

Intégration des perceptions et des préférences utilisateur en conception de produit L'analyse conjointe

Jean-François PETIOT

Jean-Francois.Petiot@ec-nantes.fr

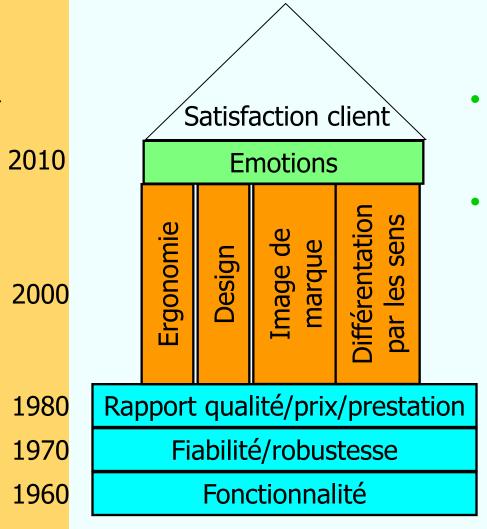
Resp. Option Science et Musique

Resp. Mastere Marketing Design et Création (Coll. Audencia)

Ecole Centrale Nantes LS2N, UMR CNRS 6004

Objectifs du cours

- Intégrer les perceptions utilisateur en conception de produit
- Identifier les caractéristiques du produits sur lesquels repose la satisfaction client
- Modéliser les relations entre la préférence utilisateur et les caractéristiques produit (attributs de design)
 - L'analyse conjointe
 - Les cartographies de préférences
- Comprendre la sémantique produit en fonction des choix de conception (attributs de design)
- Optimiser/segmenter l'offre produit



Plan (4h cours+4h TD)

- La sémantique produit
 - Design et sémiotique exemples
 - Le différentiel sémantique
 - Perceptions utilisateur Qualité perçue exemples
- L'analyse conjointe (AC)
 - Petit exemple
 - Méthodologie de l'AC
 - Rappel : le modèle linéaire et l'ANOVA
 - Estimation du modèle interprétation des résultats
- Classification
 - La Classification ascendante hiérarchique (CAH)
 - Exemple
- Les cartographies de préférence

Diversité des attentes clients

- Les dimensions sur lesquelles repose la satisfaction client sont de + en + diverses
- Les aspects sensoriels, symboliques, émotionnels, sont prépondérants
 - → Motivent la décision d'achat.

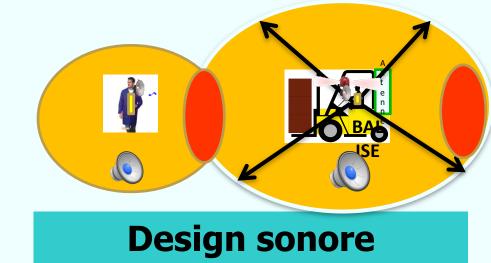
Exemples

Ambiance lumineuse

Toucher des surfaces de planches de bord

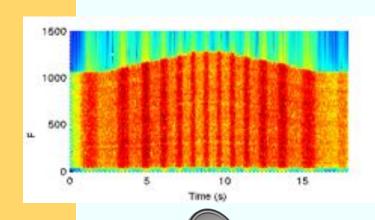
Confort acoustique

Agrément de conduite

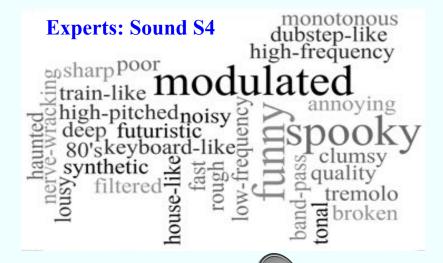


Exemples (2)

Revêtement de surface

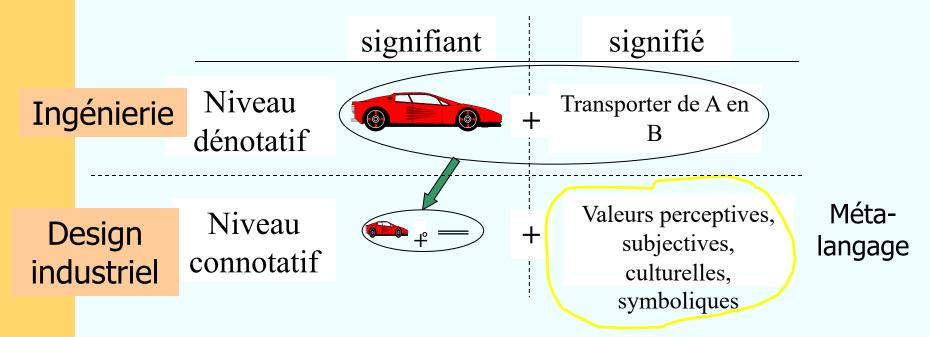


Bruit de portières[PSA]



Exemples (3)

- Sécurité des piétons Sonification d'un véhicule electrique
- Aide à la conduite
- Image du véhicule
- Quel(s) son(s) proposer ?
 - Analyse des contraintes
 - Propositions
 - Optimisation



Design et sémiotique (Saussure, Peirce)

étude des signes

Signe = signifiant + signifié

produit = moyen de communication

Design ≠ art : l'intention à communiquer est explicite en design industriel

Design Industriel

Définitions

- 1) « activité créatrice qui consister à déterminer les propriétés formelles des objets que l'on veut produire industriellement »
 - propriétés formelles : caractéristiques extérieures, mais aussi relations structurelles qui font de l'objet un système cohérent
- 2) « activité qui consiste à créer, selon des paramètres économiques, techniques et <u>esthétiques</u>, des produits, objets ou systèmes qui seront ensuite fabriqués et commercialisés »

Design Industriel

- 3 types de valeurs du produit
 - Valeurs techniques
 - Cahier des charges technique
 - Valeurs d'usage
 - Liés à l'utilisation (ergonomie)
 - Valeurs de communication
 - Fonctions d'estime

Valeurs de communication?

Rétro, classique,

High tech, épuré, ...

Sémantique produit

"The study of the <u>symbolic qualities</u> of man-made forms in the context of their use, and application of this knowledge to industrial design" [Krippendorff]

Une dimension particulière du besoin

Objective/foncti on d'usage

Subjective/fonction symbolique

- Nécessité d'une methodologie pour déterminer les fonctions symboliques (esthétique, style, communications)
- Évaluer la satisfaction de ces fonctions durant le processus de conception
 - Développer les produits de manière rationnelle

Le design brief

 « cahier des charges », destiné au dialogue designer/entreprise, décrivant le projet

Eléments à inclure

- Objectifs et résultats attendus
- Public cible
- Budget et livrables
- Contraintes (normes, brevet, marque, ...)
- Description de la demande

Description de la demande

- décrire la sémantique produit, par des termes ou des images,
- décrire le produit et son univers d'un point de vue connotatif
- Utiliser des planches de tendance (mood board)

Exemple de design brief

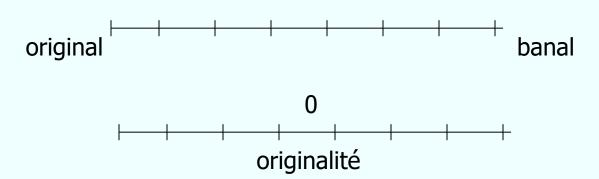
Design sonore automobile
 L'univers DS (PSA, 2013)


Un outil pour le Designer

Les planches de tendances. Exemple : Zen-Tech

Les planches de tendances. Exemple : Retro-Tech

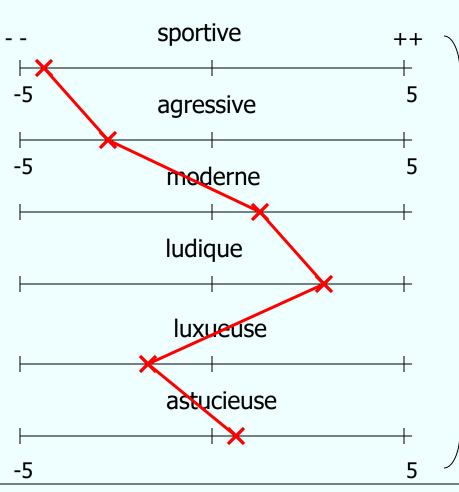
Les planches de tendances. Exemple : Aqua-Tech


Le différentiel sémantique [Osgood]

Objectif

- outil psychométrique pour la mesure d'une attitude
- évaluation des valeurs connotatives des objets ou des images

Méthode


- établir une liste de qualificatifs (items ou paires d'adjectifs)
- constituer une grille de 5 ou 7 cases pour permettre au sujet de « positionner » son jugement

Différentiel sémantique

 Le sujet « évalue » les produits sur une liste d'attributs sémantiques prédéfinis

profil sémantique

Le point central est considéré comme un point neutre

La perception

Perception = ensemble des processus de traitement de l'information sensorielle

 Permettent, par l'interprétation des données reçues, , de construire une représentation interne du monde

Interaction Homme/environnement est fonction:

- De l'information captée par le sujet
- De la rétroaction exercée par lui sur ces données (sélection organisation, interprétation)

La perception mobilise 2 formes de traitement

- Traitements ascendants (bottom-up) dirigés par les données
- Traitements descendants (top-down) dirigés par les concepts ou représentations

Réduire la perception à une association de sensations ne permet pas de rendre compte des phénomènes en jeu lors de notre perception de l'environnement (théorie Gestalt)

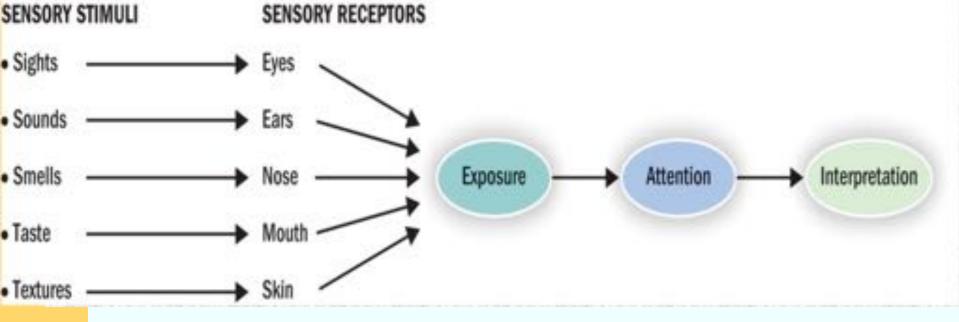
La perception

La perception est active

- Nous sélectionnons, choisissons ce que nous percevons
- Nous organisons, structurons, interprétons et donnons un sens aux signes et signaux qui nous parviennent
- Nous créons ce que nous voyons ou entendons

La perception résulte d'un processus physique et mental qui utilise nos cinq sens

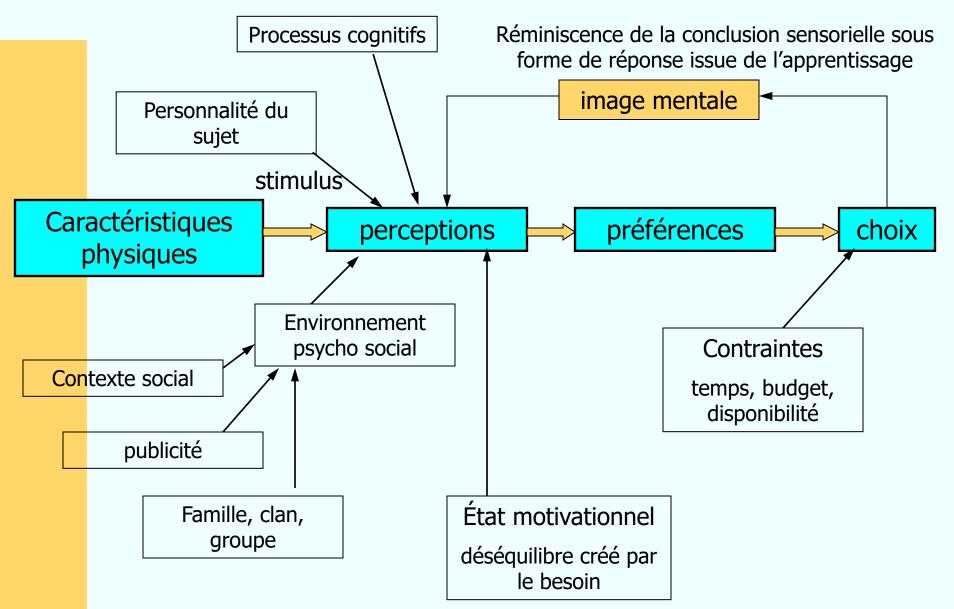
Bistabilité visuelle : Canard ou lapin?


vase ou visages?

Le processus de perception

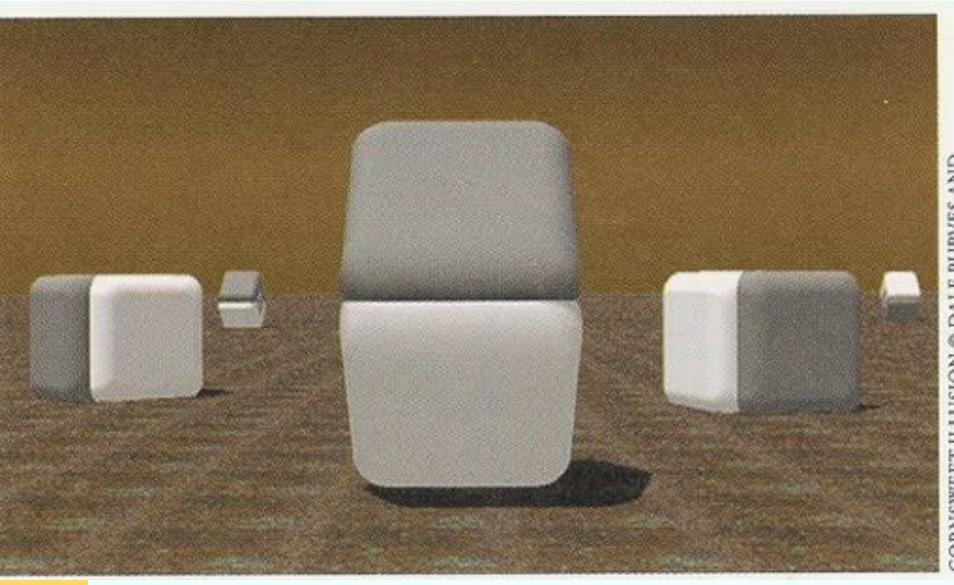
On reçoit des stimuli externes

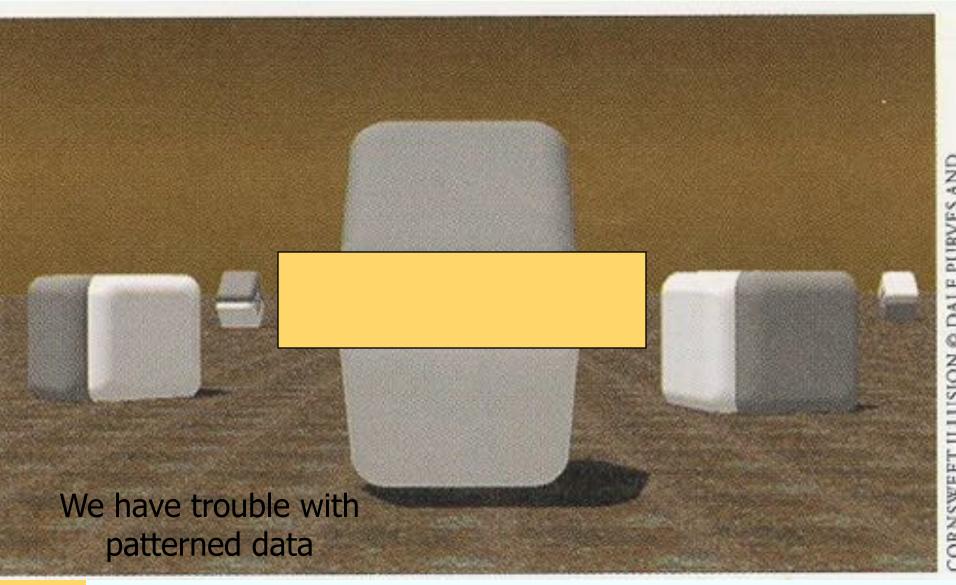
Interprétation par des processus cognitifs internes

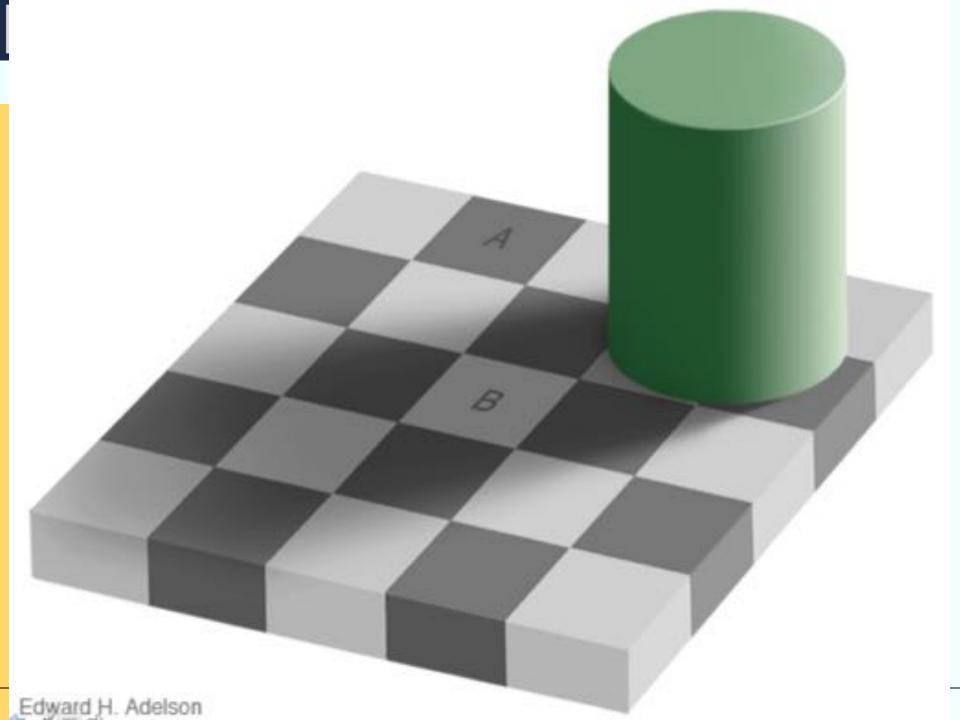


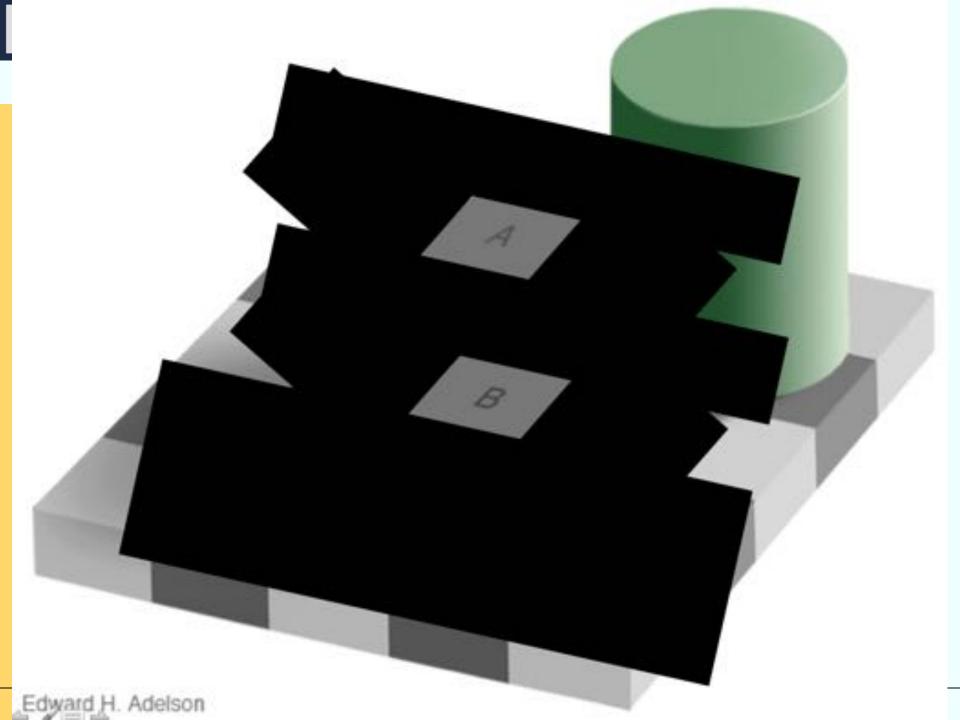

La perception est ACTIVE

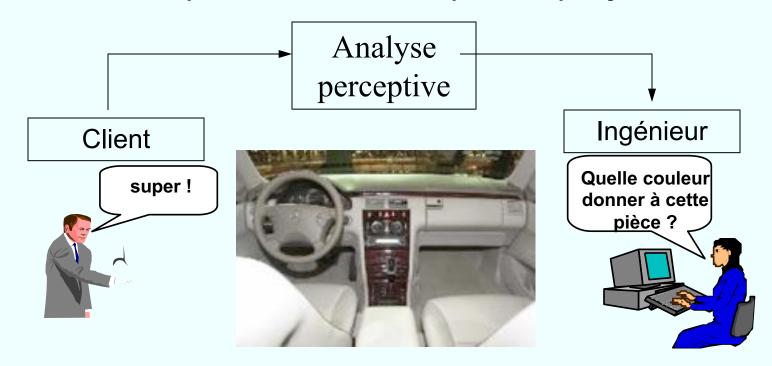
L'Humain se construit une représentation cohérente du


Perceptiologie [Brunswik]









Qualité perçue

Passer de la qualité "dure" à la qualité "perçue" ?

