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Estimation of Regional
Pulmonary Compliance in
Idiopathic Pulmonary Fibrosis
Based on Personalized Lung
Poromechanical Modeling
Pulmonary function is tightly linked to the lung mechanical behavior, especially large
deformation during breathing. Interstitial lung diseases, such as idiopathic pulmonary
fibrosis (IPF), have an impact on the pulmonary mechanics and consequently alter lung
function. However, IPF remains poorly understood, poorly diagnosed, and poorly
treated. Currently, the mechanical impact of such diseases is assessed by
pressure–volume curves, giving only global information. We developed a poromechanical
model of the lung that can be personalized to a patient based on routine clinical data.
The personalization pipeline uses clinical data, mainly computed tomography (CT)
images at two time steps and involves the formulation of an inverse problem to estimate
regional compliances. The estimation problem can be formulated both in terms of
“effective”, i.e., without considering the mixture porosity, or “rescaled,” i.e., where the
first-order effect of the porosity has been taken into account, compliances. Regional com-
pliances are estimated for one control subject and three IPF patients, allowing to quan-
tify the IPF-induced tissue stiffening. This personalized model could be used in the clinic
as an objective and quantitative tool for IPF diagnosis. [DOI: 10.1115/1.4054106]
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary dis-
ease with a difficult diagnosis [1], severe prognosis [2,3], and lim-
ited treatment options [4]. It affects the pulmonary microstructure,
with interstitial tissue scarring and thickening [5], leading to less
efficient gas exchanges [6]. This also translates into an impact on
the pulmonary mechanics: the lungs become stiffer, affecting their
extensibility and thus their function [6]. As a consequence, IPF
patients suffer from high breathlessness, which worsens with the
disease evolution.

In addition to the mechanical impact of IPF on the lungs,
mechanics is believed to have a major role in the disease progress
[7]. Indeed, a mechanical vicious circle in place in IPF patients
has been hypothesized: fibrosis induces higher stiffness and thus
higher stresses (since the strain is imposed by the breathing func-
tion), which in turns activate the production of fibers by fibro-
blasts [5,8]. However, this vicious cycle remains hypothetical, and
needs to be further studied—this paper is a first step toward an
investigation of the role of mechanics in the progress of IPF
through personalized biomechanical modeling.

Biomechanical modeling has already been used to help the
diagnosis of various diseases such as myocardial infarction [9,10].
Addressing such applications requires patient-specific models,
which have biophysical characteristics of the patients [11,12].
With respect to mechanical models, these characteristics are not
only the geometric description of the organ but also the specific
loading inducing organ deformations and the specific material
behavior of the organ [13]. The patient attributes are usually
derived from clinical data, such as medical imaging, pressures, or
other relevant measurements [14].

Specifically for the lungs, several models and estimation proce-
dures have been proposed in the literature. Various constitutive
laws have been considered for the parenchyma, either based on
micromechanics [15,16] or directly at the tissue scale [17]. Some
such laws have been used within full organ scale models, mostly
focusing on air flows and gas exchanges [18,19], although some
models were used for detailed solid mechanics analysis [20,21].
However, Tawhai et al. [21] used an empirical compressible
hyperelastic strain energy function not related to the tissue micro-
structure nor based on experimental measurements, which was
used only to represent gross in vivo tissue behavior and whose
parameters do not have a physical meaning. Berger et al. [20]
used the same poromechanics foundation as the present work;
however, various aspects of the model, such as the unloaded con-
figuration and boundary conditions, which were not critical for the
analysis, were defined in a purely mathematical manner, departing
from physiology. Finally, in line with pure modeling approaches,
existing personalized modeling approaches mostly focus on respi-
ratory aspects [19,22].

We recently proposed a lung biomechanical model, based on a
novel poromechanics behavior law, and specific boundary condi-
tions [23–25]. The constitutive framework relies on the general
formulation of poromechanics detailed in Ref. [26] and based on
Refs. [27] and [28], describing the lung tissue as a mixture of
“solid” (tissue & blood) and fluid (air). The boundary conditions
contain the (negative) pleural pressure that inflates the lungs, and
frictionless bilateral contact with the thorax. The model focuses
on the end-exhalation and end-inhalation states (which are
assumed to be at static equilibrium) and has been shown to
adequately reproduce many elements of lung physiology [23,24].

