1.5	≥ 2.5	≥ 1.5	≥3	≥2	≥ 4	≥1	≥2	

Coefficient de sécurité s_o (Source SKF)

Co > 4,6 KN

Principal dimensions		Basic load ratings dynamic static		Fatigue load limit	Speed ratings Reference Limiting	Mass	Designation		
d	D	В	c	c_o	P_u	speed spee	speed		
mm			kN		kN	r/min		kg	-
20	32	7	4,03	2,32	0,104	45 000	28 000	0,018	61804
	37	9	6,37	3,65	0,156	43 000	26 000	0,037	61904
	42	8	7,28	4.05	0,173	38 000	24 000	0,05	* 16004
	42	12	9,95	5	0,212	38 000	24 000	0,067	* 6004
	47	14	13,5	6,55	0,28	32 000	20 000	0,11	* 6204
	47	14	15,6	7,65	0,325	32 000	20 000	0,098	6204 ETN9
	52	15	16,8	7,8	0,335	30 000	19 000	0,14	* 6304
	52	15	18,2	9	0.38	30 000	19 000	0.14	6304 ETN9
	72	19	30,7	15	0.64	24 000	15 000	0.41	6404

Capacité de charge dynamique

« Contrôler » les détériorations dues au passage cycliques des éléments roulant sur un point donné des pistes de roulements.

→ Durée de vie

La capacité de charge dynamique $\bf C$ correspond à la charge radiale P qu'il faudrait appliquer pour avoir une durée de vie $\bf L_{10}$ de 1Millions de tour.

$$L_{10} = \left(\frac{C}{P}\right)^n$$

$$L_{10h} = \left(\frac{C}{P}\right)^n \frac{10^6}{60.N}$$

N vitesse de rotation tr/mn

Princi	pal dim	ensions	Basic lo dynamic
d	D	В	c
mm			kN

20	32	7	4,03
	37	9	6.37
	42	8	7.28
	42	12	9,95
	47	14	13.5
l	47	14	15,6
	52	15	16,8
	52	15	18,2
	72	19	30,7

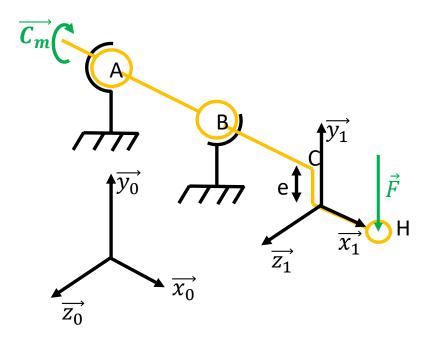
7	(C)'	1 10 ⁶
$L_{10h} =$	(\overline{P})	60. <i>N</i>

n = 3

N = 600 tr/mn

 $P_A = 3266 \text{ N}$

 $P_{B} = 4666 \text{ N}$


	C (kN)	LA (h)	LB (h)	
	9,95	790	270	
	13,5	1960	670	
C	15,6	3030	1040	
	16,8	3780	1300	
	18,2	4800	1650	
	30,2	21960	7530	

La différence de durée de vie des roulements pourrait remettre en cause le choix de 2 roulements identiques

Montage



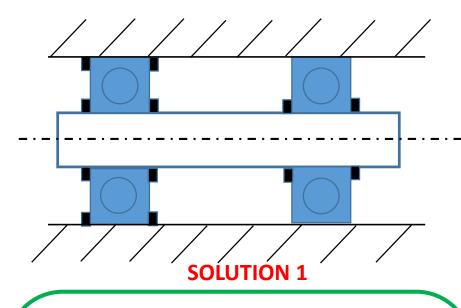
Quelle bague doit être serrée ?

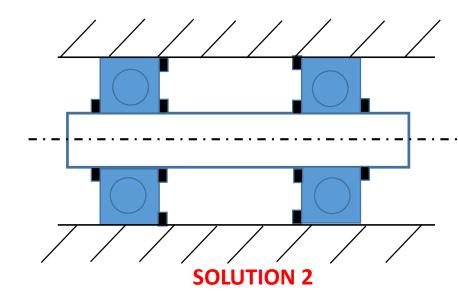
Quels appuis?

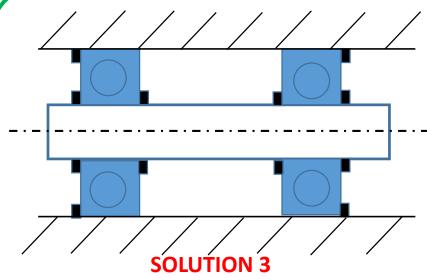
Quelle bague doit être serrée ?