Liste d'attributs

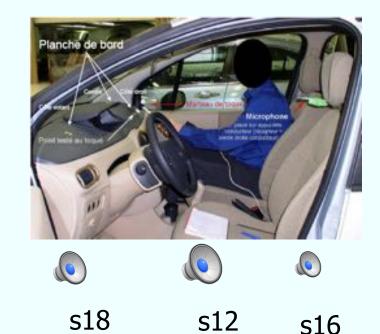
attribut = résultat d'une décision de conception

ex : harmonie des couleurs

Liste de variables

Variable = objet d'une décision de conception

ex : nombre de boutons



Exemple: « tapotement » de planches de bord

(« toqué ») [Bezat, 2007]

 Une entreprise a des retours clients négatifs concernant le bruit de « toqué » de ses planches de bord (enquêtes)

 Quelles actions mettre en œuvre pour traiter ce problème
 ?

Quantifier l'attente client

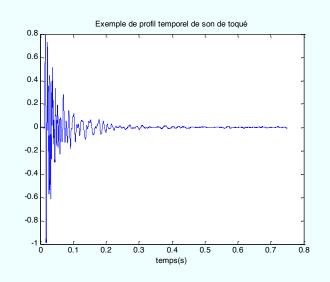
Vérifier que la proposition produit est conforme aux attentes

Assurer la conformité tout au long du processus de développement du produit

Expert ACOUSTIQUE = Le son produit dépend de différentes variables de conception

-Choix matériaux

-Formes


-Qualité des assemblages

Exemple « toqué » (2)

- Étude sensorielle et analyse signal
 - 31 sons enregistrés

Descripteurs
hauteur
détonant
intensité
attaquant
éloignement

=> Interprétation des descripteurs sensoriels par des critères liés au signal acoustique

Exemple « toqué (3) : Démarche d'étude

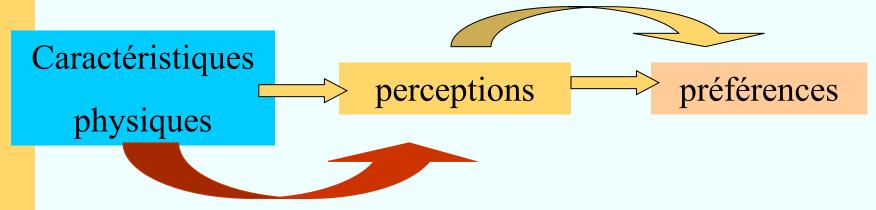
3 types d'étude 30 sons Étude de Étude signal Étude préférence sensorielle descripteurs (perceptive) analyse Modèle de Temps fréquence préférence Régression linéaire multiple Spectre de puissance

Etude sensorielle et perceptive

- Comment comprendre ce qui structure la perception ?
- Comment définir les dimensions perceptives principales qui sous-tendent la perception ?

- Méthodes verbales
- Profil sensoriel (panel d'experts)
- Différentiel sémantique

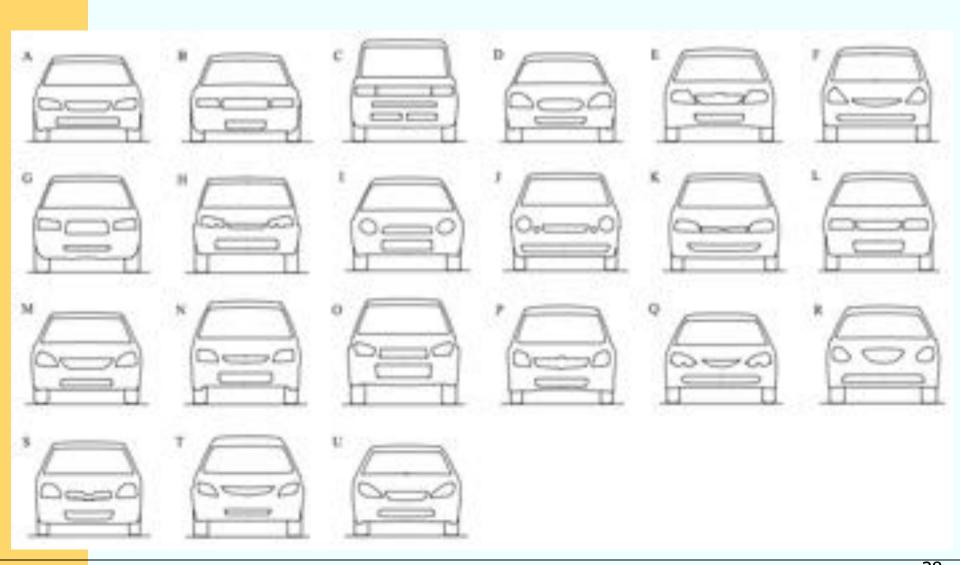
- Méthodes non verbales
- Tri libre
- Épreuve de dissimilarité


Intégrer les perceptions en design

- Méthodes qualitatives
 - Enquêtes
 - Focus groups
- Méthodes quantitative
 - Méthode du differentiel sémantique
 - Analyse conjointe
 - Psychophysique
 - Analyse sensorielle et semantique

Cadre de travail

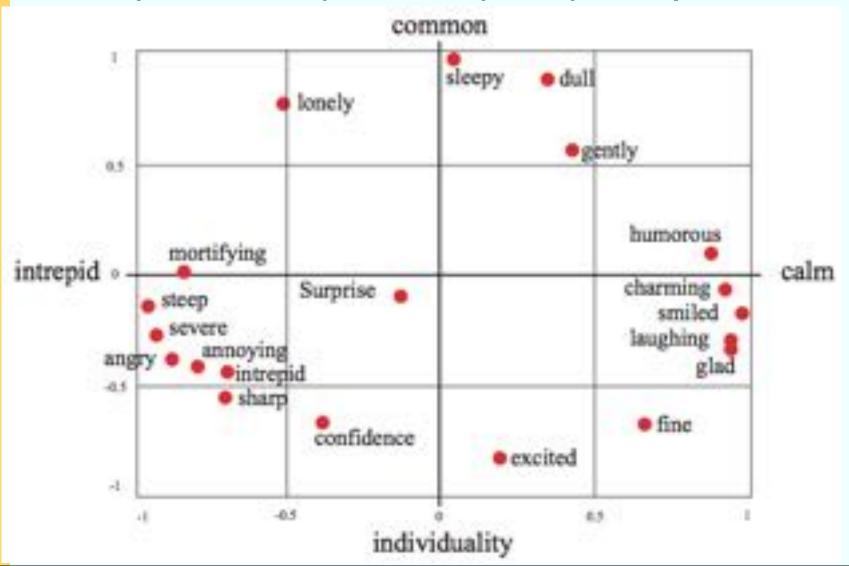
• Étude des liens :


- Secteurs d'application
 - Industrie alimentaire
 - Cosmétique
 - Packaging
 - Design sonore
 - Transport automobile
 - ...

- Méthodes
 - Analyse sensorielle
 - Enquêtes quali/quanti
 - Psychophysique
 - Analyse conjointe
 - ...

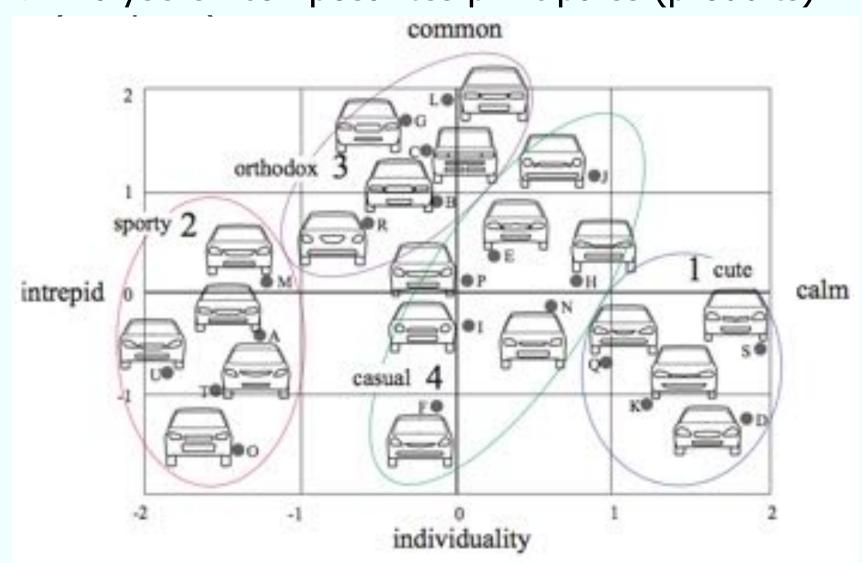
Exemple : face avant de véhicule

Espace produit

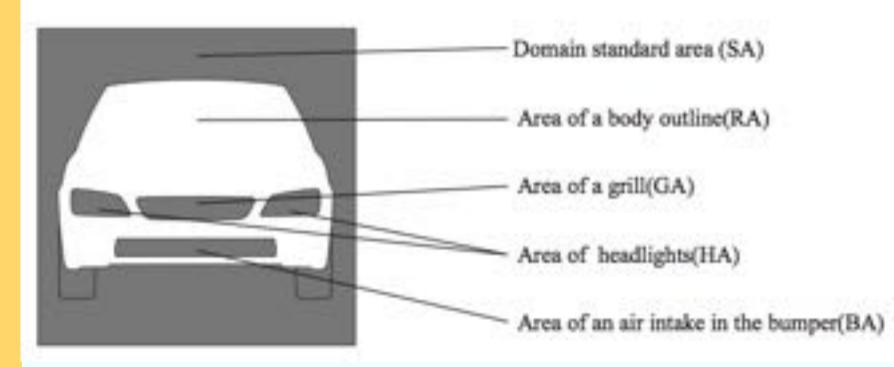


- Evaluation sémantique
 - 20 termes

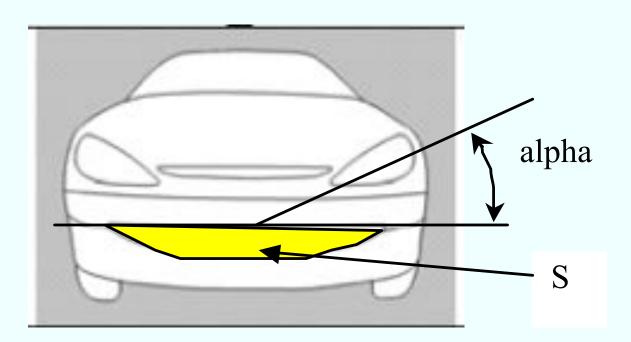
	-3	-2	-1	0	1	2	3
laughing					×		
sharp			×				
surprise							×
fine				×			
intrepid						×	
angry						×	
lonely		×					
excited				×			
steep				×			
smiled						×	
confident					×		
sleepy			×				
charming		×					
severe				×			
gently					×		
dull					×		
mortifying					×		
annoying					×		
glad			×				
humorous			×				

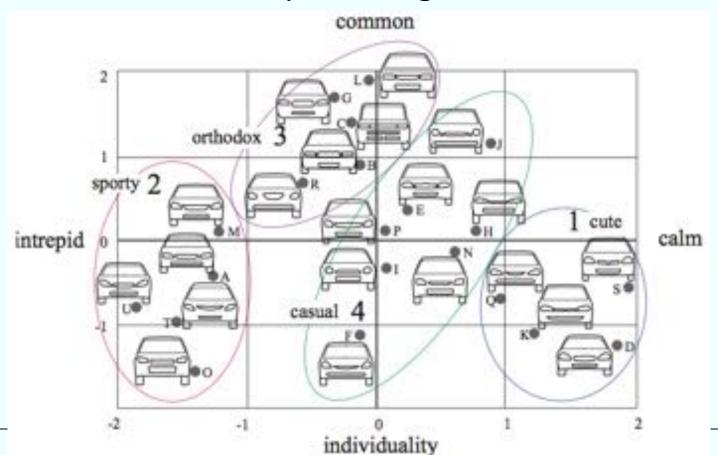


Analyse en composantes principales (variables

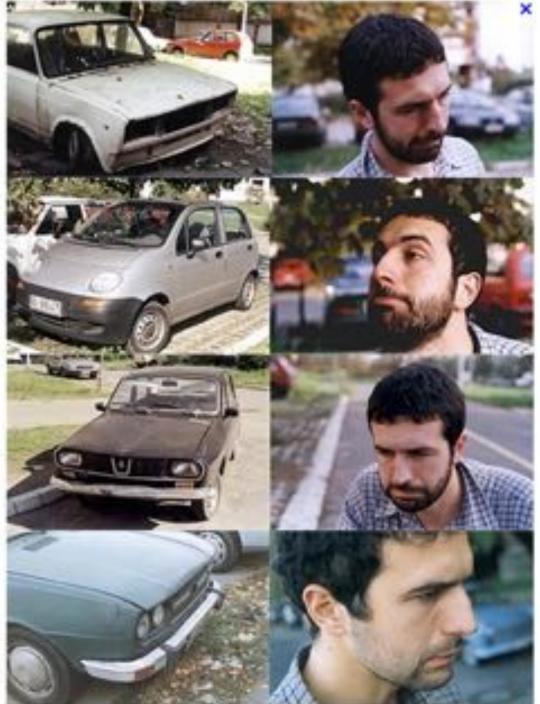

Analyse en composantes principales (produits)

Relation entre perceptions et design attributs


Exemple d'éléments formels


Relation entre perceptions et design attributs

Exemple d'éléments formels

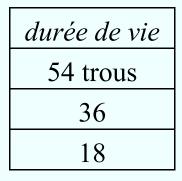

- Typologie des groupes
 - Quels caractères sont représentatifs d'un groupe ?
 - => analyse de données
 - => raisonnement par analogie

L'analyse conjointe

Pb de marketing...

quelles " options " donner à un nouveau produit ? quels prix leurs attribuer ?

...ou de design


Quels sont les liens entre des attributs formels du produit et les dimensions sémantiques du produit, ou les préférences, de l'utilisateur ?

Petit exemple

- mise sur le marché d'une nouvelle balle de golf :
 - 3 caractéristiques primordiales pour le joueur :
 - La distance moyenne de " drive "
 - La durée de vie moyenne
 - Le prix
 - ces caractéristiques peuvent prendre plusieurs valeurs (modalités)

distance
250 m
200 m
180 m

Plan d'expériences complet : 3*3*3 = 27 designs

Scénarii possibles

hypothèses :

- Le coût de production d'une balle est d'autant moins grand que la distance de drive et la durée de vie sont faibles
- Le client recherche une balle peu chère et aux performances maximales

Produit #1optimal du point de vue « demande »

Distance	250 m
Durée de	54 trous
vie	
prix	1€

On va en vendre beaucoup, mais on risque de ne pas faire de bénéfices

Produit #2 optimal du point de vue « offre »

Distance	180 m
Durée de	18 trous
vie	
prix	2€

On a bétonné sur le prix, mais elle risque de ne pas se vendre

- Problème de marketing :
 - On risque de "perdre notre chemise" à vendre le produit #1, et on va perdre notre énergie à tenter de vendre le produit#2 dont personne ne voudra.

Rappel: Prix = cout + marge

- Le produit le plus viable est donc un produit intermédiaire entre #1 et #2, mais comment en trouver les caractéristiques ?
 - Il nous manque en fait ici une donnée capitale : les <u>préférences des clients</u>.
 - L'analyse conjointe va permettre de répondre à cette question.

• Etape 1 : classer les différentes modalités des caractéristiques du produit :

rang	distance	rang	durée de vie
1	250	1	54
2	200	2	36
3	180	3	18

- Ltape 2 : considérer "conjointement "les 2 caractéristiques "durée de vie "et "distance":
 - établir (par enquêtes) le classement de préférence des 9 balles possibles pour différents clients, le prix étant le même pour toutes les combinaisons

classement des préférences selon les modalités

Client 1 Durée de vie

distance

	54 trous	36 trous	18 trous			
250 m	1	2	4			
200 m	3	5	7			
180 m	6	8	9			

Client 2 Durée de vie

distance

	54 trous	36 trous	18 trous
250 m	1	3	6
200 m	2	5	8
180 m	4	7	9

Les deux clients sont d'accord sur les choix extrêmes, mais le client 2 met plus l'accent sur la durée de vie, le client1 sur la distance. Leurs "arbitrages" (trade-off) sont différents

Définition des utilités partielles

- ◆ LA CONNAISSANCE QUE L'ON RETIRE DE CES DEUX TABLEAUX EST FONDAMENTALE ET EST L'ESSENCE MEME DE L'ANALYSE CONJOINTE.
- Étape 3 : Considérons maintenant pour chaque modalité une valeur arbitraire telle que la somme de ces valeurs pour chaque balle donne un ordre conforme au classement du client

Client 1

Durée de vie

	54 trous	36 trous	18 trous
	70	25	0
250 m	1	2	4
100	170	125	100
200 m	3	5	7
50	120	75	50
180 m	6	8	9
0	70	25	0

distance

Définition des utilités partielles

NB

- Il n'y a pas de solution unique
- Seules les différences entre les valeurs sont importantes
- Nous avons choisi arbitrairement la valeur 0 pour « 18 trous » et « 180m ».
- On aurait pu imposer une somme nulle pour les « utilités » des niveaux d'un même facteur

Client 1

Durée de vie

	54 trous	36 trous	18 trous
	38,3	-6,6	-31,7
250 m	1	2	4
50	88,3	43,4	18,3
200 m	3	5	7
0	38,3	-6,6	-31,7
180 m	6	8	9
-50	-11,7	-56,6	-81,7

distance

Définition des utilités partielles

• Étape 4 : ", considérons maintenant les arbitrages entre " prix " et " durée de vie " par ex. pour le client 1

Client 1

Durée de vie

prix

	54 trous	36 trous	18 trous
1€	1	4	7
1,5€	2	5	8
2€	3	6	9

Client 1

Durée de vie

prix

	54 trous	36 trous	18 trous	
	70	25	0	
1€	1	4	7	
20	90	45	20	
1.5€	2	5	8	
5	75	30	5	
2€	3	6	9	
0	70	25	0	

Utilités partielles et utilité totale

• Etape 5 : Nous avons maintenant pour chaque modalité un ensemble complet de valeurs (appelées <u>utilités partielles</u> ou "part-worths") qui ont capté tous les arbitrages du client n°1

	Distance		Durée de vie			Prix			
	250m 200m 180m		54 trous 36 trous 18 trous		1euro	1,5 euro	2 euros		
Utilité	100	50	0	70	25	0	20	5	0
partielle									

• Etape 6 : utilisation : sélection entre 2 balles

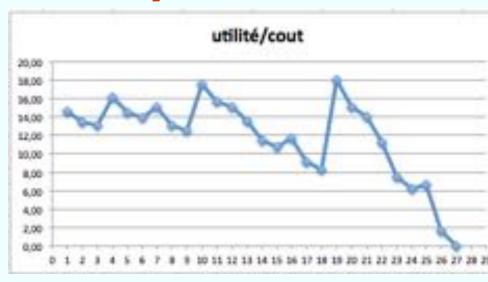
	Balle A		Balle B	
Distance	250m	100	200 m	50
Durée	18 trous	0	54 trous	70
Prix	1,5 euros	5	2 euros	0
utilité		105		120