In this paper, we introduce a personalization pipeline associated
with the lung model. It is solely based on clinical data, namely,
three-dimensional (3D) CT images, routinely acquired on IPF
patients at the Avicenne APHP Hospital, Bobigny, which is one
of two referral centers for rare pulmonary diseases in France.
Patient-specific geometrical, kinematical, and physiological (i.e.,
local porosity and fibrosis state) information is directly extracted
from the images by image processing. Mechanical information,
i.e., regional tissue stiffness, is estimated through an inverse

problem solved by a stochastic derivative-free algorithm. Several
aspects of the personalization procedure are investigated, and then
clinically relevant analyses are performed by applying the pipe-
line to one control subject and three IPF patients. By estimating
the parenchymal tissue regional stiffness in health and disease,
our personalized modeling pipeline could help better understand
the role of mechanics in IPF progression, and better classify IPF
patients.

The paper is organized as follows. In Sec. 2.1, we detail the
clinical data that is routinely acquired on IPF patients and can be
used to personalize a biomechanical model. Then, in Sec. 2.2, we
briefly recall the main components of our pulmonary porome-
chanics model, which was fully detailed in Refs. [23] and [24]. In
Sec. 2.3, we describe the personalization pipeline, which is the
main technical novelty of this paper. In Sec. 2.4, we describe the
synthetic data that will be used to validate the model and personal-
ization procedure. The results section is split into three parts,
focusing on validation based on synthetic (Sec. 3.1) and clinical
(Sec. 3.2) data, followed by the first clinically relevant results
obtained with our personalized modeling approach (Sec. 3.3). The
paper ends with a discussion about the impact of various hypothe-
ses and parameters of the model, its current limitations, and poten-
tial improvements (Sec. 4).

2 Materials and Methods

2.1 Clinical Data. Since the final aim of this work is to build
a biomechanical model-based clinical tool, we only rely on rou-
tine clinical data. Even though a wide range of data is acquired in
the clinic and stored in patients’ medical records, not all data are
directly usable in the context of the biomechanical model
described in Sec. 2.2, and we focus on thoracic images only.
Among the various techniques that can be used for in vivo lung
imaging, including X-rays, computed tomography (CT) [29],
magnetic resonance imaging [30], ultrasound [31], we use CT
scans which are routinely performed for the diagnosis, classifica-
tion, and monitoring of IPF patients, notably thanks to their high
spatial and temporal resolution, and large field of view.

In this study, we used 3D CT scans of three IPF patients
(selected for being highly representative of the disease) and one
control subject (patient without pulmonary disease and normal
thoracic scan), which were performed at the Avicenne APHP Hos-
pital, Bobigny, France. Patients data were retrospectively
retrieved according to the French law on medical research and
compiled as required by the Commission Nationale de l’Informa-
tique et des Libert�es (CNIL; the French national data protection
authority). The study not requiring an informed consent received
authorization CLEA-2019-96 from the Comit�e Local d’ �Ethique
d’Avicenne (CLEA).

Following latest recommendations [32], two 3D CT scans were
performed on each subject, at end-exhalation and end-inhalation,
allowing to capture not only the subject-specific lung geometry
but also the breathing kinematics. Throughout the paper, images
at end-exhalation are denoted by Ie, while images at end-
inhalation are denoted by Ii. The scans were performed in the
supine position, with the arms above the head and in breath-hold
during image acquisition. Details on patients and images charac-
teristics are reported in Table 1.

2.2 Lung Poromechanical Modeling. The lung poromechan-
ical model used in this study has been described in detail in Refs.
[23] and [24]. We only recall here the main points used in this
work.