La charge est fixe dans Ro La charge tourne par rapport à l'arbre

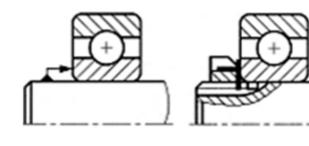
Les bagues intérieures sont montées serrées

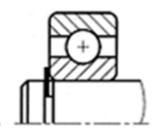


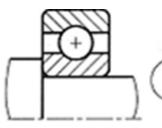

4 arrêts à prévoir sur les BI 2 arrêts sur les BE

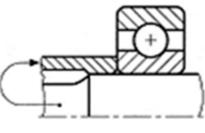


Montage / appuis

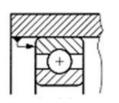



Choix de la solution 3 : La longueur de l'arbre est courte (30mm entre les deux centres de poussés) => Faible risque de dilatation

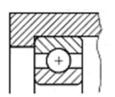

De plus le **montage** sera **facilité : Assemblage** complet des roulements sur l'arbre puis montage de l'arbre et des roulements dans l'alésage



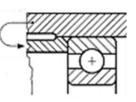
Montage / appuis

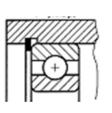

Principe

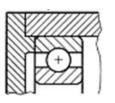
écrou à encoche

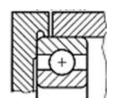

circlips

épaulement

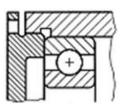

entretoise

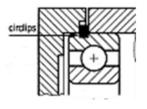

principe


épaulement


entretoise

circlips


chapeau centré


chapeau centré

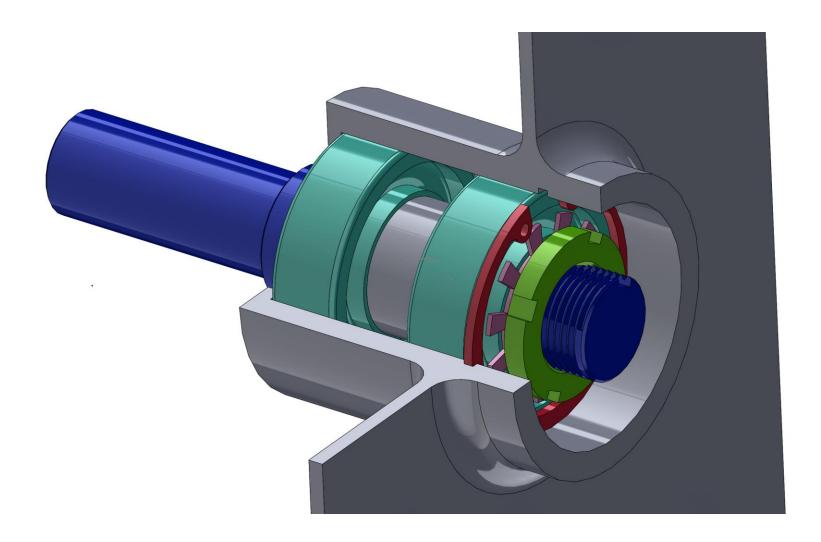
boîtier

chapeau fileté

cas particulier

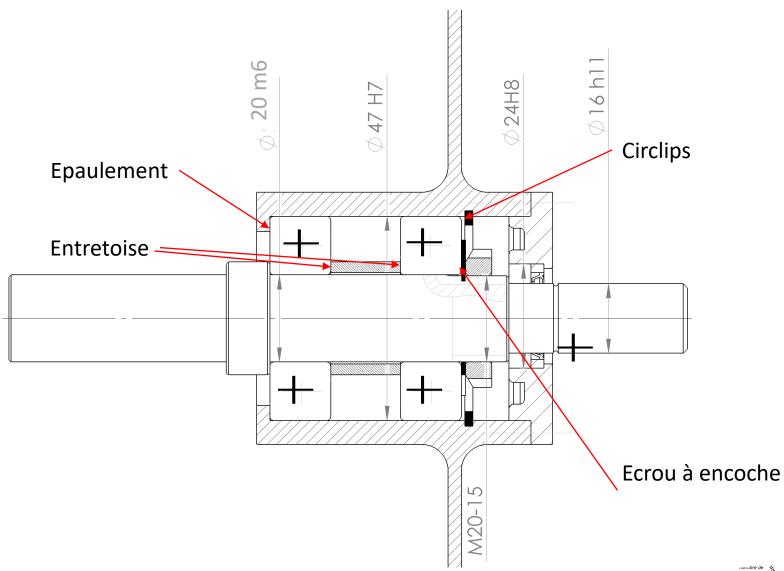
Attention les tolérances sur les dimensions du roulements (alésage, bague extérieure) sont controlées par le fabricants et normalisées (H,h)