Utilité balle B>utilité balle A

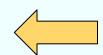
Utilité totale de tous les designs du plan factoriel (3*3=27)

				utilité
design	distance	durée vie	prix	totale
n1	d1	dv1	p1	190
n2	d1	dv1	p2	175
n3	d1	dv1	р3	170
n4	d1	dv2	p1	145
n5	d1	dv2	p2	130
n6	d1	dv2	р3	125
n7	d1	dv3	p1	120
n8	d1	dv3	p2	105
n9	d1	dv3	р3	100
n10	d2	dv1	p1	140
n11	d2	dv1	p2	125
n12	d2	dv1	р3	120
n13	d2	dv2	p1	95
n14	d2	dv2	p2	80
n15	d2	dv2	р3	75
n16	d2	dv3	р1	70
n17	d2	dv3	p2	55
n18	d2	dv3	р3	50
n19	d3	dv1	р1	90
n20	d3	dv1	p2	75
n21	d3	dv1	р3	70
n22	d3	dv2	p1	45
n23	d3	dv2	p2	30
n24	d3	dv2	р3	25
n25	d3	dv3	p1	20
n26	d3	dv3	p2	5
n27	d3	dv3	р3	0

• Étape 7 : modèle de calcul du <u>coût</u> de production


C	oût	Durée de vie				
C	entimes d'euros		54 trous (dv1)	36 trous (dv2)	18 trous (dv3)	
		250 m (d1)	13	9	8	
	distance	200 m (d2)	8	7	6	
		180 m (d3)	5	4	3	

• Etape 8 : optimisation du rapport <u>rapport utilité/coût</u>



Produit optimal (utilité/cout)

					utilité		
design	di	stance	durée vie	prix	totale	cout	utilité/cout
n1		d1	dv1	p1	190	13	14,62
n2		d1	dv1	p2	175	13	13,46
n3		d1	dv1	р3	170	13	13,08
n4		d1	dv2	p1	145	9	16,11
n5		d1	dv2	p2	130	9	14,44
n6		d1	dv2	р3	125	9	13,89
n7		d1	dv3	p1	120	8	15,00
n8		d1	dv3	p2	105	8	13,13
n9		d1	dv3	р3	100	8	12,50
n10		d2	dv1	p1	140	8	17,50
n11		d2	dv1	p2	125	8	15,63
n12		d2	dv1	р3	120	8	15,00
n13		d2	dv2	p1	95	7	13,57
n14		d2	dv2	p2	80	7	11,43
n15		d2	dv2	р3	75	7	10,71
n16		d2	dv3	p1	70	6	11,67
n17		d2	dv3	p2	55	6	9,17
n18		d2	dv3	р3	50	6	8,33
n19		d3	dv1	p1	90	5	18,00
n20		d3	dv1	p2	75	5	15,00
n21		d3	dv1	р3	70	5	14,00
n22		d3	dv2	p1	45	4	11,25
n23		d3	dv2	p2	30	4	7,50
n24		d3	dv2	р3	25	4	6,25
n25		d3	dv3	p1	20	3	6,67
n26		d3	dv3	p2	5	3	1,67
n27		d3	dv3	р3	0	3	0,00

 Rapport utilité sur cout maximal : produit n19

Cas de la cotation de préférence (de 0 à 10)

Notation des préférences selon les modalités

Client 1 Durée de vie

distance

	54 trous	36 trous	18 trous
250 m	8,5	6,25	5
200 m	6	3,75	2,5
180 m	3,5	1,25	0

Recherche des utilités partielles

Client 1

distance

Durée de vie

	54 trous	36 trous	18 trous
	3,5	1,25	0
250 m	8,5	6,25	5
5			
200 m	6	3,75	5
2,5			
180 m	3,5	1,25	0
0			

Cas de la cotation de préférence (de 0 à 10)

Cotation de préférence entre "prix" et "durée de vie"

Client 1

Durée de vie

prix

	54 trous	36 trous	18 trous
1€	4,5	2,25	1
1,5€	4	1,75	0,5
2€	3,5	1,25	0

Recherche des utilités partielles

Client 1

Durée de vie

prix

	54 trous	36 trous	18 trous
	3,5	1,25	0
1€	4,5	2,25	1
1			
1.5€	4	1,75	0,5
0,5			
2€	3,5	1,25	0
0			

Cas de la cotation de préférence (de 0 à 10)

Méthode pour trouver les utilités partielles aik?

On choisit un modèle de préférence du type :

$$\hat{y}_{i} = \mu + \sum_{j=1}^{p} \sum_{k=1}^{k_{j}} a_{jk} . \delta_{i}(jk)$$

utilité globale du design i

Modèle linéaire compensatoire

k_j= nombre de niveaux du facteur j

p= nombre de facteurs

 a_{jk} : utilité partielle du niveau k pour le facteur j

$$\delta_i(jk)$$
 =1 si niveau du facteur j pour le design i est k =0 sinon

 a_{jk} est le coefficient d'une régression linéaire multiple, déterminé par la minimisation de : $MIN(\sum_{i=1}^{n}(y_i-\hat{y}_i)^2)$

i=1

64

1ier bilan sur l'analyse conjointe

- À partir de la préférence client, on construit la part de chaque modalité du produit dans la préférence (utilité partielle)
- C'est un modèle de décomposition : l'attractivité de chaque modalité est estimée à partir des préférences déclarées du consommateur

applications

- Marketing
- Finance
- Production industrielle
- Design industriel [Kansei engineering]
 - Quantification theory Type I

Méthodologie de l'analyse conjointe

L'analyse conjointe

objectif

Évaluer les critères de choix d'un consommateur confronté à des alternatives

Expliquer et comprendre les choix des individus

Définir la proposition optimale dans un contexte concurrentiel

Mesure l'influence d'une modification d'un ou plusieurs éléments

Pratiquer des stratégies de segmentation en connaissant les priorités des différentes cibles

Hypothèses

Les choix du consommateur portant sur un produit sont :

- Multi-attribut : le consommateur perçoit un produit comme un ensemble d'attributs
- Cognitifs: le consommateur tient compte de ce qu'il sait, ou croit savoir de l'objet, pour se construire une attitude
- Basés sur la théorie de l'utilité

Modèle de Lancaster : « Le consommateur opte pour la catégorie de bien qui maximise son <u>utilité</u>, sous la contrainte budgétaire »

Tout choix implique des compromis qui dépendront de l'importance accordée par le consommateur à chacun des attributs

Analyse conjointe = méthode des TRADE-OFF

Méthodologie: 3 étapes

- 1 : Recueil des données
 - Créer une situation qui amène l'interviewé à révéler ses attentes/produit par un processus de choix ou de classement
 - ⇒ Scénarii (plan d'expériences)
 - Deux grandes familles de méthodes :
 - L'analyse traditionnelle (évaluation rating based (ex. de la balle de golf))
 - L'analyse conjointe discrète (choix choice based conjoint sur profils complets)

2. Estimation du modèle

- Déterminer les utilités partielles et les importances des attributs, à partir des évaluations des consommateurs
- 3. Utilisation du modèle
 - Définition du produit « idéal »
 - Prédiction de parts de marché Segmentation de consommateurs

Etape 1 : recueil des données

- Choisir les attributs et leurs modalités
 - Déterminants dans le choix du consommateur
 - Indépendants
 - Exhaustifs (décrivent complètement le produit)
 - Manipulables par l'entreprise
- Choisir les designs proposés aux consommateurs
 - Plan factoriel complet ou fractionnaire
 - Plan optimal (D-optimaux)

Théorie des plans d'expériences

- Choisir le mode de présentation des designs
 - Texte, dessins, photos, maquettes CAO, produits réels, ...
- Définir l'échelle de mesure de la préférence
 - Classement, cotation, comparaisons par paires

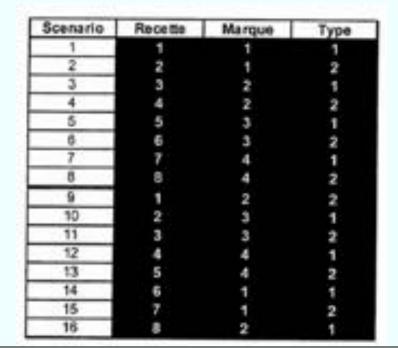
Etape 1 : exemple jus d'orange

- Les attributs (facteurs)
 - Recette (8 modalités)
 - Marque (4 modalités)
 - Type (2 modalités)

⇒ R1, R2, R3, ..., R8

⇒ joker/Solevita/Jafaden/Carrefour

⇒ Brick/bouteille verre


Nbre de designs du plan complet ?

$$8*4*32 = 64$$

Choix d'un plan fractionnaire à 16 designs

Cotation sur une échelle de 0 à 10

N.B: orthogonalité d'un PLEX

Propriété requise pour minimiser les incertitudes sur les coefficients et estimer les effets des facteurs indépendamment les uns des autres

Orthogonalité : pour tout couple de facteurs, chaque niveau de l'un est associé à chaque niveau de l'autre un même nombre de fois

Si ce nombre est le même pour tous les couples, le plan est équilibré

Plan équilibré : C'est un plan orthogonal pour lequel le nombre de fois qu'interviennent les niveaux de deux facteurs est le même, quelque soit les couples de facteurs considérés

On peut vérifier l'équilibre en formant, pour chaque couple de facteur, la table de contingence comptant les effectifs qui croisent les modalités À l'équilibre, ces effectifs sont les mêmes pour tout couple de facteurs

Etape 1 : exemple carte bancaire

- Les facteurs
 - Brand (3 levels)
 - Annual fee (3 levels)
 - Interest rate (3 levels)
 - Credit limit (3 levels)

⇒ visa, Mastercard, Discover

 \Rightarrow 40\$, 20\$, 0\$

⇒ 10%, 14%; 18%

⇒ 1000\$, 2000\$, 5000\$

Nbre de designs du plan complet ?

$$3^4 = 81$$

Epreuve de choix de 1 parmi 4 options, répété n fois

If you were shopping for a credit card, and these were your only options,							
which would you choose?							
VISA Mastercard Discover NONE: I would							
\$40 annual fee	\$20 annual fee	No annual fee	defer my purchase				
10% interest rate 18% interest rate 14% interest rate							
\$2,000 credit limit	\$5,000 credit limit	\$1,000 credit limit					

Etape 2 : estimation du modèle

L'attractivité d'un produit « i » peut s'écrire :

$$U_i = V_i + \varepsilon_i$$

Avec:

: Attractivité latente, non mesurable

: Attractivité observée sur le PLEX

: erreur inexpliquée, associée au produit "i"

On suppose que V_i est une fonction des attributs du produit « i », codés en Xi

Avec:

$$V_i = \sum_{k=1}^m a_{ik}.x_{ik}$$
 a_{ik} : utilité de l'attribut k du produit "i" x_{ik} : niveau de l'attribut k du produit "i"

: niveau de l'attribut k du produit "i"

m : nombre d'attributs

Etape 2 : estimation du modèle

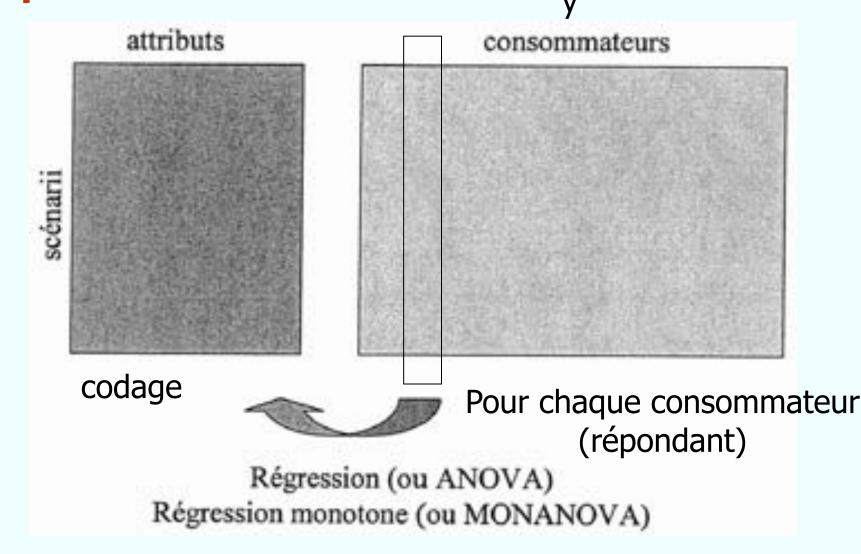
- Cas du modèle « rating based » (ANOVA)
- L'utilité estimée est donnée par :

$$\hat{U}_i = V_i = \sum_{k=1}^m a_{ik}.x_{ik}$$

Les utilités partielles a_{ik} sont données par minimisation de l'erreur quadratique

 $a_{ik} = \arg\min(\sum_{i=1}^{n} (U_i - \hat{U}_i)^2)$

Avec:


 U_i : cotation de préférence du produit \emph{i} , donnée par le sujet

- Lorsque U_i est une variable quantitative, le modèle correspond à l'Analyse de la variance (ANOVA)
- Lorsque U_i est une variable de rang, une transformation monotone est nécessaire (MONANOVA – monotonic ANOVA)

Dans le cas d'un modèle « rating based », on peut estimer un modèle pour chaque répondant (individuel)

Estimation des modèles pour chaque répondant

Etape 2 : estimation du modèle « choice »

- Cas du modèle « choice based » (multinomial Logit)
- La probabilité de choisir le produit « i » dans l'ensemble J est donnée par : $P_i = \frac{e^{V_i}}{\sum e^{V_k}}$

Le log de la vraisemblance est donné par : $LL = \sum_{i} n_i . \ln(P_i)$

Avec : n_i : nombre de répondants qui ont choisi le produit i

Les utilités partielles a_{ik} sont données par maximisation de la log.vraisemblance

$$a_{ik} = \arg\max(LL)$$

Dans le cas d'un modèle « choice based », le modèle est estimé globalement, pour tous les répondants

Etape 3 : utilisation du modèle (rating based)

- pour chaque répondant, on peut estimer:
 - La valeur qu'il attribue à chaque modalité d'un attribut

⇒ Utilité partielle a_{ik}

- Le produit idéal (optimal du point de vue de la préférence) en déterminant les modalités qui ont la plus grande utilité partielle

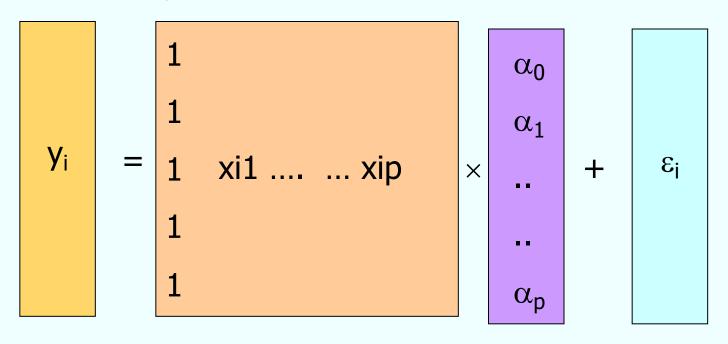
- Sa sensibilité aux différents attributs (prix, marque, couleur, ...)

 \Rightarrow Importance I_j de l'attribut « j »

$$I_{j} = \frac{\max_{k}(a_{jk}) - \min_{k}(a_{jk})}{\sum_{i=1}^{p}(\max_{k}(a_{ik}) - \min_{k}(a_{ik}))}$$

Rappel Régression linéaire multiple

Méthodes explicatives


		Variables à expliquer y	
		quantitatives	qualitatives
Variables	quantitatives	Régression linéaire Analyse canonique	Analyse discriminante
explicatives x	qualitatives	Analyse de la variance segmentation Analyse conjointe	Analyse conjointe

Regression linéaire multiple

Écriture matricielle

$$y = X \cdot \alpha + \varepsilon$$

Les coefficients (a_0 , a_1 , ... a_p), estimateurs des (α_0 , α_1 , ... α_p), qui minimisent les résidus, sont donnés par :

$$a = (X^t.X)^{-1}.X^t.y$$

Regression linéaire multiple

- X(n, p+1): tableau des variables indépendantes VI
- Y(n): vecteur de la variable dépendante VD
- La matrice $(X^t.X)$ doit être inversible (de rang plein)
- La solution est instable si les VI sont très corrélées
 - grande incertitude sur les coefficients de la régression
 - Pouvoir prédictif faible

- Solution : décorréler les VI
 - Régression régularisée (régression sur les composantes principales)

Régression linéaire multiple

On note

$$SCT = \sum (y_i - \overline{y})^2$$

Somme des carrés totale (variance totale)

$$SCR = \sum (\hat{y}_i - \overline{y})^2$$

Somme des carrés expliquée par le modèle (variance expliquée)

$$SC_{RES} = \sum (y_i - \hat{y}_i)^2$$

Variance résiduelle

Décomposition de la variance :

$$SCT = SCR + SC_{RES}$$

Régression linéaire multiple

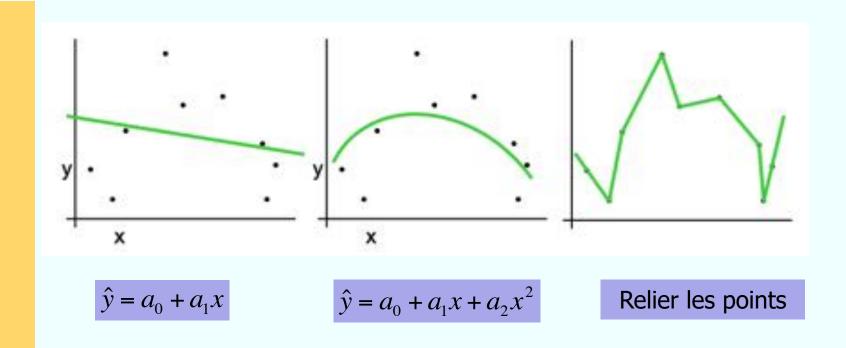
 Qualité d'ajustement du modèle : le coefficient de détermination R²

R² représente le pourcentage de variance capté par le modèle

$$R^{2} = \frac{\text{variance expliqu\'ee}}{\text{variance totale}} = 1 - \frac{SC_{RES}}{SCT} = \frac{SCR}{SCT} = \frac{\sum (\hat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

- Il est compris entre 0 (le modèle n'explique pas mieux que $y = \overline{y}$) et 1 (toute la variance est expliquée par le modèle)
- R² indicateur de qualité uniquement si le nombre d'essais est supérieur au nombre de paramètres à estimer.

Le R² n'est pas un « bon » indicateur


-Quelques soient les VI ajoutées au modèle, le R² ne peut que croitre

Un « meilleur » indicateur : le R² ajusté
-On pénalise les modèles qui ont beaucoup
de paramètres (p)

$$R_a^2 = 1 - \frac{SC_{RES}/(n-p-1)}{SCT/(n-1)}$$

Validation d'un modèle

Quelle méthode est la meilleure pour modéliser le système ?