2.2.1 Poromechanical Framework

2.2.1.1 Poromechanics foundations. We propose to model the
lungs as a two-phase porous continuum, where the solid phase
corresponds to interstitial tissue and blood, and the fluid phase
corresponds to the air present in airways and alveoli. To do so, we
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use the mixture theory [27,28], specifically the formulation of
Ref. [26], which is compatible with large strains as required by
the pulmonary setting. Thus, the lung microstructure is character-
ized by the porosity, i.e., the volume fraction of air, which is
denoted by Uf0 in a given reference configuration (X0; C0), and
/f in the deformed configuration (x, c). During lung deformation,
fluid circulates in the mixture, as air enters the lungs during inha-
lation and goes out during exhalation. The added fluid mass per
unit volume of the reference configuration is denoted by qfþ.

2.2.1.2 Specific hypotheses. As in Ref. [26], the fluid is
assumed to be incompressible, and the transformation is consid-
ered as isothermal. In addition to these general assumptions, we
make the following two specific hypotheses: (i) the end-
exhalation and end-inhalation states correspond to static equili-
briums; and (ii) in these states the internal fluid pressure is homo-
geneous and equal to the atmospheric pressure, which is
considered null here. Thus, the proposed model only describes the
two equilibrium states of end-exhalation and end-inhalation, and
not the path in between these states.

2.2.1.3 Kinematics. The transformation between the reference
and deformed configurations is described by the mapping

v :¼ X0 ! x
X 7! x ¼ vðXÞ

�
(1)

The associated displacement field is UðXÞ :¼ vðXÞ � X, and the

deformation gradient is FðXÞ :¼ r v ¼ 1 þr U. The local

volume change of the mixture is given by J :¼ detðFÞ. The quan-

tities Us :¼ ð1� /fÞ � J and Uf :¼ /f � J, such that Uf ¼ J � Us,
are the contributions of the solid and the fluid phases to the mix-
ture volume change. The right Cauchy-Green deformation tensor

is denoted by C :¼ FT � F, and its classical first three invariants

are I1 :¼ trðCÞ; I2 :¼ ðtrðCÞ2 � trðC2ÞÞ=2, and I3 :¼ detðCÞ ¼ J2.

Finally, the Green–Lagrange strain tensor is denoted by
E :¼ ðC � 1Þ=2. These quantities are represented in Fig. 1.

2.2.1.4 Equilibrium. We write the global equilibrium of the
mixture in weak form, i.e., under the form of the principle of vir-
tual work. Depending on the problem, it can be formulated on the
deformed configuration x, in terms of the Cauchy stress tensor rð

x
r : eðu�Þdx ¼ Wextðu�Þ 8u� (2)

where eðu�Þ :¼ ðr u�Þsym is the symmetric gradient of the dis-
placement, i.e., the linearized strain tensor, or on the reference
configuration X0, in terms of the second Piola–Kirchhoff stress
tensor R ð

X0

R : dUE � U�dX0 ¼ WextðU�Þ 8U� (3)

where dUE � U� is the differential of the Green–Lagrange strain

tensor. In both expressions, Wext represents the virtual work of
external forces, which will be detailed later.

A key point of the poromechanics framework is to add another
equilibrium condition, local, between the fluid pressure, denoted
by pf , and the hydrostatic pressure in the solid (associated with
solid volume change, as formally defined later), denoted by ps

[26–28]

pf ¼ ps (4)

2.2.2 Constitutive Framework

2.2.2.1 Mixture behavior. Following Ref. [26], and as
detailed in Refs. [23] and [24], the Helmholtz free energy of the
mixture w is decomposed into solid and fluid parts

wðE;qfþÞ ¼ wsðE;UsÞ þ wfðUfÞ (5)

where ws and wf are the free energies of the solid and the fluid
phase, respectively. Since the second Piola–Kirchhoff stress
tensor R derives from w, we have

Table 1 Characteristics of images used to personalize the
model for each subject

Subject Sex Age (y) Step Voxel size (mm) Image size (voxels)]

C1 M 72 E 0:64� 0:64� 0:70 512� 512� 455
I 0:72� 0:72� 0:70 512� 512� 455

P1 M 67 E 0:66� 0:66� 0:70 512� 512� 446
I 0:66� 0:66� 0:70 512� 512� 446

P2 M 61 E 0:69� 0:69� 0:70 512� 512� 396
I 0:69� 0:69� 0:70 512� 512� 396

P3 F 66 E 0:68� 0:68� 0:70 512� 512� 475
I 0:62� 0:62� 0:70 512� 512� 423

In the “subject” column, C and P stand for control and patient, respec-
tively. In the “sex” column, F and M stand for female and male, respec-
tively. In the “step” column, E and I stand for end-exhalation and end-
inhalation, respectively.