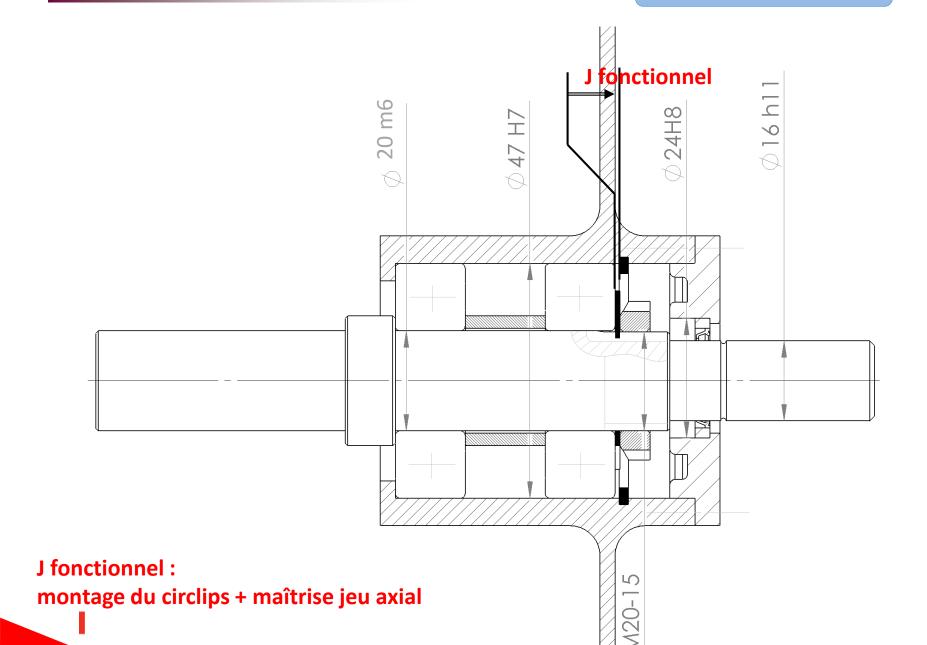
SERRAGE	ARBRE		LOGEMENT	
	Cas de charge	Ajustement	Cas de charge	Ajustement
Bague	Charge normale P <c 5<="" td=""><td>j6/k6</td><td>Cas général</td><td>H7/J7</td></c>	j6/k6	Cas général	H7/J7
intérieure serrée sur	Charge élevée	m6/p6	Bague libre sur sa portée	G7/H7
l'arbre	Charge élevée P> C/5		Roulement à rouleaux (cylindrique et conique)	M7/P7
Bague extérieure	Cas général	g6/h6	Charge normale P <c 5<="" th=""><th>M7/N7</th></c>	M7/N7
serrée dans le logement	Bague libre sur sa portée	f6/g6	Forte charges Charge P> C/5	N7/P7
Autres cas	Charge axiale pure	h6/g6	Charge axiale pure	G7/H7
Autiescas	Manchon de serrage	h9	Charge axiale pure	Giini



P=Fr=4666 N C = 15,6 KN P > C/5 = 3120

SERRAGE	ARBRE		LOGEMENT	
	Cas de charge	Ajustement	Cas de charge	Ajustement
Bague	Charge normale P <c 5<="" th=""><th>Cas deneral</th><th>H7/J7</th></c>	Cas deneral	H7/J7	
intérieure serrée sur	Charge élevée		Bague libre sur sa portée	G7/H7
l'arbre	P> C/5	m6/p6	Roulement à rouleaux (cylindrique et conique)	M7/P7
Bague extérieure	Cas général	g6/h6	Charge normale P <c 5<="" th=""><th>M7/N7</th></c>	M7/N7
serrée dans le logement	Bague libre sur sa portée	f6/g6	Forte charges Charge P> C/5	N7/P7
Autres cas	Charge axiale pure	h6/g6	Charge axiale pure	G7/H7
Addes cas	Manchon de serrage	h9	Offarge axiale pure	G//III





Choix de roulement avec une durée de vie voisine de 3000 h (définie dans le cahier des charges fonctionnel)

Co > 4,6 KN

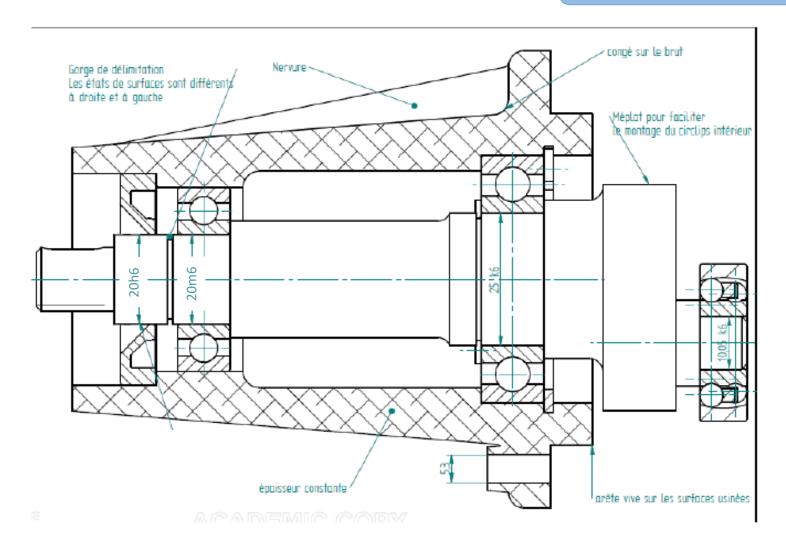
- Le diamètre de 20 mm est un diamètre mini (à confirmer par la RDM!)
- Roulement A OK