Validation d'un modèle

- Pour valider un modèle, on teste sa capacité à la généralisation, c'est à dire à prédire des valeurs pour des observations qui n'ont pas servi à le construire (données externes)
- Plusieurs méthodes de validation
 - Validation croisée (2-fold ou k-fold)
 - On découpe les observation en k groupes : on apprend sur un groupe et on calcule l'erreur de prédiction sur l'autre.
 - « leave one out cross validation » (LOOCV équivalent à n-fold)
 - On écarte une observation pour construire le modèle et on calcule l'erreur de prédiction pour cette observation
 - On répète cela n fois

La recherche d'un modèle explicatif fiable est un compromis entre bon ajustement sur les données et bonne capacité à généraliser

Validation croisée

Résidus:

$$\hat{y}_{(i)i}$$

Prévision de y_i calculée $\hat{y}_{(i)i}$ avec un modèle estimé sans la ième observation

$$e_{(i)i} = y_i - \hat{y}_{(i)i}$$

PRESS (Predicted residual sum of squares):

$$PRESS = \frac{1}{n} \sum_{i=1}^{n} e_{(i)i}^2$$

C'est une estimation de la qualité de prédiction d'un modèle

$$PRESS_{RMCE} = \sqrt{PRESS}$$

Une comparaison du PRESS_{RMCE} et du RMCE renseigne sur la sensibilité du modèle aux observations

$$RMCE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Un RMCE faible et un PRESS-RMCE grand indique un surajustement du modèle sur les données

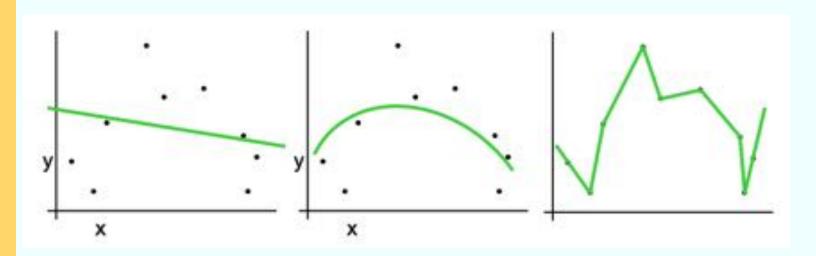
Validation d'un modèle

Qualité de prédiction du modèle : le coefficient de détermination Q² en cross validation

Il représente le R² en cross validation :

$$Q^2 = R_{CV}^2 = 1 - \frac{PRESS}{SCT}$$

$$PRESS = \sum_{i} (y_i - \hat{y}_{i/i})^2$$


 $\hat{\mathcal{Y}}_{i/i}$: Représente la valeur de y_i prédite par le modèle lorsque l'observation i est retirée pour l'estimation du modèle

- -Q² est borné par 1
- -Il peut être négatif
- -Il représente la capacité du modèle à généraliser (prédire correctement lorsqu'on lui présente de nouvelles données)

Une différence importante entre le R² et le Q² peut être le signe d'un surajustement du modèle

Validation d'un modèle

$$\hat{y} = a_0 + a_1 x$$

$$\hat{y} = a_0 + a_1 x + a_2 x^2$$

S'ajuste pas trop mal Généralise bien

$$R^2 = 0.67$$

$$R^2 = 0.87$$

$$Q^2 = 0.64$$

$$Q^2 = 0.43$$

$$Q^2 = 0,64$$

Le modèle quadratique est le plus apte à généraliser

Relier les points

S'ajuste parfaitement Généralise très mal

$$R^2 = 1$$

$$Q^2 = 0.36$$

Significativité globale du modèle

F: statistique de Fisher
$$F = \frac{SCR_m/p}{SCR_{es}/(n-p-1)} \approx F\alpha(p; n-p-1)$$

SCRes : somme des carrés des résidus

$$SCRes = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SCRm : somme des carrés régression sans la moyenne

$$SCRm = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

- Test de Fisher
 - Est-ce que la régression est significative dans son ensemble ?

H0 : les α sont tous nuls (sauf α_0)

- Si F > F $_{\alpha (p;n-p-1)}$: rejet H0 : régression significative
- Si $F \le F_{\alpha (p;n-p-1)}$: accepter H0: régression non significative au seuil α

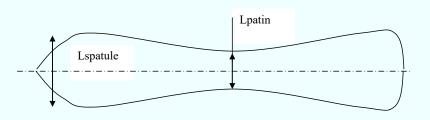
Significativité des coefficients

- Test de Fisher généralisé
 - Modèle complet (avec p VI) .vs. Modèle réduit (avec r VI)

H0 : les coefficient α pour passer du modèle réduit au modèle complet sont tous nuls

$$F_{partiel} = \frac{(SCR_p - SCR_r)/(p-r)}{SCRes/(n-p-1)} \approx F\alpha(p-r; n-p-1)$$

- Test
 - Est-ce que les (p-r) VI apportent une contribution significative ?
- Si F > F $_{\alpha \text{ (p-r ; n-p-1)}}$: rejet H0 (les (p-r) VI apportent une contribution significative)
- Si $F \le F_{\alpha (p-r;n-p-1)}$: accepter H0


Sélection optimale de variables

- Construction du modèle « optimal »
 - Optimisation d'un critère (choisir le MCE ou le R² ajusté, jamais le R²)
 - Imposer le nombre min et max de variables : le logiciel teste toutes les combinaisons possibles ⇒ très long
 - Méthode descendante (à conseiller)
 - » On commence avec toutes les variables, on calcule le F correspondant au retrait de chaque variable, on retire celle qui a le F le plus faible
 - Méthode ascendante
 - » On part d'un petit modèle et on introduit à chaque pas la variable qui a le F d'introduction le plus élevé
 - Algorithme "pas à pas"
 - on applique en alternance une itération de sélection avant et une itération d'élimination arrière. On arrête lorsqu'on ne peut ajouter une variable ni en éliminer une.

- On s'intéresse à deux propriétés subjectives des skis :
 - l'accroche (capacité à accrocher dans la neige)
 - La maniabilité
- On considère 2 caractéristiques géométriques du ski :
 - Lspatule
 - Taille de guêpe

taille_de_guêpe = (Lspatule-Lpatin)/2

Coefficient de corrélation critère objectif/descripteur

	Largeur patin	Taille de guepe
Accroche	-0,077	0,882
Maniable	0,926	0,030

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) * (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- variable à expliquer Y : accroche
- Variables explicatives X : x1 : Lspatule ; x2 : Taille de guêpe
- Plan d'expériences :

	Largeur patin	Taille de guepe	Accroche
ski1	72	115	7,40
ski2	75	102	4,63
ski3	65	93	2,92
ski4	76	105	6,59
ski5	62	114	9,41
ski6	75	104	7,10
ski7	68	105	5,02

- variable à expliquer Y : accroche
- Variables explicatives X : x1 : Lspatule ; x2 : Taille de guêpe
- Modèle :

$$Y_i = a_0 + a_1 x 1_i + a_2 x 2_i + \varepsilon_i$$

:

$$R2 = 77,8\%$$

Analyse de la variance

Source	DDL	Somme des carrés	Moyenne des carrés	F	Pr > F
Modèle	2	21,255	10,628	7,022	0,049
Erreur	4	6,054	1,513		
Total corrigé	6	27,309			

Calculé contre le modèle Y=Moyenne(Y)

 P-value = 4,9%<5% : rejet de H0 : régression significative dans son ensemble

Analyse Type I Sum of Squares:

Source	DDL	Somme des carrés	Moyenne des carrés	F	Pr > F
Largeur patin	1	0,161	0,161	0,107	0,760
Taille de					
guepe	1	21,094	21,094	13,938	0,020

Test de Fisher généralisé

- Pour Largeur patin : F << F_{5%} (p-value = 76%) : accepter
 H0 : largeur patin n'apporte pas une contribution significative
- Pour taille de guepe : F >> F 5% : rejet H0 : taille de guepe apporte une contribution significative

L'ANOVA (Analysis of variance)

Cas particulier des variables explicatives X qualitatives

Variable qualitative : ne peut prendre qu'un nombre discret de valeurs (modalités ou niveaux). *Exemple la couleur*

Cas d'un facteur : le modèle est donné par :

$$y_{ik} = \mu + \alpha_i + \varepsilon_{ik}$$
 $\varepsilon_{ik} \sim N(0, \sigma)$

y_{ij} : réponse associée à l'observation k pour le niveau i du facteur

 α_i : effet moyen du niveau i du facteur

μ: effet moyen général

On choisit d'avoir $\sum_{i} \alpha_{i} = 0$: paramétrage centré

- Écriture matricielle Y = X.a + e
- Estimation des coefficients

$$\hat{a} = (X^t.X)^{-1}.X^t.Y$$

L'ANOVA

L'Analyse de la variance (ANOVA) : cas particulier de la régression

Techniquement, on réalise la régression avec la matrice X correspondant au tableau disjonctif recodé des niveaux des facteurs

Tableau disjonctif : codage d'un variable qualitative avec des 1 et 0 (1 si présent, 0 si absent)

Exemple : cas de deux facteurs

cas	F1 : bracelet	F2 : type
1	métal	aiguille
2	cuir	aiguille
3	plastique	aiguille
4	métal	digitale
5	cuir	digitale
6	plastique	digitale

Tableau disjonctif complet

	F2: type		F1 : Bracelet		
cas	aiguille	digital	métal	cuir	plastique
1	1	0	1	0	0
2	1	0	0	1	0
3	1	0	0	0	1
4	0	1	1	0	0
5	0	1	0	1	0
6	0	1	0	0	1

L'ANOVA

Tableau disjonctif recodé

On intègre la contrainte $\sum \alpha_i = 0$ pour chaque facteur en retranchant arbitrairement une modalité à toutes les autres

- Exemple
 - Facteur F2 : codage de (a-d)
 - Facteur F1 : codage de (m-p) et (c-p)

N.B.: ce choix arbitraire n'a aucun incidence sur le résultat

		t	ableau disjonctif		
	F2:	type	F1 : bracelet		
cas	aiguille (a)	digital (d)	metal (m)	cuir c	plastique (p)
1	1	0	1	0	0
2	1	0	0	1	0
3	1	0	0	0	1
4	0	1	1	0	0
5	0	1	0	1	0
6	0	1	0	0	1

		tableau recodé		
	F2:type	F1 : bracelet		
cas	a-d	m-p	с-р	
1	1	1	0	
2	1	0	1	
3	1	-1	-1	
4	-1	1	0	
5	-1	0	1	
6	-1	-1	-1	

On réalise ensuite une régression de la réponse sur le tableau disjonctif recodé

L'ANOVA

Écriture matricielle de la régression sur variables qualitatives

$$y = X.a + e$$

 $egin{array}{c|c} lpha_0 & & & \\ lpha_1 & + & \\ lpha_2 & & \\ eta_1 & & & \\ \end{array}$

L'ANOVA : exemple

Données

exercice1	1910	
Réponse	FE	acteurs
preference y	Bracelet	cadran
1	métal	aiguille
7	cuir	digitale
1	plastique	aiguille
9	plastique	digitale
6	métal	digitale
2	cuir	aiguite
2	métal	aiguille
6	cuir	digitale
2	plastique	aiguille
8	plastique	digitale
- 8	métal	digitale
2	cuir	alguille

Coefficients d'ajuste Observations	12,000
Somme des poids	12,000
DDL	8,000
R ²	0,932
R ² ajusté	0,906
MCE	0,896
RMCE	0,946
MAPE	26,498
DW	2,647
Ср	4,000
AIC	1,814
SBC	3,754
PC	0,137
Press RMCE	1,420

Source	Valeur	
Constante	4,500	
Bracelet-m	-0,250	
Bracelet-c	-0,250	
Bracelet-p	0,500	
cadran-a	-2,833	
cadran-d	2,833	

Equation du modèle :

preference y = 4,5-0,25*Bracelet-m-0,25*Bracelet-c+0,5*Bracelet-p-2,83*cadran-a+2,83*cadran-d

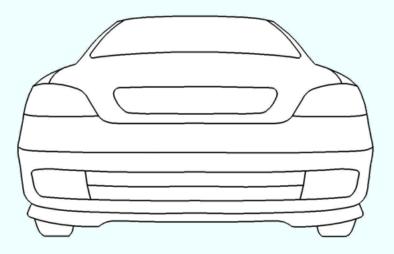
L'ANOVA: exemple

Données

ANALYSE DE LA VARIANCE

Source	DDL	Somme des carrés	Moyenne des carrés	F	Pr > F
Modèle	3	97,833	32,611	36,403	< 0,0001
Erreur	8	7,167	0,896		
Total corrigé	11	105,000	51/617476		-

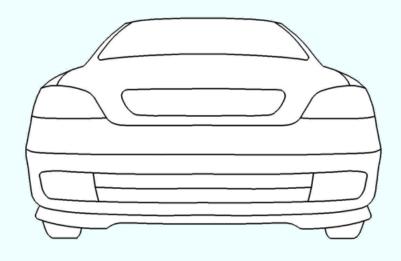
Analyse Type III Sum of Squares :


Source	DDL Somme des carrés			Moyenne des carrés	F	Pr > F
Bracelet	2		1,500	0,750	0,837	0,468
cadran	1		96,333	96,333	107,535	≤ 0,0001

Régression significative dans son ensemble

Seul le critère « cadran » est significatif

Analyse conjointe - Exemple

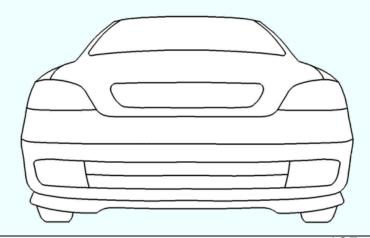


Exemple : face avant de véhicule

Motivation

- Faire évoluer le design (restylage) ou créer de nouveaux designs
- Définir un modèle quantitatif entre les perceptions utilisateur (ou la préférence) et les attributs de design

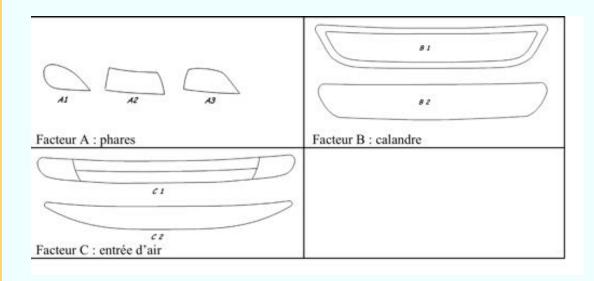
La méthode ne remplace pas le designer



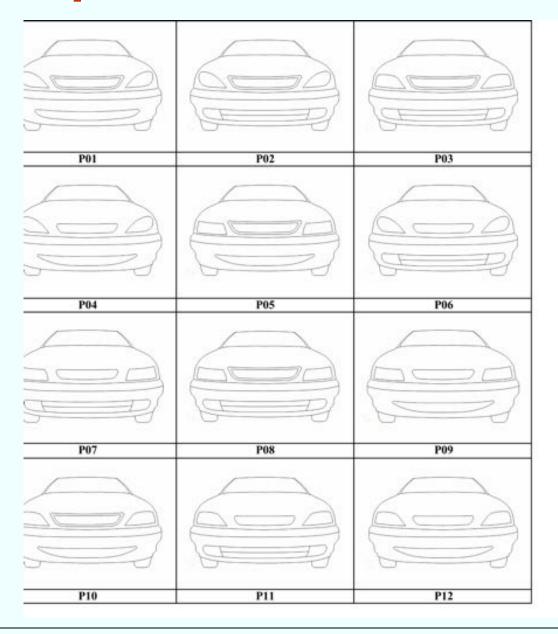
Analyse conjointe

Évaluer les produits

- Les produits sont vus comme un "panier" d'attributs
- Les clients attribuent une valeur à ces attributs
- La valeur totale du produit est fonction de la valeur de ses attributs


On détermine les attributs pertinents après une recherche qualitative

Exemple 1: face avant


- Attribut A : phare
 - Niveaux : A1, A2, A3
- Attribut B : radiateur
 - Niveaux : B1, B2
- Attribut C : entrée d'air
 - Niveaux : C1, C2

3*2*2=12 designs

Example 1: face avant

3*2*2=12 design

Plan complet

Définition du plan d'éxpérience

Plan complet

#	A Headlights	B Radiator grill	C Air intake	Preference Rating : u(X)
1	A1	B1	C1	3
2	A1	B2	C1	4
3	A1	B1	C2	5
4	A1	B2	C2	4
5	A2	B1	C1	3
6	A2	B2	C1	2
7	A2	B1	C2	8
8	A2	B2	C2	7
9	А3	B1	C1	5
10	А3	B2	C1	3
11	А3	B1	C2	7
12	А3	B2	C2	8

On demande au répondant une cotation de la préférence de 1 "très peu probable que j'achète" à 10 "très probable que j'achète".

Le modèle en analyse conjointe

On choisit un modèle de préférence du type :

$$\hat{y}_{i} = \mu + \sum_{j=1}^{p} \sum_{k=1}^{k_{j}} a_{jk} . \delta_{i}(jk)$$

 \hat{y}_{j} utilité globale du design i

Modèle linéaire compensatoire k_j = nombre de niveaux du facteur j p= nombre de facteurs

a_{jk} : utilité partielle du niveau k pour le facteur j

$$\delta_i(jk) = 1 \text{ si niveau du facteur } j \text{ pour le design } i \text{ est } k$$

$$= 0 \text{ sinon}$$

 a_{jk} est le coefficient d'une régression linéaire multiple, déterminé par la minimisation de :

$$MIN(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2)$$

Exemple: face avant

Codage: Tableau disjonctif complet

		Α]	3	(
	A1	A2	A3	B1	B2	C1	C2
y1	1	0	0	1	0	1	0
y2	1	0	0	1	0	0	1
у3	1	Û	Q	Û	1	1	0
y4	1	0	0	0	1	0	1
v5	0	1	0	1	0	1	0
y6	0	1	0	1	0	0	1
у7	0	1	0	0	1	1	0
у8	0	1	0	0	1	0	1
у9	0	0	1	1	0	1	0
y10	0	0	1	1	0	0	1
y11	0	0	1	0	1	1	0
y12	0	0	1	0	1	0	1

P4: A1, B2, C2

Design P4:

$$\delta_3(11) =$$

$$\delta_3(12) =$$

$$\delta_3(13) =$$

Détermination des utilités partielles aik

- On utilise l'ANOVA (analysis of variance)
- Seules les différences entre coefficients pour un même facteur sont estimables

$$\hat{y}_{i} = \mu + \sum_{j=1}^{p} \sum_{k=1}^{k_{j}} a_{jk} . \delta_{i}(jk)$$

 Il faut se fixer une référence pour le calcul des utilités partielle

Niveau 1 du facteur i nulle

 Solution 1 : on choisi arbitrairement un produit de référence d'utilité nulle

 $a_{i1} = 0$

Solution 2 : on impose d'avoir la somme des utilités partielles nulles, pour chaque facteur

$$\sum_{j} a_{ij} = 0$$

Paramétrage centré

=> cf balle de golf

Estimation des utilités partielles aik : résultat

- Utilités partielles
 - Ce sont directement les coefficients du modèle **ANOVA**

$$\sum_k a_{jk} = 0$$

Design factor	niveau	Utilité partielle	Amplitude Aj	Importance Ij	
	A1	a11=-1.6			
Phare	A2	a12=0.5	2.7	54 %	
	А3	a13=1.1			
Dadiata	B1	a21=-0.1	0.3	4.07	
Radiateur	B2	a22=0.1	0.2	4 %	
Entráo sir	C1	a31=-1.1	2.2	41.0/	
Entrée air	C2	a32=1.1	2.2	41 %	

On choisit (solution 2) $\sum_{k} a_{jk} = 0$

$$\sum_{k} a_{jk} = 0$$

Pour tous les facteurs

Calcul des amplitudes A_j

1. Tableau de synthèse

Design factor	niveau	Utilité partielle	Amplitude Aj	Importance Ij	
	A1	a11=-1.6			
Phare	A2	a12=0.5	2.7	54 %	
	А3	a13=1.1			
Dadiakovu	B1	a21=-0.1	0.3	4 %	
Radiateur	B2	a22=0.1	0.2		
Entrée air	C1	a31=-1.1	2.2	41.0/	
cilulee alf	C2	a32=1.1	2.2	41 %	

Amplitude

Représente la contribution du facteur à la préférence

$$Aj = MAX(a_{ji}) - MIN(a_{ji})$$

Calcul des importances I_j

Tableau de synthèse

Design factor	niveau	Utilité partielle	Amplitude Aj	Importance Ij	
	A1	a11=-1.6			
Phare	A2	a12=0.5	2.7	54 %	
	А3	a13=1.1			
Dadiatory	B1	a21=-0.1	0.3	4.07	
Radiateur	B2	a22=0.1	0.2	4 %	
Entrée air	C1	a31=-1.1	2.2	41.0/	
churee air	C2	a32=1.1	2.2	41 % 	

Importance, I_j

Représente la sensibilité du client au facteur j

$$I_{j} = \frac{A_{j}}{\sum_{j=1}^{p} A_{j}}$$

$$41\% = \frac{2.2}{2.2 + 0.7 + 2.7}$$

Ajustement du modèle sur les données

$$R^{2} = \frac{\text{variation expliqu\'ee}}{\text{variation totale}} = \frac{SCR}{SCT} = \frac{\sum (\hat{U}_{i} - \overline{U})^{2}}{\sum (U_{i} - \overline{U})^{2}}$$

- R²: coefficient de détermination
 - Représente la qualité de l'ajustement du modèle (%)
 - $R^2 > 0.9$: très bon ajustement
 - $R^2 > 0.8$: bon ajustement
 - R^2 < 0.6 : mauvais ajustement

Cf. test stat.

sur R²

- Si le R² est faible
 - Il est inutile d'interpréter les coefficients du modèle le modèle n'explique pas les préférences
- R² faible
 - Le sujet utilise d'autres attributs que ceux proposés pour fonder sa préférence
 - Le modèle du sujet est plus complexe qu'on modèle linéaire simple avec effets simples
 - Le sujet a répondu n'importe quoi aux tests...

