- Exercise Assuming that $\alpha = 2 \cdot 10^{-8} \text{ Pa}^{-1}$, compute the pressure for which the viscosity is twice its atmospheric value, according to Barus. Then calculate the pressure for which the viscosity increases by a factor of 1000, then by a factor of 10^6 .
- \mathcal{L} **Exercise** Show that using the definition of α as the slope at zero (ambient) pressure for both viscosity pressure equations, one obtains indeed that $\alpha p_0/z = \ln(\eta_0) + 9.67$.
- 3 *Exercise Using the figures 3.9 3.14 show that $\partial(\rho h)/\partial x = 0$ is indeed found in the high pressure zone. Comment on the film thickness evolution from 3.9 3.14. Relate this evolution to the evolution in the pressure distribution.
- 4 *Exercise Show that $H(X-T) = X^2 2XT + T^2$ is indeed a solution of the reduced Reynolds equation for high pressures: $\partial H/\partial X + \partial H/\partial T = 0$.
- 5 *Exercise Check the derivation of the three dimensionless equations.
- $f \neq \text{Exercise}$ Give the reduced forms of the Reynolds equation in the zone $\theta < 1$ and $\theta = 1$?
- 7 * Exercise Derive the Reynolds equation from the mass flow continuity equation over a rectangle, comments with respect to the discrete equation?
- Exercise Express the Hertzian pressure p_h in terms of w_1 , E' and R only. In order to double the pressure, p_h , how much should the load w_1 change, how much the contact radius R, and how much the reduced Elastic modulus E'?
- Exercise Compute δ for a contact with b = 0.001 m and R = 0.05 m. If the reduced elastic modulus $E' = 2 \cdot 10^{11}$ Pa what is the load per unit length w_1 , what is p_h ?
- Exercise Figure 3.1 shows the deformed and the undeformed geometry for a line contact. From the difference the maximum deformation can be estimated as 0.6. Deduce which dimensionless film thickness relation has been used to obtain H.
- Exercise Express the Hertzian pressure p_h in terms of w, E' and R_x only. In order to double the pressure, p_h , how much should the load w change, how much the contact radius R_x , and how much the reduced Elastic modulus E'?
- Exercise Compute δ for a contact with a = 0.001 m and $R_x = 0.05$ m. If the reduced elastic modulus $E' = 2 \cdot 10^{11}$ Pa, what is the load w, what is the value of p_h ?
- 43 Exercise Figure 3.2 shows the deformed and the undeformed geometry for a circular contact. From the difference the maximum deformation can be estimated as 1. Deduce which dimensionless film thickness relation has been used for H.
- $\lambda U \not \star$ Exercise Check that for the case of a circular contact k=1, the equations for a, b and δ reduce to the ones found in the previous section.
- 45 * Exercise Compute a, b, p_h and δ for a contact with $R_x = 0.005$ m, $R_y = 0.05$ m, $E' = 2 \cdot 10^{11}$ Pa and $w = 10^4$ N?
 - We have a symptotes of q for $p \to 0$ and for $p \to \infty$?

Ę.

0.5

0.5

0.5

-0.5

Figure 3.11 Dimensionless pressure and film thickness distribution $W_1 = 7.67 \cdot 10^{-5}$, $U = 5.89 \cdot 10^{-11}$, G = 4000.

0.05

Figure 3.14 Dimensionless pressure and film thickness distribution $W_1 = 7.67 \cdot 10^{-4}$, $U = 5.89 \cdot 10^{-11}$, G = 4000.

Geometry

Figure 2.3 Conforming contact.

Figure 2.4 Non-conforming contact.

Line contact

Figure 3.1 Dimensionless Hertzian contact pressure, dimensionless deformed and undeformed geometry, for the line contact case.

Circular contact

Figure 3.2 Dimensionless Hertzian contact pressure, dimensionless deformed and undeformed geometry, for the circular contact case.