Fig. 1 Schematic representation of the main quantities describing the system and the
boundary conditions considered in the mechanical problem
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R ¼
@wðE; qfþÞ

@E
¼ @ws

@E
� psJC�1 (6)

where ps :¼ � @ws

@Us
represents the part of the solid hydrostatic pres-

sure associated with volume change.

2.2.2.2 Solid effective behavior. The following decomposition
of the solid free energy ws is considered as proposed in Ref. [26]:

wsðE;UsÞ ¼ W skelðEÞ þW bulkðUsÞ (7)

where W skelðEÞ is the free energy of the solid considered as a

structure and W bulkðUsÞ accounts for the compressibility of the
solid phase. We consider the following energies as proposed in
Refs. [23] and [24]:

W skel E
� � ¼ a ed J2�1�2ln Jð Þð Þ � 1

� �
þb1 I1 � 3� 2ln Jð Þð Þ þ b2 I2 � 3� 4ln Jð Þð Þ

W bulk Usð Þ ¼ j
Us

1� Uf0

� 1� ln
Us

1� Uf0

� �� � ;

8>>>>><
>>>>>:

(8)

where a; b1; b2; d; j are material parameters. j is the solid bulk
modulus, which should be taken large with respect to the shear
modulus to ensure quasi-incompressibility of the solid part. These
parameters represent the effective behavior of the solid part of the
mixture, which depends on the porosity of the mixture.

2.2.2.3 Solid rescaled behavior. In order to introduce, in the
simplest possible way, the porosity dependency into the mixture
behavior, we define the following rescaling of the effective energy
using the reference porosity:

ws ¼ ð1� Uf0Þews (9)

which leads to

W skelðEÞ ¼ ð1� Uf0Þ eW skelðEÞ

W bulkðUsÞ ¼ ð1� Uf0Þ eW bulkðUsÞ

8<
: (10)

where ews; eW skel, and eW bulk are the rescaled free energies per unit
solid mass, corresponding to the effective free energies
ws; W skel; and W bulk, respectively. The effective mechanical
parameters h and the rescaled mechanical parameters eh are then
linked by

h ¼ ð1� Uf0Þeh 8h 2 fa; b1;b2;jg (11)

The parameter d remains the same in both effective and rescaled
behaviors since it describes the nonlinear part of the energy. Never-
theless, using these rescaled potentials, the mixture can be fully het-
erogeneous (which has been shown to allow for a better fit of ex
vivo experimental measurements [33]) even with homogeneous
material parameters, as long as the porosity is heterogeneous.

2.2.2.4 Compliance measure. For the compliance analysis, we
need a quantity that is independent from the chosen constitutive
behavior, so we define the global compliance between two time
points t0 and t1 as the volume change divided by the pressure change

Ct0!t1 ¼
Vt1 � Vt0

ppl;t1 � ppl;t0

(12)

In the rest of the paper, we will denote by C the compliance
between the end-exhalation and end-inhalation states for a normal

breathing at rest, i.e., when the pleural pressure values are 0:5 kPa
and 0:8 kPa, respectively.

2.2.3 Poromechanical Formulation. As illustrated in Fig. 1,
the initial configuration corresponds to the end-exhalation config-
uration and the deformed configuration to the end-inhalation con-
figuration. Since the constitutive behavior of the solid phase is
nonlinear and the initial configuration is loaded, the unloaded con-
figuration has to be determined. Thus, the computation of breath-
ing from the initial to the deformed configuration has to be
performed in two steps:

Step 1: First, the computation of the unloaded configuration
from the initial configuration, which allows to deduce the refer-
ence porosity field and the initial stress field;
Step 2: Then, the computation of the deformed configuration
knowing the unloaded configuration.

