- Exercise Compute h^* for R = 0.01 m, $\eta_0 = 0.1$ Pas, $\alpha = 2 \cdot 10^{-8}$ Pa⁻¹, $u_1 + u_2 = 1$ m/s, $E' = 2 \cdot 10^{11}$ Pa, $w_1 = 10^4$ kg/m, using the parameters W_1 , U and G. Same question using Figure 3.3.
- Exercise Using Figure 3.3 find h^* for R=0.01 m, $\eta_0=0.1$ Pas, $\alpha=2\cdot 10^{-8}$ Pa⁻¹, $u_1+u_2=1$ m/s, $E'=2\cdot 10^{11}$ Pa, $w_1=10^4$ kg/m.
- Exercise How much does the film thickness h change if the atmospheric viscosity η_0 is doubled? How much if the speed $u_1 + u_2$ is doubled? How much if the load per unit length w_1 is doubled? How much if the reduced elasticity E' is doubled (careful)? How much if the reduced contact radius R is doubled (careful)?
- **Exercise** The aim of this exercise is to keep the film thickness constant. How much does one have to change the speed $u_1 + u_2$ when the viscosity η_0 is halved? How much does the load have to change when the viscosity is doubled?
- **Exercise** Express the Hertzian contact half width b in terms of W_1 and R.
- Exercise What is the dimensionless film thickness H(X=0) in the Figures 3.5 to 3.7? What is the relative evolution of h(x=0)? Compare the evolution with the one predicted by Ertel-Grubin?
 - Exercise What is the dimensionless central film thickness H(X=0) in the Figures 3.9 to 3.14? What is the relative evolution of h(x=0), careful?
- Exercise What is the dimensionless central pressure P(X = 0) in the Figures 3.9 to 3.14? What is the relative evolution of p(x = 0)?
- **Exercise** Compare the answers on h(x = 0) and p(x = 0) from the two previous exercises with the Figure 3.15.
- Exercise Compute h_m for R=0.01 m, $\eta_0=0.1$ Pas, $u_1+u_2=1$ m/s, $\alpha=2\cdot 10^{-8}$ Pa⁻¹, $E'=2\cdot 10^{11}$ Pa, $w_1=10^4$ kg/m. Compare with the Ertel Grubin value, comments?
- $E' = 2 \cdot 10^{11}$ Pa, $w_1 = 10^4$ kg/m. Compare with the Ertel Grubin value, comments?

 MExercise What are the advantages of the set M_1 , L over the set W_1 , U, G? What are its disadvantages?
- Exercise What is the order of magnitude of H_m^D and of H_m^M ? Use typical values given before for oil/steel contacts.
- **Exercise** Compute h_m for R = 0.01 m, $\eta_0 = 0.1$ Pas, $u_1 + u_2 = 1$ m/s, $\alpha = 2 \cdot 10^{-8}$ Pa⁻¹, $E' = 2 \cdot 10^{11}$ Pa, $w_1 = 10^4$ kg/m. Compare with the Dowson and Higginson value and the Ertel Grubin value, comments?
- \mathcal{M}_{+} Exercise Express the Ertel Grubin formula in terms of H_{min} , M_1 and L.
 - 45 Exercise Check the expression of the Moes Venner formula in terms of H_m^D , W_1 , U and G.
 - **Exercise** Which of the three regimes is the appropriate regime for $M_1 = 1$, L = 0? and for $M_1 = 100$, L = 0? and for $M_1 = 100$, L = 10? and for $M_1 = 10$, L = 1 (careful)? Compute for each of the cases the film thickness H_m^M .