Pouvoir prédictif du modèle

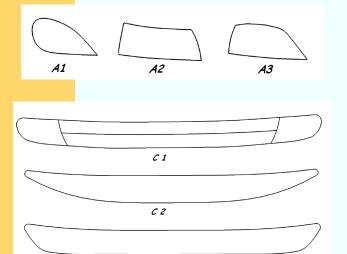
- En AC, évalué par des designs en « holdout »
 - Designs qui sont évalués par le répondant, mais qui ne servent pas à créer le modèle (2-fold cross validation)
- Calcul de différents indices de performance
 - Hit rate: % de cas pour lesquels le meilleur design (évalué par le répondant) correspond au meilleur design (donné par le modèle)
 - Calcul du PRESS (ou du Q²)
 - Coefficient de corrélation de Pearson ou coefficient de Kendall entre les le modèle et les évaluations
 - Mean Absolute share error (MASE)

$$MASE = \frac{\sum_{k=1}^{K} \left| s_{j.Pred} - s_{j.Obs} \right|}{K}$$

 $S_{k,\mathrm{Pred}}$: part de marché prédite

 $S_{k.Obs}$: part de marché observée

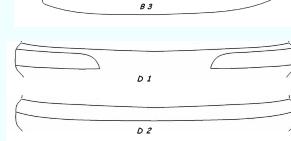
K: nombre de produits dans le holdout



Exemple plus complet

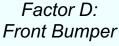
Génération de l'espace produit

- Definition de 4 principaux facteurs et de leurs niveaux :
 - Facteur A: phares— 3 niveaux
 - Facteur B: Radiateur 3 niveaux
 - Facteur C: entrée air 3 niveaux
 - Facteur D: parechoc— 2 niveaux


54 produits differents

C 3

Factor A: Headlights


Factor C: Air Intake

B 1

B 2

Factor B: Radiator Grill

Exemple plus complet

Latin square

Plan fractionnaire

#	1 Headlights	2 Radiator grill	3 Air intake	bumper	Rating : u(X)
1	A1	B1	C1	D1	
2	A1	B2	C2	D1	
3	A1	В3	C3	D1	
4	A2	B1	C2	D1	
5	A2	B2	C3	D1	
6	A2	В3	C1	D1	
7	А3	B1	C3	D1	
8	А3	B2	C1	D1	
9	А3	В3	C2	D1	
10	A1	B1	C1	D1	
11	A1	B2	C2	D2	
12	A1	В3	C3	D2	
13	A2	B1	C2	D2	
14	A2	B2	C3	D2	
15	A2	В3	C1	D2	
16	А3	B1	C3	D2	
17	А3	B2	C1	D2	
18	A3	B3	C2	D2	

Modélisation de la préférence

Modèle analyse conjointe

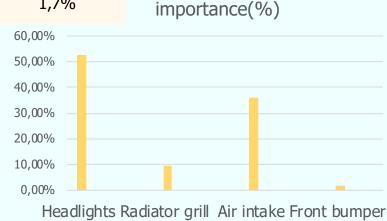
 L'analyse de la variance est utilisée pour déterminer les utilités partielles des niveaux des facteurs, ainsi que l'importance des facteurs

Source	Valeur	Erreur standard	t	Pr > t	Borne inférieure (95%)	Borne supérieure (95%)
Constante	5,047	0,417	12,110	< 0,0001	4,119	5,976
1 Headlights-A1	2,761	0,593	4,654	0,001	1,439	4,083
1 Headlights-A2	-1,881	0,587	-3,201	0,009	-3,190	-0,572
1 Headlights-A3	-0,881	0,587	-1,499	0,165	-2,190	0,428
2 Radiator grill-81	0,261	0,593	0,440	0,669	-1,061	1,583
2 Radiator grill-B2	-0,547	0,587	-0.932	0,373	-1,856	0,762
2 Radiator grill-B3	0,286	0,587	0,487	0,637	-1,023	1,595
3 Air intake-C1	-1,239	0,593	-2,088	0.063	-2,561	0,083
3 Air intake-C2	1,953	0,587	3,324	800,0	0,644	3,262
3 Air intake-C3	-0,714	0,587	-1,215	0,252	-2,023	0,596
bumper-D1	0,074	0,433	0,172	0,867	-0,891	1,039
bumper-D2	-0,074	0,433	-0,172	0,867	-1,039	0,891

coefficient de détermination du modèle

$$R^2 = 78\%$$

R² large : l'ajustement du modèle est correct


Modélisation de la préférence

Modèle analyse conjointe

Calcul de l'importance des facteurs

Design factor	Factor level	Utility (part- worth)	A: amplitude	I: Importance
Headlights	A1 A2 A3	2,761 -1,881 -0,881	4,642	52,7%
Radiator grill	B1 B2 B3	0,261 -0,547 0,286	0,833	9,5%
Air intake	C1 C2 C3	-1,239 1,953 -0,714	3,191	36,2%
Front bumper	D1 D2	0,074 -0,074	0,149	1,7%

"headlights" and "air intake " are the 2 most important factors

Calcul des utilités totale sur tout l'espace experimental

					total utility	1	part	worth	
	1 Headlights	2 Radiator grill	3 Air intake	bumper	u(X)	1 Headlights	2 Radiator grill	3 Air intake	bumper
1	A1	81	C1	D1	6,905	2,761	0,261	-1,239	0.07
2	A1	B1	C2	D1	10.097	2,761	0,261	1,953	0.07
3	A1	B1	C3	D1	7,430	2,761	0,261	-0,714	0,07
4	A1	82	C1	D1	6,097	2,761	-0,547	-1,239	0,07
5	A1	82	CZ	D1	9,286	2,761	-0,547	1,953	0,07
6	A1	82	C3	D1	6,621	2,761	-0,547		0.07
7	A1	83	C1	D1	6,930	2,761	0,286	77.00	0.07
8	A1	83	C2	D1	10,121	2,761	0,286		0,07
9	At	83	C3	D1	7,455	2,761	0,286		0.07
10	A2	B1	C1	D1	2,263	-1,881	0,261	-1,239	0,07
	A2	B1	C2	D1	252000	0 - 03.20	13.00.00	100000	0.07
11					5,455	-1,881	0,261	1,953	
12	A2	81	C3	D1	2,788	-1,881	0,261	-0,714	0,07
13	A2	B2	C1	D1	1,455	-1,881	-0,547		0,07
14	A2	B2	C2	D1	4,646	-1,881	-0,547	1,953	0,07
15	A2	B2	C3	D1	1,979	-1,881	-0,547	-0,714	0,07
16	A2	B3	C1	D1	2,288	-1,881	0,286	-1,239	0,07
17	A2	B3	C2	D1	5,479	-1,881	0,286	1,953	0,07
18	A2	B3	C3	D1	2,813	-1,881	0,286	-0,714	0,07
19	A3	81	C1	D1	3,263	-0.881	0,261	-1,239	0,07
20	A3	81	C2	D1	6,455	-0,881	0,261	1,953	0,07
21	A3	B1	C3	D1	3,788	-0,881	0,261	-0,714	0,07
22	A3	82	C1	D1	2,455	-0,881	-0,547	-1,239	0,07
23	A3	82	C2	D1	5,646	-0,881	-0,547	1,953	0,07
24	A3	B2	C3	D1	2,979	-0,881	-0,547	-0,714	0,07
25	A3	83	C1	D1	3,288	-0,881	0,286	-1,239	0,07
26	A3	B3	C2	D1	6,479	-0,881	0,286	1,953	0,07
27	A3	B3	C3	D1	3,813	-0.881	0,286	-0,714	0,07

Calcul des utilités totale sur tout l'espace experimental

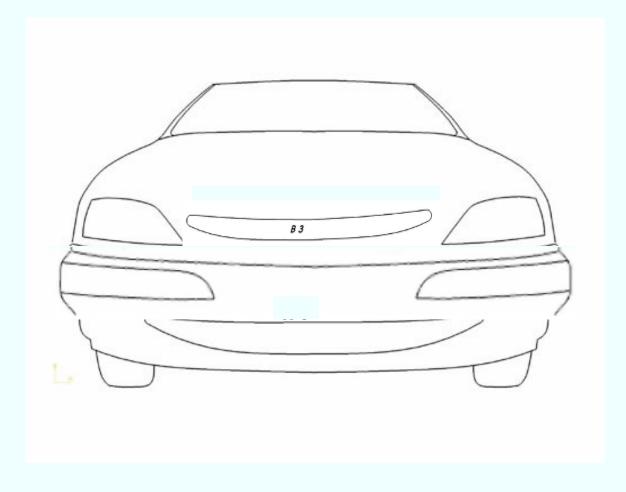
					total utility		party	worth	
#	1 Headlights	2 Radiator grill	3 Air intake	bumper	u(X)	1 Headlights	2 Radiator grill	3 Air intake	bumper
28	A1	B1	C1	D2	6,756	2,761	0,261	-1,239	-0.074
29	A1	B1	C2	D2	9,948	2,761	0.261	1,953	-0.074
30	A1	B1	C3	D2	7,281	2,761	0,261	-0,714	-0.074
31	A1	B2	C1	D2	5,948	2,761	-0.547	-1,239	-0.074
32	A1	B2	C2	D2	9,139	2,761	-0.547	1,953	-0.074
33	A1	82	C3	D2	6,473	2,761	-0.547	-0,714	-0.074
34	A1	B3	C1	D2	6,781	2,761	0,286	-1,239	-0.074
35	A1	83	C2	D2	9,973	2,761	0,286	1,953	-0.074
36	A1	B3	C3	D2	7.306	2,761	0.286	-0,714	-0.074
37	A2	81	C1	D2	2,115	-1,881	0,261	-1,239	-0.074
38	A2	81	C2	D2	5.306	-1,881	0,261	1,953	-0.074
39	A2	81	C3	02	2.639		0.261	-0,714	-0.074
40	A2	82	C1	D2	1,306	-1,881	-0.547	-1,239	-0.074
41	A2	82	C2	D2	4,497	-1,881	-0.547	1,953	-0.074
42	A2	82	C3	D2	1,831	-1,881	-0.547	-0,714	-0.074
43	A2	83	C1	D2	2,139	-1,881	0,286	-1,239	-0.074
44	A2	B3	C2	D2	5,331	-1,881	0.286	1,953	-0.074
45	A2	B3	C3	D2	2,664	-1,881	0,286	-0,714	-0,074
46	A3	B1	C1	D2	3,115	-0,881	0,261	-1,239	-0.074
47	A3	B1	C2	D2	6,306	-0,881	0,261	1,953	-0.074
48	A3	B1	C3	D2	3,639	-0,881	0,261	-0,714	-0,074
49	A3	B2	C1	D2	2,306	-0,881	-0,547	-1,239	-0,074
50	A3	B2	C2	D2	5,497	-0,881	-0,547	1,953	-0.074
51	A3	B2	C3	D2	2,831	-0,881	-0.547	-0,714	-0.074
52	A3	B3	C1	D2	3,139	-0,881	0,286	-1,239	-0.074
53	A3	B3	C2	D2	6,331	-0,881	0,286	1,953	-0.074
54	A3	83	C3	D2	3,664	-0.881	0.286	-0,714	-0.074

Détermination des meilleurs designs (classement par utilité décroissante)

		-			total utility.		party	worth	
	1 Headlights	2 Radiator grill	3 Air intake	bumper	u(X)	1 Headlights	2 Radiator grill	3 Air intake	bumper
8	A1	B3	C2	D1	10,121	2,761	0,286	1,953	0,074
2	A1	B1	C2	D1	10,097	2,761	0,261	1,953	0,074
35	A1	B3	C2	D2	9,973	2,761	0,286	1,953	-0,074
29	A1	B1	C2	D2	9,948		0,261	1,953	-0,074
5	A1	B2	C2	D1	9,288	2,761	-0,547	1,953	0,074
32	A1	B2	C2	D2	9,139			1,963	-0,074
9	A1	B3	C3	D1	7,455			-0,714	0,074
3	A1	B1	C3	D1	7,430		0,261	-0,714	0,074
36	A1	B3	C3	D2	7,306		0,286	-0,714	-0,074
30	A1	B1		D2	7 281			-0.714	-0.074

The "best" design is "8", followed by "2" and "35"

$$\ll 8 \gg = (A1, B3, C2, D1)$$


Total utility u(8)

$$u(8) = 5,047 + 2,761(A1) + 0,286(B3) + 1,953(C2) + 0,074(D1) = 10,121$$

Profil du "meilleur design" ("8")

$$\ll 8 \gg = (A1, B3, C2, D1)$$

Détermination des "designs (classement par utilité décroissante)

					total utility.		party	worth	
	1 Headlights	2 Radiator grill	3 Air intake	bumper	u(X)	1 Headlights	2 Radiator grill	3 Air intake	bumper
8	A1	B3	C2	D1	10,121	2,761	0,286	1,953	0,074
2	A1	B1	C2	D1	10,097	2,761	0,261	1,953	0,074
35	A1	B3	C2	D2	9,973	2,761	0,286	1,953	-0,074
29	A1	B1	C2	D2	9,948		0,261	1,953	-0,074
5	A1	B2	C2	D1	9,288	2,761	-0,547	1,953	0,074
32	A1	B2	C2	D2	9,139		-0,547	1,963	-0,074
9	A1	B3	C3	D1	7,455		0,286	-0,714	0,074
3	A1	B1	C3	D1	7,430		0,261	-0,714	0,074
36	A1	B3	C3	D2	7,306		0,286	-0,714	-0,074
30	A1	B1		D2	7 281			-0.714	-0.074

The "best" design is "8", followed by "2" and "35"

$$\ll 8 \gg = (A1, B3, C2, D1)$$

Total utility u(8)

$$u(8) = 5,047 + 2,761(A1) + 0,286(B3) + 1,953(C2) + 0,074(D1) = 10,121$$

Autre exemple en design

Exemple: montre

- F₁: Bracelet
 - Métal
 - Cuir
 - Plastique
- \bullet F_2 : Type
 - À aiguille
 - Digitale

cas	bracelet	type
1	métal	aiguille
2	cuir	aiguille
3	plastique	aiguille
4	métal	digitale
5	cuir	digitale
6	plastique	digitale

Exemple: les montres

Cotation de la préférence sur le plan complet

cas	bracelet	type	préférence	
1	métal	aiguille	1	
2	cuir	aiguille	7	
3	plastique	aiguille	1	
4	métal	digitale	6	
5	cuir	digitale	2	
6	plastique	digitale	9	

Exemple: les montres

- Résultat (ajustement du modèle)
 - R² = 0,62% : (62% de variance expliquée) ajustement du modèle moyen : les conclusions sont considérées comme fiables
 - Utilités partielles

Scores					
bracelet			type		
cuir	métal	plastic	aiguille	digitale	
+0,16	-0,83	+0,66	-3	+3	

Y=4,33-0,833 *metal*+0,167 *cuir*+0,667 *plastic*+3 *digital* -3 *aiguille*

- Interprétation des utilité partielles
 - Le design préféré est « plastic+digitale »
 - Le design rejeté est « metal + aiguille »

Amplitude et importance des facteurs

attribute	level	utility	amplitude Aj	importance
	Leather	0,167		
	metal	-0,833		
F1 strap	plastic	0,667	1,5	20%
	hand	-3		
F2 Type	digital	3	6	80%

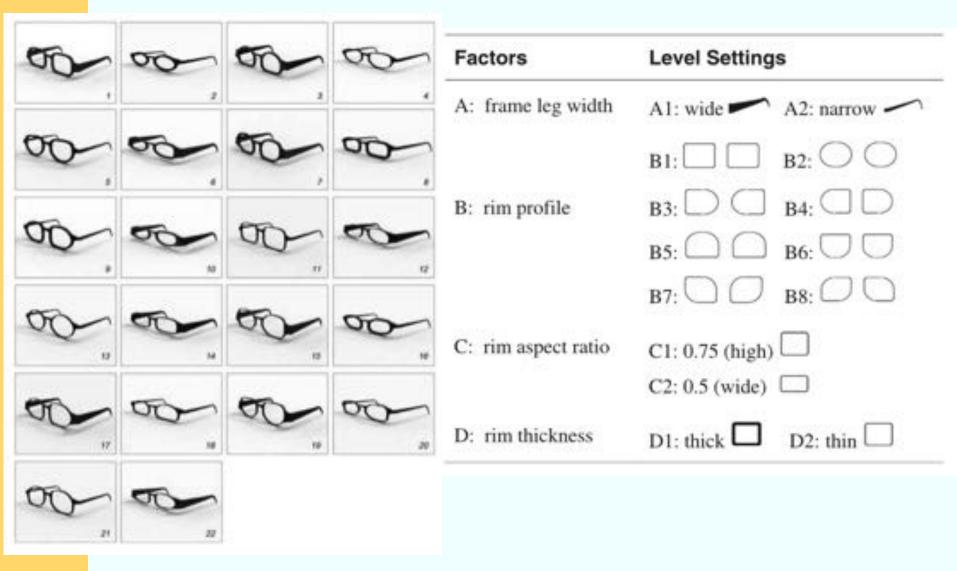
- Amplitude Aj
 - Rend compte de la contribution du facteur à la préférence

$$Aj = MAX(a_1; a_2; a_3) - MIN(a_1; a_2; a_3)$$

- Importance Ij d'un facteur
 - Le sujet est principalement sensible au type de bracelet $(80\%)_{Ij} = \frac{1}{\sum Aj}$

Nota Bene

- Il est généralement irréaliste de présenter le plan complet
 - Ex. Jus d'orange (64 produits)
 - On se limite aux effets simples sans interaction
- Possibilité de prendre en compte l'effet d'interaction entre facteurs
 - Mais attention au nombre de variables à estimer! (avoir suffisamment d'observations (scénarios))


$$\hat{y} = a_0 + a_1.(m-p) + a_2.(c-p) + a_3(a-d) + a_4(m-p)(a-d) + a_5(c-p)(a-d)$$

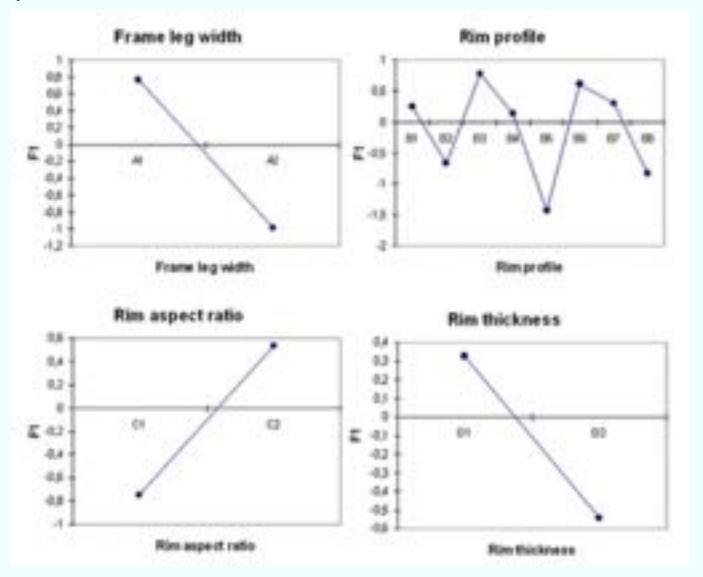
=> Au moins 6 scénarios nécessaires pour déterminer les 6 variables a_i (i=1 à 5)

Exemple: évaluation sémantique

Évaluation de montures de lunettes

Exemple

Évaluation de montures de lunettes


Table 2 List of the semantic attributes.