Choix d'un roulement B de diamètre intérieur plus grand Capacité de charge dynamique assurant une durée de vie voisine de L_h=3000h

$$L_{10} = \left(\frac{C}{P}\right)^n$$

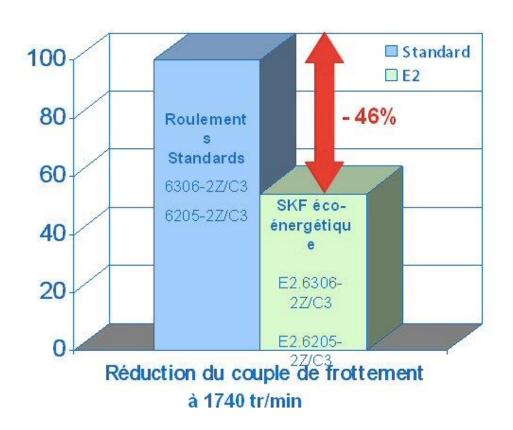
$$L_{10h} = \left(\frac{C}{P}\right)^n \frac{10^6}{60.N}$$

$$C \ge F_B \sqrt[3]{\frac{L_h.60.N}{10^6}} = 22kN$$

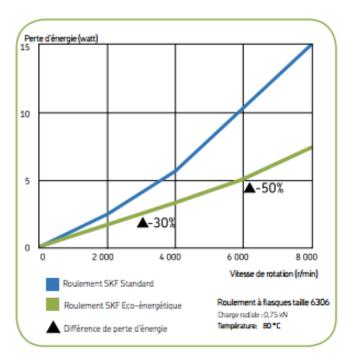


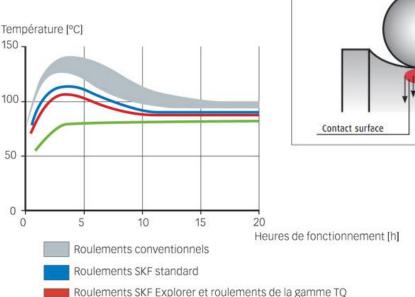
Princi	Principal dimensions Basic load ratings Fatigue Speed ratings Mass Designation									
			dynami	nic static	load limit	Reference speed	Limiting speed			
d	D	В	С	Co	P_{u}	Specu	Specu			
mm			kN		kN	r/min		kg	-	
25	37	7	4,36	2,6	0,125	38 000	24 000	0.022	61805	
	42	9	7,02	4,3	0,193	36 000	22 000	0,045	61905	
	47	8	8,06	4,75	0,212	32 000	20 000	0,06	* 16005	
	47	12	11,9	6,55	0,275	32 000	20 000	0,078	* 6005	
	52	15	14,8	7,8	0,335	28 000	18 000	0,13	* 6205	
	52	- 15	17,8	9,8	0,4	28 000	18000	0,12	6205 ETN9	
	62	17	23,4	11,6	0,49	24 000	16 000	0,23	* 6305	
	62	1/	26	13,4	0,57	24 000	16 000	0,22	6305 ETN9	
	80	21	35,8	19,3	0,815	20 000	13 000	0,54	6405	

Montage / Autre Exemple (solution 1)



Roulement Eco-énergétiques


L'utilisation des roulements rigides à billes éco énergétiques sur tous les moteurs industriels en service aux Etats Unis et en Europe, représenteraient une économie d'énergie équivalente à la consommation énergétique d'une ville de plus de 300 000 habitants (la ville de Tours par exemple)



Modification de:

- géométrie des roulements et les cages,
- nouveaux lubrifiants durée de service au moins deux fois supérieure à celle utilisée dans un roulement standard similaire

Résultats d'une simulation de perte d'énergie indiquant les économies réalisées grâce aux roulements rigides à billes éco-énergétiques par rapport à d'autres roulements SKF. Les économies d'énergie peuvent être encore plus importantes comparées à des roulements non SKF.

- Réduction d'au moins 30 % du couple de frottement
- Potentiel d'augmentation de la vitesse de 15 %
- Température de fonctionnement réduite pour moins d'échauffement
- Diminution significative du bruit

(suffixe de désignation Q)

Roulements éco-énergétiques SKF

Ball

Raceway

Raceway

Ball

Contact surface