2.2.3.1 From the end-exhalation to the unloaded configura-
tion. Step 1 is an inverse problem which is fully described in
Refs. [23] and [24]. The boundary conditions used for this step are
only the negative pleural pressure on the whole surface of the
lung. Rigid body motions are also blocked by applying the “3-2-1
method” on the three nodes defining the most orthogonal trihedron
in the mesh: the origin is blocked in all three directions, the first
node in the second and third directions, and the second node in
the third direction. The weak formulation of the problem is

Find u0;/f0ð Þ;
8u�;

ð
xe

r u0;/f0ð Þ : e u�ð Þdx ¼ �
ð

ce

ppl;e n � u�dc

8x; pf ¼ �
@W bulk

@Us

u0;/f0ð Þ

8>>><
>>>:

(13)

where a change of variable has been performed (the unknown is
the inverse displacement u0, or equivalently the inverse mapping

v�1
0

, associated with the deformation gradient f
0

:¼ r v�1
0
¼

1 þr u0 and the volume change j0 :¼ detf
0
), as originally pro-

posed in Ref. [34]. The Cauchy stress tensor is here defined as

rðu0;/f0Þ ¼ j0 f 0�1 � ðRðu0;/f0Þ � v�1
0
Þ � f 0�T , where the second

Piola–Kirchhoff stress tensor is given by Rðu0;/f0Þ ¼
@W skel

@E ðu0;/f0Þ � psðu0;/f0ÞJ0C0�1 with psðu0;/f0Þ ¼ � @W bulk

@Us

ðu0;/f0Þ.
2.2.3.2 From the unloaded to the end-inhalation configura-

tion. The boundary conditions in Step 2 are more complex since
breathing involves a complex environment (pleura, diaphragm,
intercostal muscle, etc.). In addition to the negative pleural pres-
sure on the whole surface of the lung, a bilateral contact between
the lung surface and the thorax surface is considered. This contact
is assumed to be frictionless and with no separation of the surfaces
in contact. The thorax displacement is also taken into account.

Under the previously mentioned hypotheses, the lung porome-
chanical behavior is described by the following system:

Find U;Ufð Þ

8U�;
ð

X0

@W skel

@E
: dU E � U�dX0 �

ð
X0

pfJC
�1

: dUE � U�dX0

¼ �
ð

C0

pplJ F�T � N0

� �
� U�dC0

8X; pf ¼ �
@W bulk

@Us

8>>>>>>>>><
>>>>>>>>>:

(14)

The first equation corresponds to the global mechanical equilib-
rium of the pulmonary mixture, i.e., Eq. (3). Note that here the
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fluid pressure pf is known, taken as zero (atmospheric pressure) in
our case.

2.2.4 Implementation. The computation of the reference con-
figuration (step 1 of the direct problem) has been implemented
using the FEniCS library [35,36]. Step 2 is computed with
ABAQUS.1 The contact is defined as a master-slave, finite sliding, and
node-to-surface. The master surface and the slave surface, i.e., the
thorax surface and the lung surface, respectively, are adjusted at the
start of the simulation to remove gaps and overlaps.

2.3 Model Personalization. Using the clinical data described
in Sec. 2.1, several components of the poromechanical model
described in Sec. 2.2 can be personalized for a given subject. We
now describe the personalization of the lung and thorax geome-
tries, the disease extent, the thorax motion, and material parame-
ters, namely, the porosity field and one regional compliance
parameter. The whole model personalization pipeline is illustrated
in Fig. 2.

2.3.1 Geometry. As described in Sec. 2.2, the proposed lung
model requires two finite element meshes: a volume mesh for the
lungs, and a surface mesh for the thorax, which is used to define
proper boundary conditions for the lungs. Patient-specific meshes
are obtained from the clinical images described in Sec. 2.1 as
follows.

2.3.1.1 Lung geometry. For each subject, the lungs are seg-
mented on the end-exhalation images (Ie), leading to a binary
mask denoted by Ml;e. This is performed using the algorithm
described in Ref. [29], which is specifically developed for the seg-
mentation of fibrotic lungs. Indeed, if in CT images healthy lungs
are easily distinguishable from their surroundings (because the
contrast in air/water content, and thus in image intensity, is high),
it is not the case for lungs with fibrotic regions, for which the
image intensity contrast with the surrounding can be very low.
One example mask is shown in Fig. 3.