No.	Adjectives		
1	Feminine – masculine		
2	Common - special		
2 3 4 5	Original - dull		
4	Delicate - rough		
5	Funny – serious		
6	Obedient - rebellious		
7	Modern - retro		
8	Smart - ordinary		

Exemple

Résultat pour la dimension modern-retro

Conclusions sur l'AC

Avantages

- Méthode basée sur un « bon sens marketing solide »
- Permet de gérer des phénomènes assez complexes, avec un grand nombre de facteurs (exemple : packaging : on peut introduire des dizaines d'options)

Limites

- Se prête mieux à la mesure de sensibilité pour des facteurs « objectifs » que « subjectifs (cas du luxe, de la parfumerie,...)
- Concernant l'utilisation prédictive, limite des plans expérimentaux fractionnaires (absence d'effets d'interaction)
- Limites liées au modèle compensatoire (pas d'effet de seuil)

Bibliographie

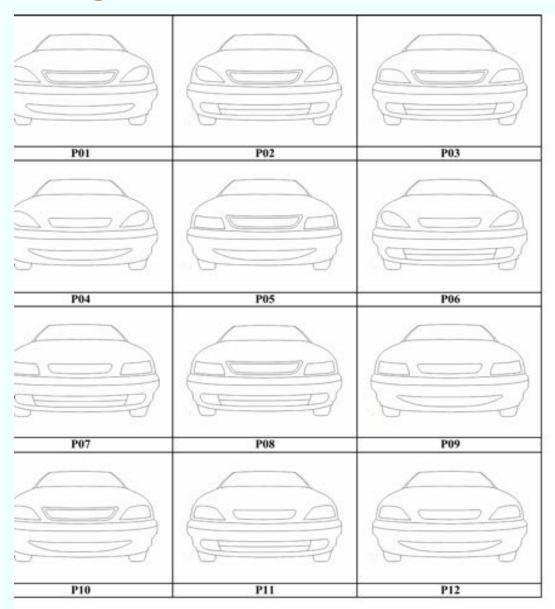
Fiche de synthèse sur l'analyse conjointe. J-F PETIOT. Les techniques de l'ingénieur,
 2013.

L'analyse conjointe, la statistique et le produit idéal – Méthodes et applications. Cisia – Ceresta éditeur, 1998.

Jean Claude Riquet et Christophe Benavent L'analyse conjointe et ses applications en marketing., IAE de Lille. *http://christophe.benavent.free.fr*

Crochemore S. Application originale de l'analyse conjointe pour un design *robuste* de volants ou comment concevoir utile. Actes de Confere 2005.

Y. Evrard, B. Pras, E. Roux. MARKET: Études et Recherches en Marketing. DUNOD 2000.


Lebart. Morineau. Piron. Statistique exploratoire multidimensionnelle. DUNOD, Sciences Sup.

- http://www.sawtoothsoftware.com/conjoint-analysis-software
- Green, P. Carroll, J. and Goldberg, S. A general approach to product design optimization via conjoint analysis, *Journal of Marketing*, vol 43, summer 1981, pp 17-35.
- Helm R., Scholl A., Manthey L., Steiner M. Measuring customer preferences in new product development: comparing compositional and decompositional methods. *International Journal of Product Development* 2004 Vol. 1, No.1 pp. 12 29.

Exercice analyse conjointe

Donner une note de préférence pour chaque design

La Classification ascendante hiérarchique CAH

La classification automatique

- Étant donnés N objets, définis par des mesures sur p variables, constituer des groupes d'objets tels que
 - les objets dans un même groupe sont « aussi semblables » que possible
 - les objets dans des groupes différents sont « aussi dissemblables » que possible
- Applications
 - segmentation du marché (consommateurs ou produits)
 - compréhension des différences perceptives
 - recherche de classes sociales (sociologie)
 - classification des espèces (paléontologie)

Il n 'y a pas unicité à un problème de classification

Exemple : étude de préférences

- Recherche de groupes de sujets
- Tableau des notes de préférence (produit*sujet)

Produits	sujet 1	sujet 2	sujet 3	sujet 4	 sujet 123	sujet 124	sujet 125
P1	4	0,	2	4	0	2	2.3
P2	3,9	7	3,91	3,91	9	3	3
P3	1,00	3,00	1,00	1,00	4,00	1,20	1
P4	1,3	3	1	1	4	1	1
P5	7	2	2,76	7	2	2,6	2
P6	5	10	1,70	4	10	1	2
P7	6	5	2	6	4	2	2
P8	1	2,59	4	1	2.4	5	4

 À partir de données <u>métriques</u>, déterminer les groupes de consommateurs qui « répondent de la même façon » et qui constituent un groupe « homogène »

définitions

E ensemble des objets à classer

Distance: application de E x E dans R

$$d(i,j) = d(j,i)$$

$$d(i,j) \ge 0$$

$$d(i, j) = 0 \Leftrightarrow i = j$$

$$d(i,j) \le d(i,k) + d(k,j)$$

Dissimilarité

définitions

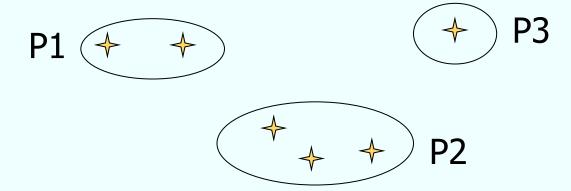
$$d^{2}(e_{i}; e_{j}) = (e_{i} - e_{j})^{i} M(e_{i} - e_{j})$$

$$\Rightarrow M = I \qquad d^{2}(e_{i}; e_{j}) = \sum_{i=1}^{n} (x_{n} - x_{n})^{i}$$

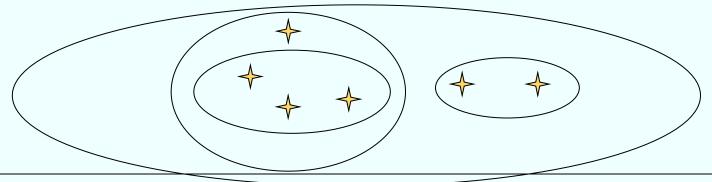
$$\Rightarrow M = D_{1:n}^{2} \qquad d^{2}(e_{i}; e_{j}) = \sum_{i=1}^{n} \frac{(x_{n} - x_{n})^{2}}{e_{i}^{2}}$$

$$\Rightarrow Mahalanobis M=V^{2}$$

$$\Rightarrow Lq : \qquad d(e_{i}; e_{j}) = \left(\sum_{i=1}^{n} |x_{n} - x_{n}|^{2}\right)^{\frac{1}{2}}$$


$$\Rightarrow L1 : \qquad d(e_{i}; e_{j}) = \sum_{i=1}^{n} |x_{n} - x_{n}|$$

définitions


Partition

• Ensemble de parties, disjointes, non vides, qui réunies forment l'ensemble complet

Hiérarchie

Partitions emboîtées

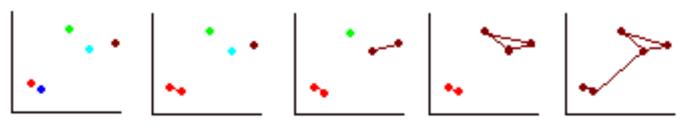
Différents algorithmes de classification

- Méthode hiérarchique : construction progressive d'un arbre de classification
 - Classification ascendante (CAH): regroupement progressif
 - Méthode descendante : division du groupe total en sous groupe
- Méthode non hiérarchique (nodales) : construire k groupes par allocation des individus dans les groupes
 - Adaptées aux populations de taille importante
 - Nuées dynamiques
 - Centres mobiles

Classification supervisée:

inférer, à partir d'un échantillon de données classées, une procédure de **classification** Classification non supervisée (automatique):

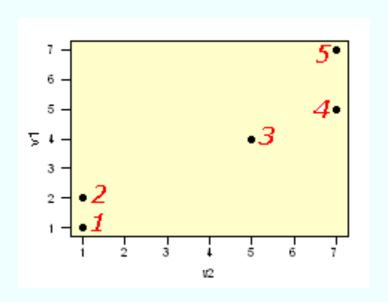
méthodes destinées à répartir des objets dans une structure organisée (hiérarchie)


Principe de la CAH

- Au départ : on regroupe les individus les + ressemblants
- De manière itérative, on construit des classes de + en + importantes :
 - Soit en regroupant 2 individus
 - Soit en agrégeant 1 individu et 1 classe
 - Soit en agrégeant 2 classes

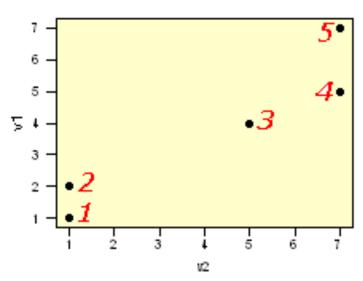
CAH: méthode

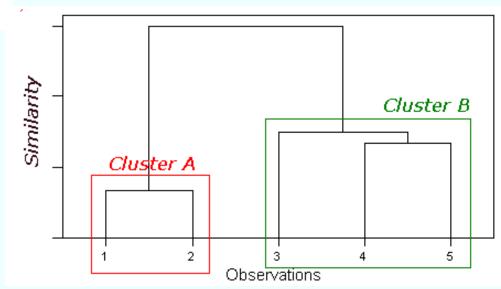
- 1. Choisir les données brutes
- 2. standardiser les données brutes
- 3. calculer la distances entre chaque groupe (matrice des distances)
- 4. Recherche les 2 groupes les plus similaires
- 5. fusionner les deux groupes pour former un nouveau groupe.
- 6. Calculer les distances entre le nouveau groupe et les autres groupes
- 7. Répéter l'étape 3 jusqu'à ce que tous les objets soient dans un seul groupe.



Exemple: CAH

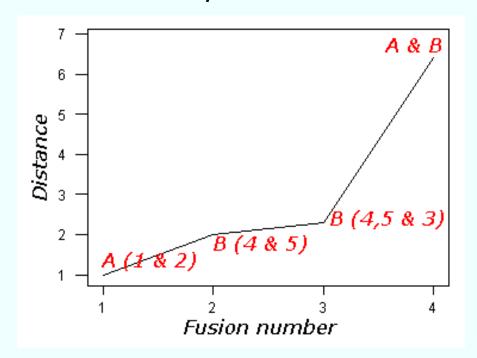
- Construction d'un arbre de classification passant de n individus au groupe total : dendrogramme
 - définir la mesure de proximité entre individu
 - définir la règle de constitution des groupes (mesure de la proximité entre groupes)
- Exemple


case	X1	X2
1	1	1
2	2	1
3	4	5
4	5	7
5	7	7


Exemple: CAH

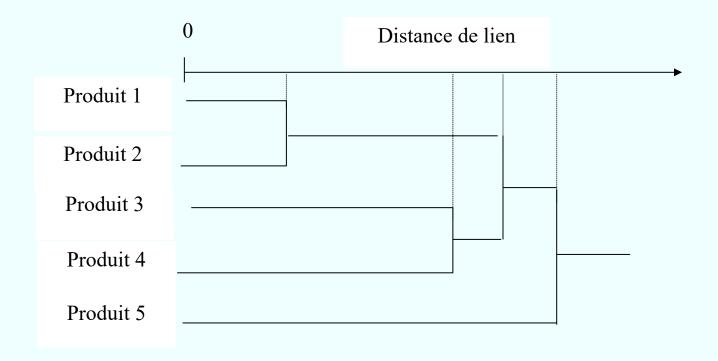
Exemple

	A	3	4	5
Α	0			
3	4.7	0		
4	6.9	2.2	0	
5	8.1	3.6	2	0

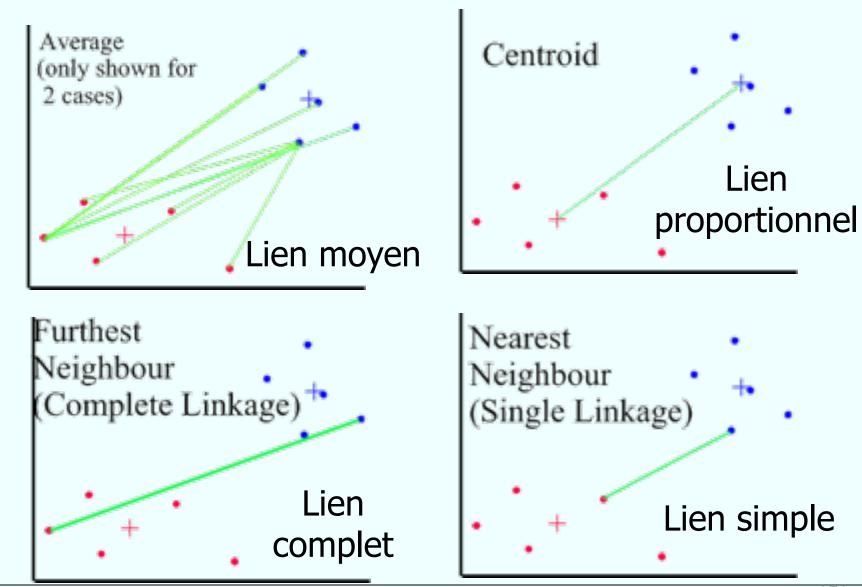

	1	2	3	4	5
1	0				
2	1	0			
3		4.5			
4	7.2	5.8	2.2	0	
5	8.5	6.7	3.6	2	0

CAH

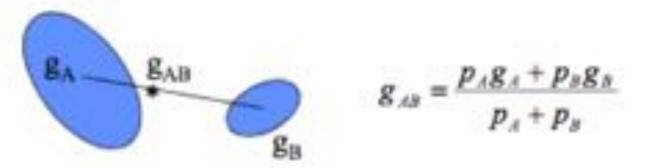
Distance de lien/n° de fusion



- nombre de groupe à prendre en compte :
 - avant un « saut » important de la distance de lien
 - ici deux groupes A et B

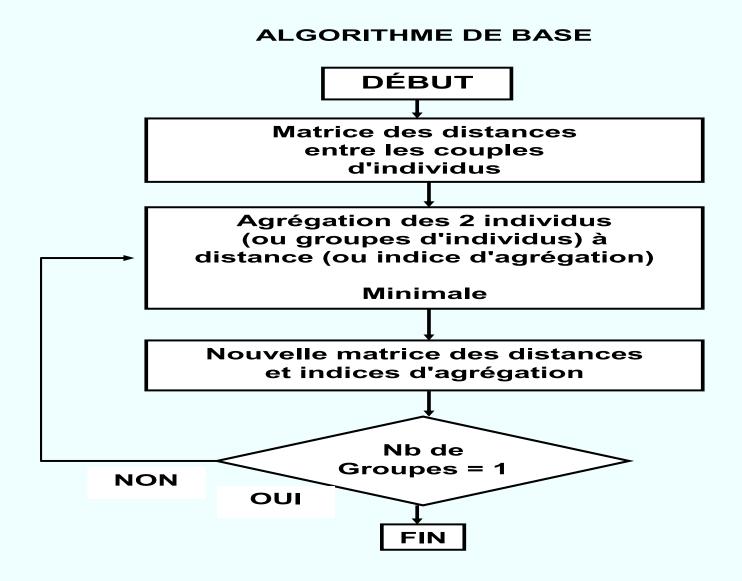

CAH

dendrogramme


Différentes règles de regroupement

Méthode de Ward

On agrège les individus qui font le moins varier l'inertie intra-classe


Variation d'inertie due à l'agrégation de A et B :

$$p_A d^2(g_A;g) + p_B d^2(g_B;g) - (p_A + p_B) d^2(g_{AB};g)$$

$$=\frac{p_A p_B}{p_A + p_B} d^2(g_A; g_B)$$

méthode hiérarchique (CAH)

Interprétation des résultats

- Quelle est la validité de la classification obtenue ?
 - analyse de la variance

variance_intergroupe variance_totale

- distance entre le cdg et les éléments du groupe
- Pour chaque variable, Test stat. de signif. / à la valeur moyenne (Student,s...)

- Comment décrire les groupes constitués ?
 - décrire l'individu « centre de gravité »
 - ajouter des variables explicatives supplémentaires

La typologie : applications en marketing

- Sur des individus
 - Enquêtes d'images de marques
 - Analyse de besoins (produits nouveaux)
 - Profil clientèle

- Sur des produits
 - A partir des caractéristiques produits+profil des consommateurs -> segmentation marché

EXEMPLE: MARQUES DE NETTOYANTS POUR SOL

	Α	В	С	D	E
Odeur agréable	60	38	40	39	62
Puissant	24	82	92	80	30
Sans rinçage	35	68	65	72	29
Écologique	68	52	30	28	75

points
d'image
attribués
à 5 marques
de
nettoyants
pour sol

EXEMPLE: MARQUES DE NETTOYANTS POUR SOL

MATRICE DES DISTANCES (*) ENTRE MARQUES

	Α	В	C	D	E
A	0	129	156	154	21
В	129	0	37	31	138
С	156	37	0	22	165
D	154	31	22	0	163
E	21	138	165	163	0

(*) CITY BLOCK (Manhattan)

EXEMPLE: suite

Distance minimale: 21 entre A et E

Première agrégation : on regroupe A et E

• Poursuite de l'algorithme avec crit. d'agrégation lien moyen :

$$D^* (B, (A,E)) = 1/2 (D (B,A) + D (B,E)) = 1/2 (129 + 138) = 133,5$$

→ Nouvelle matrice de distances et d'indices d'agrégation :

	(A,E)	В	С	D
(A,E)	0	133,5	160,5	158,5
В	133,5	0	37	31
С	160,5	37	0	22
D	158,5	31	22	0

EXEMPLE: suite

Distance minimale : 22 entre C et D

→Nouvelle matrice de distances et d'indices d'agrégation :

	(A,E)	В	(C,D)
(A,E)	0	133,5	159,5
В	133,5	0	29
(C,D)	159,5	29	0

Puis, distance minimale : 29 entre B et (C,D)

→On regroupe B et (C,D)

EXEMPLE: suite

Distance minimale : 22 entre C et D

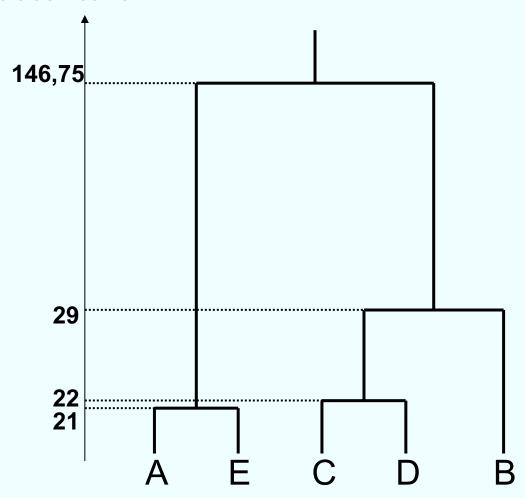
→ Nouvelle matrice de distances et d'indices d'agrégation :

	(A,E)	В	(C,D)
(A,E)	0	133,5	159,5
В	133,5	0	29
(C,D)	159,5	29	0

EXEMPLE suite

Puis, distance minimale : 29 entre B et (C,D)

→On regroupe B et (C,D)


→ Nouvelle matrice de distances et d'indices d'agrégation :

	(A,E)	(C,D,B)
(A,E)	0	146,75
(C,D,B)	146,75	0

EXEMPLE suite

Arbre de classification:

EXEMPLE: MARQUES DE NETTOYANTS POUR SOL

Typologie à 3 groupes

Groupes :	(A,E)	В	(C,D)
Effectif:	2	1	2
Odeur agréable	61	38	39.5
Puissant	27	82	86
Sans rinçage	32	68	68.5
Écologique	71.5	52	29

EXEMPLE: MARQUES DE NETTOYANTS POUR SOL

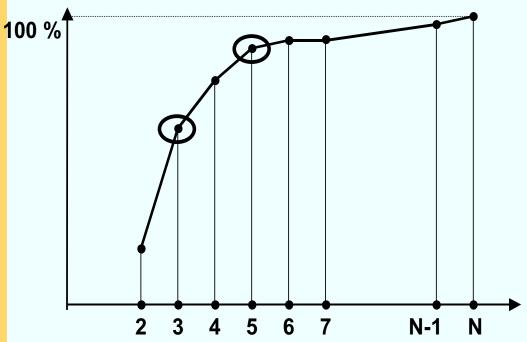
Typologie à 2 groupes

Effectifs: 2 3

Odeur agréable 61 38,8

Puissant 27 84,7

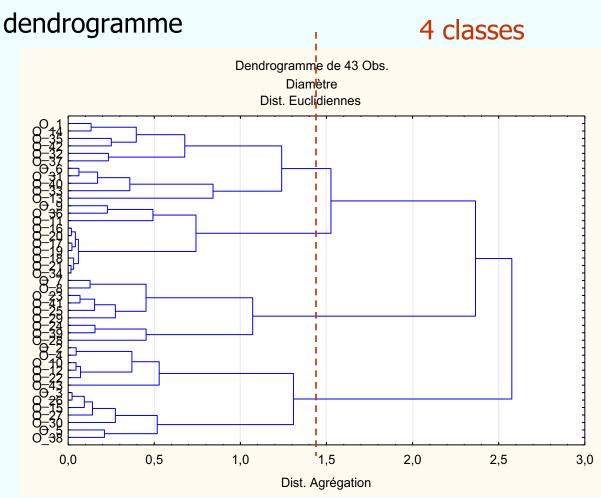
Sans rinçage 32 68.3


Écologique 71.5 40,5

CHOIX DU NOMBRE DE GROUPES

COURBE DE « RENDEMENT » D'UNE ANALYSE → Règle du « COUDE »

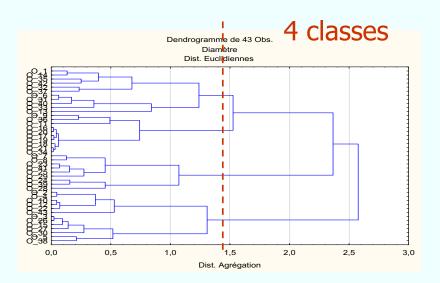
Nombre d'individus puis de groupes



- Objectif : segmenter une population d 'étudiants/attentes concernant les voyages
- Questionnaire

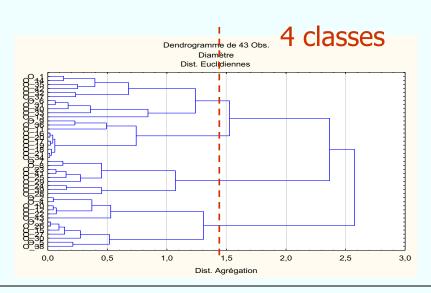
item	Importance Pas du tout très important 0 5 10
Se dépenser physiquement	
Faire la fête	
Prendre le temps de vivre	
Sortir des normes de la vie courante	
Etre émerveillé par la nouveauté	
S'ouvrir l'esprit par une autre culture	
Se faire une opinion pays/culture	
S'enrichir d'images et de souvenirs	
Vivre des situations risquées	
Cherche à se valoriser/entourage	

- Analyse ascendante hiérarchique
 - données métrique : distance euclidienne
 - distance de lien : diamètre (lien complet)


item	Moyenne des variables					
	Glob.	C 1	C 2	C3	C4	
Se dépenser physiquement	3.8	4.06	4.91	2.3	3.67	
Faire la fête	5.75	6.11	5.91	5.9	4.92	
Prendre le temps de vivre	6.84	6.83	7.55	3.7	8.83	
Sortir des normes de la vie courante	7.65	8.78	9.27	6.2	5.67	
Etre émerveillé par la nouveauté	7.88	8.78	8.55	7.6	8.08	
S'ouvrir l'esprit par une autre culture	8.18	8.5	8.73	7.6	6.17	
Se faire une opinion pays/culture	6.8	7.72	5.27	4.8	8.5	
S'enrichir d'images et de souvenirs	7.61	8.72	5.64	7.6	7.75	
Vivre des situations risquées	5.96	7.33	7.36	3.5	4.67	
Cherche à se valoriser/entourage	5.35	6.39	3.18	5.6	5.58	

Gras : significativement supérieur à la moyenne des notes

Italique : sign. inférieur


- Description des classes
 - Étudier les valeurs des *cdg* des classes sur les variables initiales
 - L'interprétation est parfois complexe car les groupes ne représentent pas forcément des types « purs »
 - Ajouter des variables supplémentaires (qui n'ont pas servi à faire la classification) peut aider à l'interprétation

Description des classes

classe	caractérisation
C1	Les aventuriers modérés
C2	Les aventuriers fanatiques
C3	Les fêtards
C4	Les intellos

- Caractérisation des classes
 - caractériser la population de chaque classe avec des questions socio-économiques (afin d'orienter des actions de communications et de publicité)
 - tri selon l'appartenance à une classe,
 - analyse discriminante (idem que la régression multiple mais avec une variable à expliquer <u>nominale</u>)

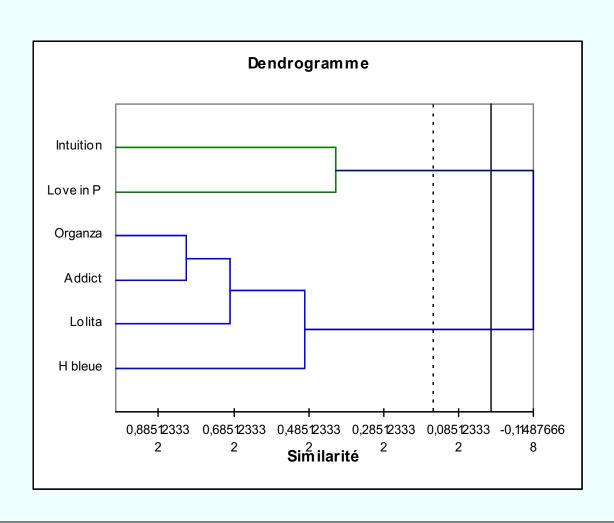
classe	caractérisation	%gars	%filles	%sciences	%littéraires	%paris	%province
C1	Les aventuriers modérés	55	45	55	45	50	50
C2	Les aventuriers fanatiques	70	30	55	45	45	55
C3	Les fêtards	60	40	65	35	55	45
C4 Chelus	Les intellos	15	85	25	75	60	40

Conclusion

 cette étude permettrait à un tour-opérator de <u>segmenter</u> les clients en fonction des bénéfices recherchés et de <u>proposer</u> les produits adaptés.

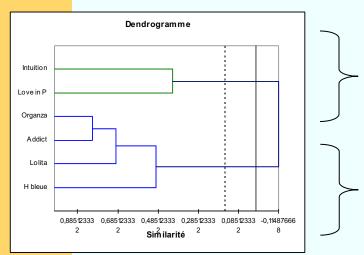
Exemple 3: parfums

Regroupement a partir du profil sensoriel moyen (panel)


Notes moyennes du panel

	Addict	Love in P	H bleue	Intuition	Organza	Lolita
vanille	4,25	3,00	1,63	1,38	2,81	4,75
citron	1,63	4,00	2,81	5,75	2,81	2,69
eau de cologi	n 2,75	3,00	5,56	4,63	3,31	2,00
épicé	5,00	2,81	5,56	3,69	4,94	4,25
poivré	4,31	2,81	5,50	3,69	4,75	3,69
floral	5,19	6,25	3,31	4,63	3,94	4,06
aquatique	1,81	3,25	1,25	2,56	1,81	2,38
sucré	5,44	5,75	3,31	3,50	5,06	7,56
frais	2,63	6,25	2,19	5,31	3,81	4,06
lourd	6.38	3,19	7,38	4,06	4,75	5,13

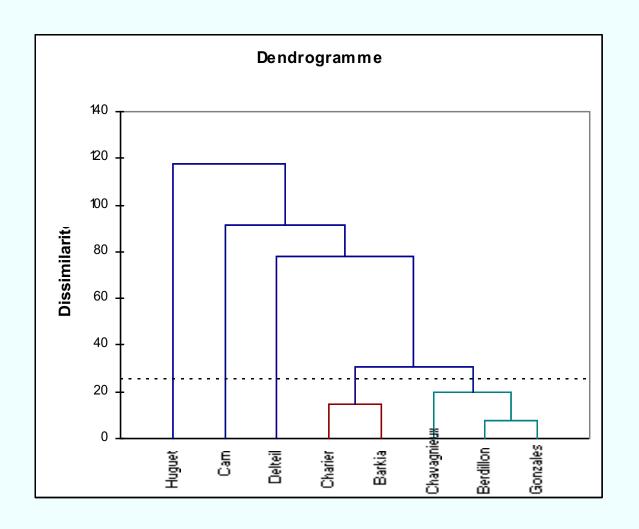
Exemple 3: parfums


Regroupement a partir du profil sensoriel moyen (panel)

Exemple 3: parfums

Regroupement a partir du profil sensoriel moyen (panel)

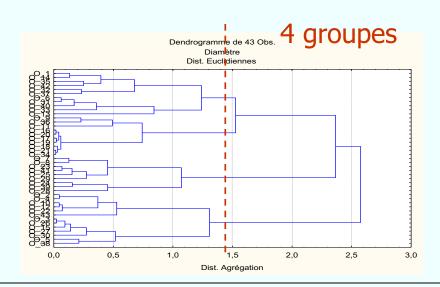
Groupe 1: floral—citron-frais


Groupe 2: lourd – pas citron

		vanille	citron	eau de cologne	épicé	poivré	floral	aquatiqu e	sucré	frais	lourd
groupe	1	2,19	4,88	3,81	3,25	3,25	5,44	2,91	4,63	5,78	3,63
groupe	2	3,36	2,48	3,41	4,94	4,56	4,13	1,81	5,34	3,17	5,91
moyenr	ne	2,97	3,28	3,54	4,38	4,13	4,56	2,18	5,10	4,04	5,15

Exemple 4: parfums

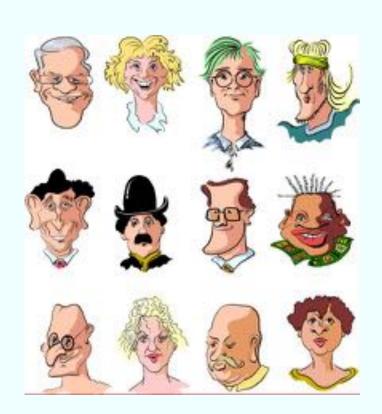
Regroupement des sujets



Exemple 5 : étude de préférences

Classement de préférence de p produits par n conso.

	Produit 1	Produit 2		Produit p
1				
2				
3				
4				
5				
n				


segmentation

Classification de « figures »

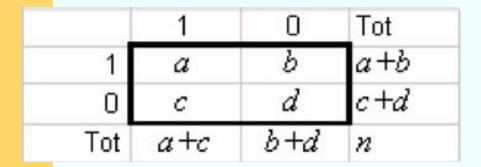
		1			-l
case	genre	lunettes	moustache	sourire	cnapeau
1	m	у	n	Υ	n
2	f	n	n	Υ	n
3	m	у	n	N	n
4	m	n	n	N	n
5	m	n	n	у	n
6	m	n	у	N	у
7	m	у	n	Υ	n
8	m	n	n	Υ	n
9	m	у	у	Υ	n
10	f	n	n	N	n
11	m	n	у	N	n
12	f	n	n	N	n

- Pb du paléontologiste
- définition d'une distance ou d'une similarité sur des données nominales (binaires)

N.B. Variables nominales : on code chaque variable avec des 0 et des 1 (selon le nbre de modalités)

forme disjonctive complète

case	genre	lunettes	moustache	sourire	chapeau
1	m	у	n	Υ	n
2	f	n	n	Υ	n
3	m	у	n	N	n
4	m	n	n	N	n
5	m	n	n	у	n
6	m	n	у	N	у
7	m	у	n	Υ	n
8	m	n	n	Υ	n
9	m	у	у	Υ	n
10	f	n	n	N	n
11	m	n	у	N	n
12	f	n	n	N	n


									•	
cas e	masc ulin	fémi nin	lunet tes		mou stach e	Pas mou stach e		Pas sourir e	chap eau	Pas chap eau
1	1	0	1	0	0	1	1	0	0	1
2	0	1	0	1	0	1	1	0	0	1
3	1	0	1	0	0	1	0	1	0	1
4	1	0	0	1	0	1	0	1	0	1
5	1	0	0	1	0	1	1	0	0	1
6	1	0	0	1	1	0	0	1	1	0
7	1	0	1	0	0	1	1	0	0	1
8	1	0	0	1	0	1	1	0	0	1
9	1	0	1	0	1	0	1	0	0	1
10	0	1	0	1	0	1	0	1	0	1
11	1	0	0	1	1	0	0	1	0	1
12	0	1	0	1	0	1	0	1	0	1

 On se ramène alors à des variables quantitatives binaires (forme disjonctive complète)

Définition d'une dissimilarité D entre les individus

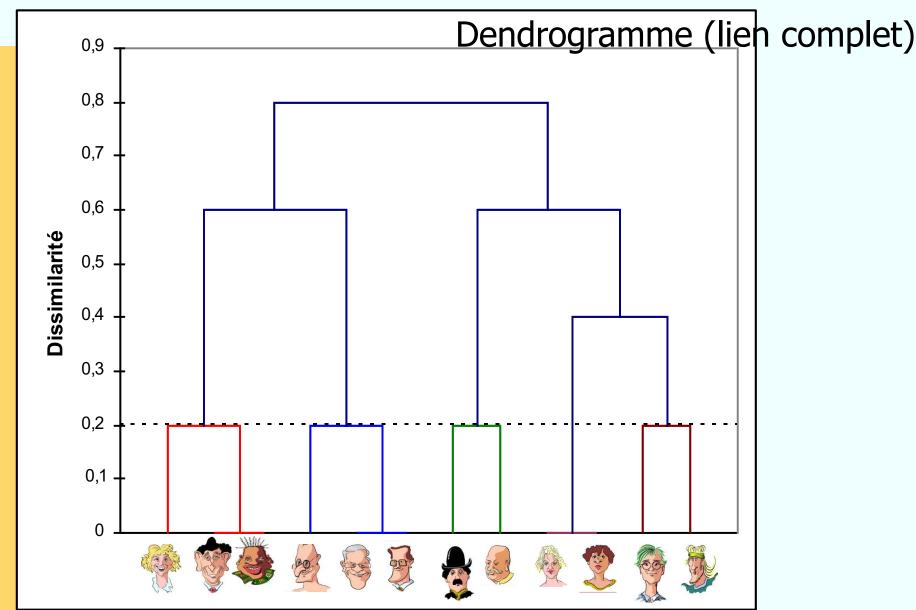
Table de contingence

Indice de Sokal et Michener

$$S_{12} = \frac{a+d}{n}$$

dissimilarité

$$D_{12} = \sqrt{1 - S_{12}}$$


Exemple:

Individu 1: 01100001010010

Individu 2: 01010001100010

$$S_{12} = \frac{3+7}{14}$$

La classification : points importants

- Quelles données utiliser pour le regroupement ?
- Comment mesurer les similarités ?
- Comment former les « clusters » ?
- Comment identifier le nombre optimum de clusters ?

Il n 'y a jamais unicité à un problème de classification Il y a seulement des classifications plus ou moins appropriées au but fixé

Ex : livres dans une bibliothèque

Exemple 2 : les jus d'orange

- Attributs (facteurs)
 - Recette (8 modalités)

⇒ R1, R2, R3, ..., R8

Marque (4 modalités)

⇒ joker/Solevita/Jafaden/Carrefour

Type (2 modalités)

⇒ Brick/bouteille verre

Plan fractionnaire

Scenario	Recette	Marque	Type
1	1	1	1
2	2	1	2
3	3	2	1
4	4	2	2
5	5	3	1
6.	6	3	2
7	7	4	1
8	8	4	2
9	1	2	2
10	2	3	1
11	3	3	2
12	4	4	1
13	5	4	2
14	6	1	1
15	7	1	2
16		2	1

Traitement des données

Consommateur h fournit la réponse $y_h = [y_{1k}...y_{nh}]$

Codage: tableau disjonctif complet

Utilités individuelles

Pour chaque consommateur

recette

Moyenne	5.98
R1	1.15
R2	-1.36
R3	0.81
R4	0.69
R5	-0.21
R6	-2.61
R7	0.93
R8	0.60

Utilités:

≈Coefficients de régression

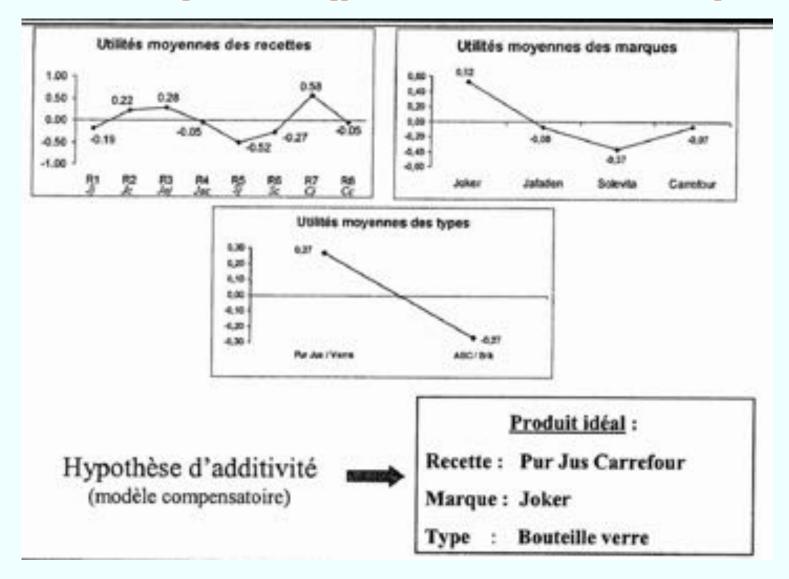
≈Effet en ANOVA

marque

MI	0.39	
M2	-0.14	
М3	0.46	
M4	-0.71	

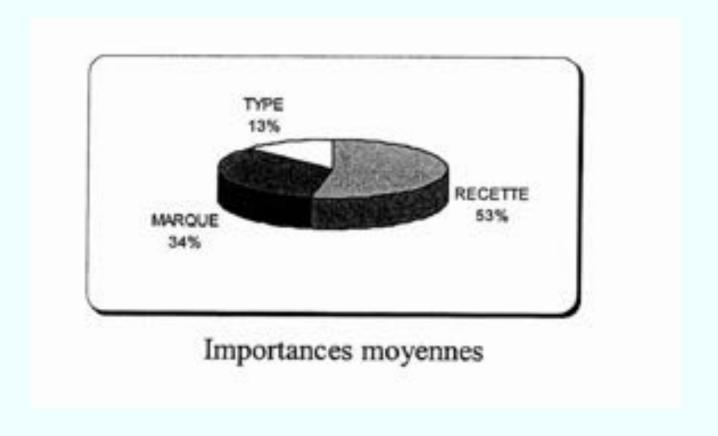
type

T1	-0.13
T2	0.13

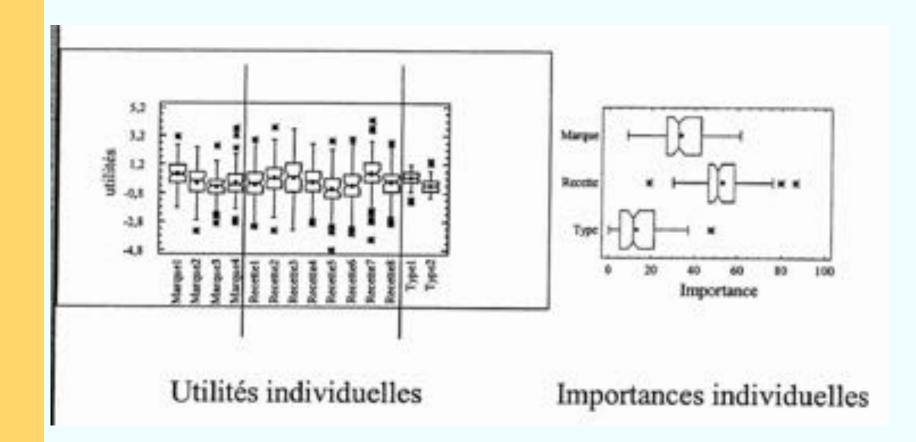


importances individuelles

Moyenne	5.98 A	mplitudes	Importances
R1	1.15		-1
R2	-1.36	15 - (-161	
R3	0.81		- conserved
R4	0.69	3.76	72 %
R5	-0.21	5.70	17.10
R6	-2.61		
R7	0.93		
R8	0.60		
M1	0.39		
M2	-0.14	1.17	22 %
M3	0.46	1.17	22 70
M4	-0.71		
T1 I	-0.13	0.26	6 %
T2	0.13	0.20	
		Amplitude de	es utilités de cet attr
Importanc	ce d'un attribut =	Somme des	amplitudes des util

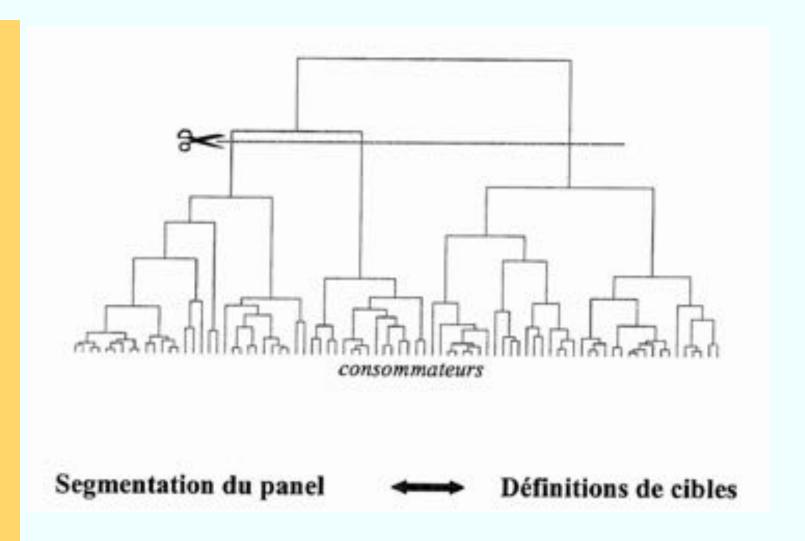


Utilités moyennes (pour tous les conso.)



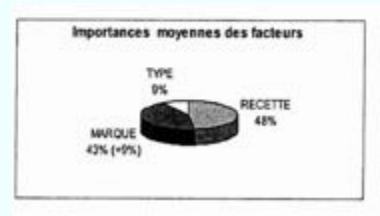
Importances moyennes

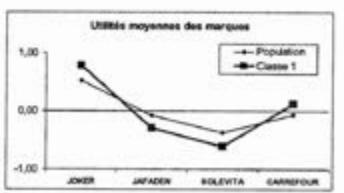
Dispersion des jugements

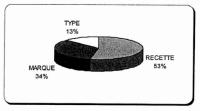


Segmentation du panel

- Possibilités de faire une classification
 - Sur les notations directes
 - Sur les utilités partielles
 - Sur les importances

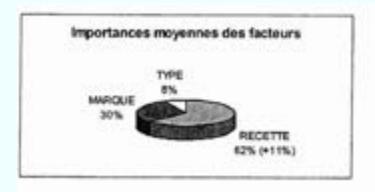


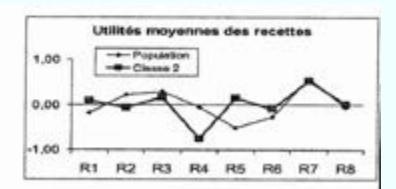

Classification sur les importances



classe 1 du panel

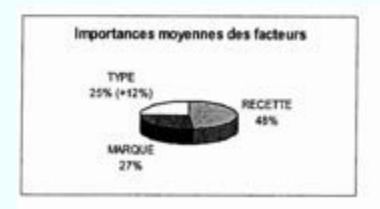
Les individus de la 1ère classe donnent une importance plus élevée à la marque que le panel global.

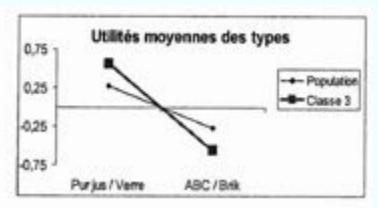



Importances moyennes

44.7%

classe 2 du panel





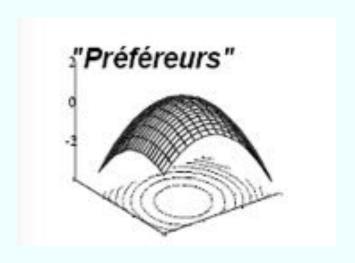
Les individus de la 2è classe donnent une importance plus élevée à la recette. 24%

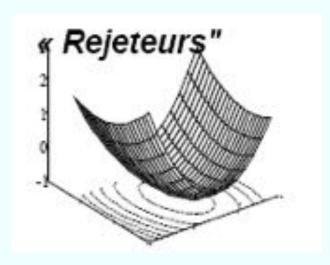
classe 3 du panel

Les individus de la 3è classe donnent une importance plus élevée au type.

31.3%

Cartographie des préférences


Cartographie des préférences


Objectifs

- Pour chaque sujet, construire un modèle expliquant la préférence par des grandeurs descriptives des produits
 - Grandeurs sensorielles
 - Grandeurs instrumentales (mesurées instrumentalement)
- Interpréter graphiquement les préférences
- Orienter la conception vers des formules préférables
- Segmenter les clients en fonction des préférences

Différentes formes de la préférence

Test d'acceptabilité d'un dessert à la vanille

- Objectif
 - Définir la formulation préférable au niveau sensoriel
- Données sensorielles

Jury d'experts

	flaveur	texture
	Saveur de vanille : d1	Onctuosité : d2
C 1	2	1
C 2	8	1
C 3	9	2
C 4	3	3
C 5	8	6
C 6	1	3
C 7	2	8

7 produits2 descripteurs

- Données « hédoniques »
 - Notes de préférence P du sujet

Consommateur courant

7 produits: C1 à C7

3 sujets: A, B, C

P	A	В	С
C 1	2	6	5
C 2	7	6	4
C 3	8	6,5	7
C 4	4,5	7	8
C 5	9	7,5	2
C 6	1,5	7	1
C 7	5	8	1

- Méthode
 - tenter d'expliquer les préférences des sujets par les données sensorielles définies par les experts
- Outil
 - Régression linéaire multiple

Variable explicative : les descripteurs d1, d2

Variable à expliquer : note de préférence

observations (P_i, d1_i, d2_i)

 \Longrightarrow

Estimateurs des coefficients a, b, c du modèle

$$\hat{P}_i = a.d1_i + b.d2_i + c$$

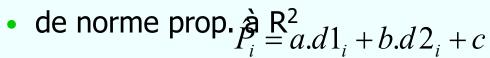
Valeur prédite par la régression

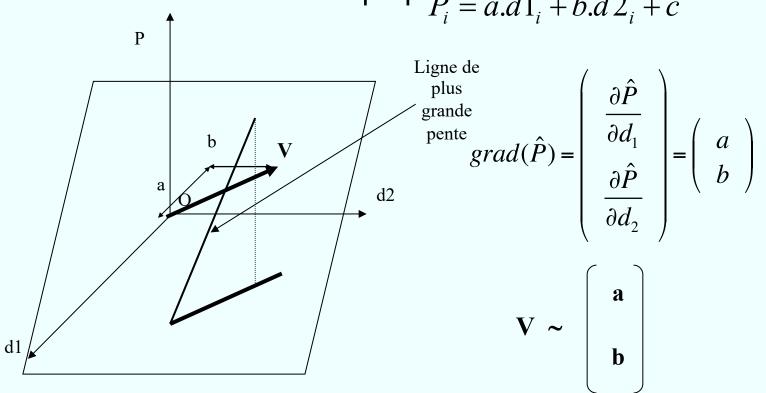
$$\hat{P}_i = a.d1_i + b.d2_i + c$$

Tableau de synthèse des modèles de préférence

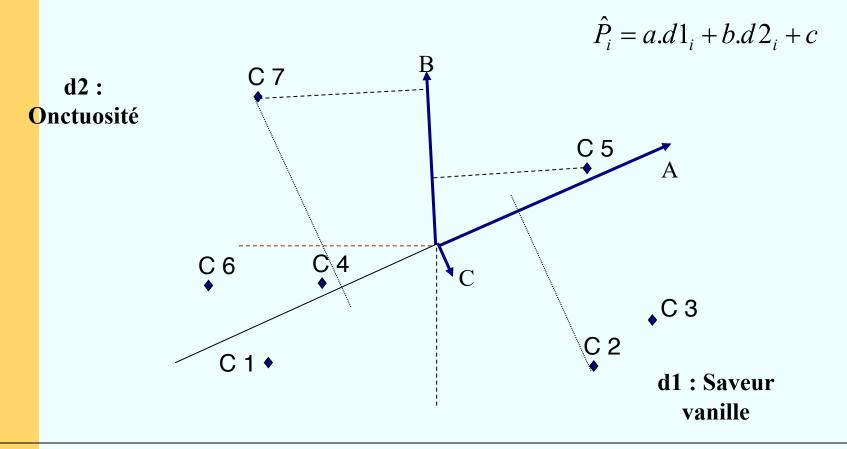
	a	ь	c	R^2	F	Significatif (p=0.05)
A	0,82	0,42	-0,02	0,98	97,84	Oui
В	-0,02	0,27	6,02	0,94	31,17	Oui
С	0,15	-0,59	5,33	0,37	1,17	Non

Interprétation graphique de la régression


- Pour chaque sujet, tracé du **modèle vecteur (vecteur gradient)**


gradient)
$$grad(\hat{P}) = \begin{pmatrix} \frac{\partial \hat{P}}{\partial d_1} \\ \frac{\partial \hat{P}}{\partial d_2} \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Le modèle vecteur


- Situé arbitrairement à l'origine
- Colinéaire à la projection sur (d1, d2) de la ligne de plus grande pente du plan de régression (vecteur gradient)
 - Orienté vers l'augmentation de P

- Modèle vecteur
 - orienté vers l'augmentation de la préférence
 - les perpendiculaires au vecteur sont les iso-préférences

Conclusions

- sujet A:
 - Très bon ajustement du modèle (R² = 98%)
 - aime bien à la fois une saveur vanille marquée et les crèmes lisses (a = 0,82 ; b = 0,42)
- sujet B:
 - Très bon ajustement du modèle (R² = 94%)
 - apprécie une crème très lisse ; indifférent au goût de vanille (a = -0,02 ; b = 0,27)
- sujet C:
 - mauvais ajustement du modèle (R² = 37%)
 - Pas d'interprétation des préférences à cause du modèle inadapté. La notation de préférence n'est pas expliquée par les descripteurs

- Cas du sujet C
 - Trois explications possibles:
 - C n'exprime pas de préférence,
 - » il en est incapable,
 - » il a répondu au hasard aux tests,
 - C est influencé par d'autres descripteurs que ceux proposés,
 - C a une structure de préférence plus complexe que les précédents, modèle vectoriel n'est pas adapté pour la décrire

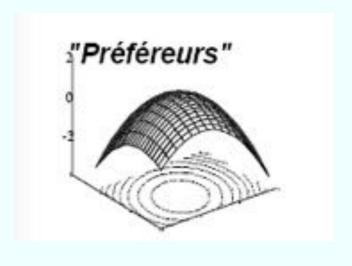
Modèle vectoriel

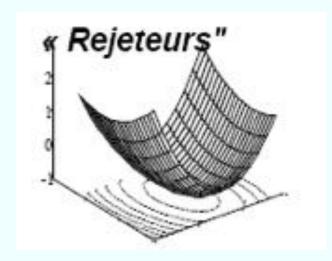
$$\Rightarrow$$

$$\hat{P}_i = a.d1_i + b.d2_i + c$$

Modèle circulaire

$$\hat{P}_i = a_1.d1_i + a_2.d2_i + a_3.(d1_i^2 + d2_{i_i}^2) + c$$




Modèle circulaire

$$\hat{P}_i = a_1.d1_i + a_2.d2_i + a_3.(d1_i^2 + d2_{i_i}^2) + c$$

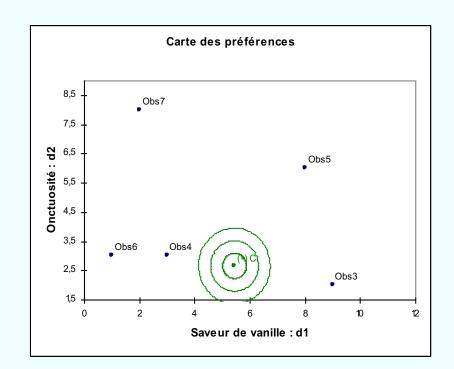
- Point idéal
 - a3 < 0
 - Optimum de préférence

- Point anti idéal
 - a3 > 0
 - Point de rejet

Modèle circulaire : sujet C

$$\hat{P}_i = a_1.d1_i + a_2.d2_i + a_3.(d1_i^2 + d2_{i_i}^2) + c$$

$$R^2 = 0.52$$


Coefficients du modèle :

	Constante	a1	a2	a3
С	0,443	1,996	0,979	-0,184

- Point idéal
 - a3 < 0
- Optimum de préférence

Position de l'optimum

$$\begin{cases} -\frac{a_1}{2a_3} \\ -\frac{a_2}{2a_3} \end{cases}$$

Cartographie des préférences

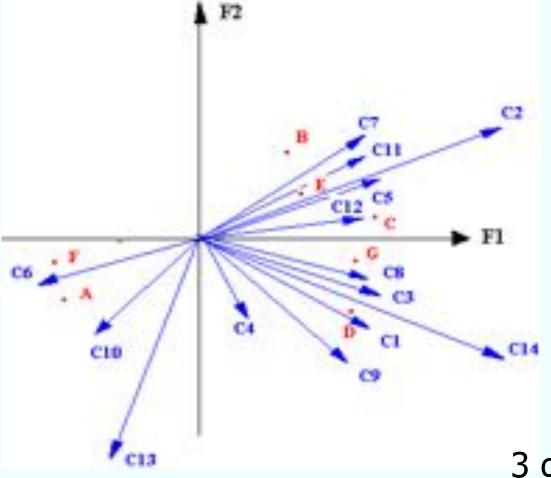
- interpréter graphiquement les préférences
- orienter la conception vers des formules préférables
- Construction d'un modèle individuel
 - on régresse le jugement hédonique sur les données perceptuelles, sensorielles ou instrumentales
- On utilise généralement les 2 premiers facteurs F₁ et F₂ de l'ACP pour régresser la préférence

Modèle vectoriel

$$\hat{P}_i = a.F1_i + b.F2_i + c$$

Modèle circulaire

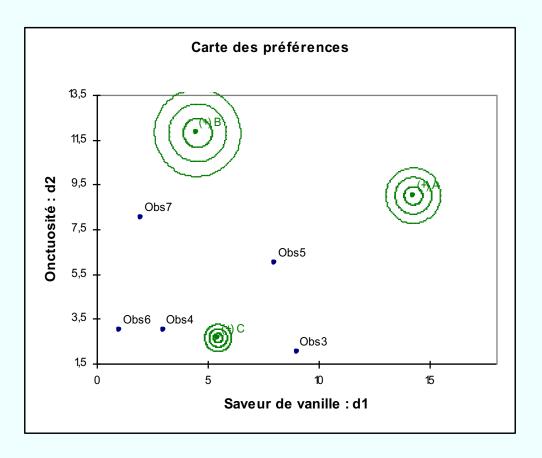
$$\hat{P}_i = a_1.F1_i + a_2.F2_i + a_3.(F1_i^2 + F2_{i_i}^2) + c$$


Modèle elliptique

$$\hat{P}_i = a_1.F1_i + a_2.F2_i + a_3.(F1_i^2) + a_4F2_{i_i}^2 + c$$

Modèle complet
$$\hat{P}_i = a_1.F1_i + a_2.F2_i + a_3.(F1_i^2) + a_4F2_{i_i}^2 + a_5F1.F2 + c$$

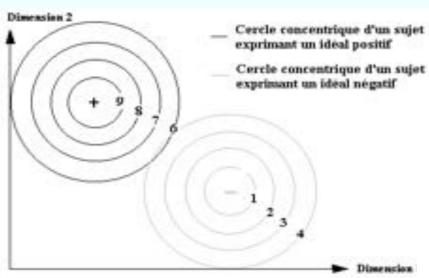
Panel de consommateurs : Modèle vectoriel

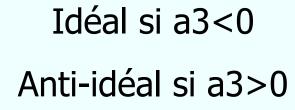

7 produits A, B, C, D, E, F, G

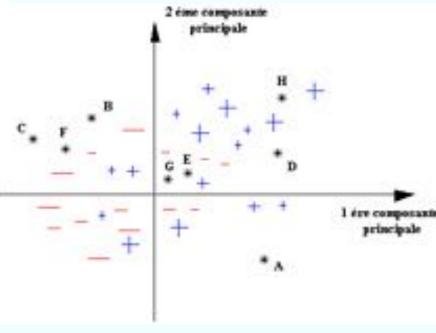
14 consommateurs C1 à C14

3 groupes de consommateur s

Modèle circulaire

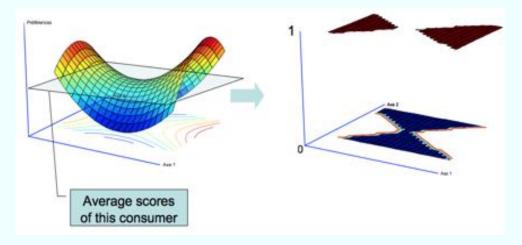

points idéaux des 3 sujets A, B, C


Modèle circulaire (point extreme)


$$\hat{P}_i = a_1.d1_i + a_2.d2_i + a_3.(d1_i^2 + d2_{i_i}^2) + c$$

pt extreme -a1/2a3 -a2/2a3

Produit segmentant


Agrégation des données individuelles

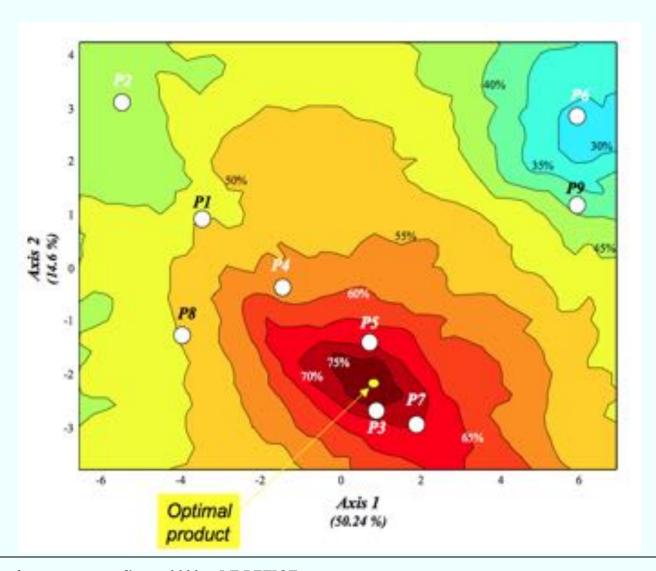
Seuil pour chaque sujet i

$$Ci(x,y) = 1 \text{ si } Pi(x,y) \ge Pi(x,y)$$

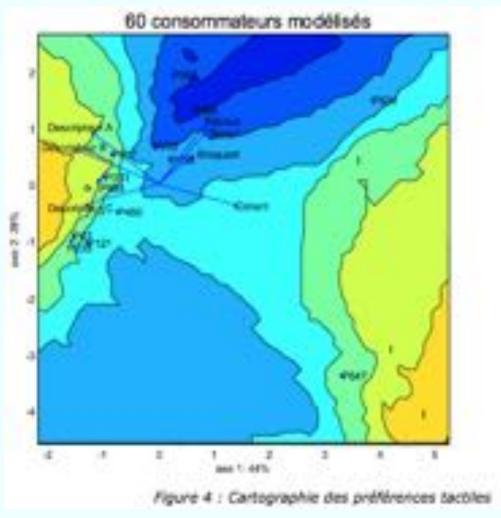
$$Ci(x,y) = 0$$
 si $Pi(x,y) < Pi(x,y)$

=1 si la préférence est supérieure à la valeur moyenne, 0 sinon

Agrégation de la préférence pour tous les sujets


$$P(x,y) = 100.\frac{\sum_{i=1}^{n} C_i(x,y)}{n}$$

Surface de préférence


Surface de préférence

Courbes de niveau

Exemple – matériau volant

- « Rapeux » et « relief » inhibe la préférence
- Statut segmentant de « collant » et « descripteur A et
 B »

RESUME: cartographie des préférences

- Outil du marketing pour le positionnement concurrentiel
- Outil de synthèse de solution lorsque les attributs
 « perçus » du produit sont déterminants
 - alimentaire
 - cosmétique
 - vision
 - acoustique

limites :

- ne propose qu 'un modèle très simplifié des préférences
 - effets de seuils, d'interaction, de saturation, non considérés
 - difficulté pour trouver les caractéristiques produit pertinentes
- innovation de rupture
 - Méthode peu adaptée pour l'innovation...