Then, a finite element mesh is generated from the segmentation.
To do so, the lung surface is extracted from the lung mask using
MEVISLAB [37], and is used to generate a surface mesh and then a
volume mesh using GMSH [38,39].

2.3.1.2 Thorax geometry. For the rib cage finite element
geometry, only a surface mesh is required. For each subject, the
rib cage is manually segmented using MEVISLAB on the same end-
exhalation image Ie as the lung, leading to another binary mask
denoted by Mt;e, with special care to generate a rib cage surface
matching with the lung surface in the contact area between the rib
cage and the lung. The thorax surface is then extracted using MEVI-

SLAB, and a surface finite element mesh is generated using GMSH
[38,39].

2.3.2 Thorax Motion. In the model, the thorax surface motion
is prescribed. It can be extracted from the clinical images
described in Sec. 2.1 as follows. For each subject, a binary mask
of the thorax at end-inhalation, denoted by Mt;i, is generated fol-
lowing the same procedure as the binary mask of the thorax at
end-exhalation Mt;e. A displacement field between the two masks
is computed using the finite element motion tracking tool
described in Ref. [40], using a small hyperelastic regularization to
prevent convergence issues induced by the ill-posedness of the
shape tracking problem. This displacement field is then projected
onto the thorax surface finite element mesh.

2.3.3 Porosity Field. Porosity information can be computed
from CT images [41]. Indeed, CT measures the attenuation of X-
rays by tissue, and hence, the contrast in CT images comes from a
difference in tissue density. CT image pixels are displayed accord-
ing to the mean attenuation of the tissue volume that they repre-
sent formulated in the Hounsfield units (HU) scale. Typically,
water and air have an attenuation of 0 HU and �1000 HU,
respectively.

Considering a linear variation of porosity with HU, the local
porosity can be computed for each pixel with the following
expression:

/f xð Þ ¼
HU xð Þ � HUtissue

HUair � HUtissue

(15)

with HUtissue ¼ 0 HU considering that biological tissues are
mainly composed of water and HUair ¼ �1000 HU.

Thus, for each subject, the porosity field from the end-
exhalation image Ie is projected onto the lung finite element mesh.
For each element, the porosity is taken constant, and equal to the
mean of the pixel values for all the pixels lying inside the element.

Fig. 2 Summary of the personalization pipeline. (DIC 5 digital image correlation. HU 5 Hounsfield
units.)

1https://www.3ds.com/products-services/simulia/products/abaqus
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This projection is performed using VTK,2 as described in details
in Ref. [10]. And thanks to this heterogeneous porosity field, in
the rescaled parameters formulation, the mixture behavior is
actually fully heterogeneous even when considering homogeneous
material parameters.

2.3.4 Healthy and Diseased Regions. In the CT images, the
lung regions affected by IPF are denser and thus brighter than
healthy regions. For all patients, these fibrotic regions are man-
ually segmented in the end-exhalation image Ie using ITK-SNAP
[42], and the segmentation is validated by a radiologist. Then, this
segmentation is projected onto the lung finite element mesh. For
each element, if more than half the pixels lying inside the element
are fibrotic then the element is considered fibrotic, otherwise it is
considered healthy. Eventually, the mesh is composed of two
binary regions, i.e., the healthy and diseased regions.

2.3.5 Regional Compliance

2.3.5.1 Estimation problem general formulation. Patient-
specific mechanical parameters of the skeleton energy W skel are
estimated using the above lung poromechanical model and clini-
cal data. This inverse problem is formulated as an optimization
problem, in which the solution is the set of mechanical parameters
H minimizing a cost function f, characterizing the distance
between the model and the data. Thus, the model best fits the data
for the set of parameters H, solution of the optimization problem.
Two different cost functions are investigated, differing by the
nature of the considered data: the first one is based on displace-
ment fields that can be extracted from the images, as described in
the next paragraph, while the second one is based on the images
directly.

2.3.5.2 Lung Motion Tracking. In order to provide an image-
based estimation of the displacement field of the lungs between
end-exhalation and end-inhalation, denoted by UDIC, we employ
the finite element digital image correlation (DIC) method detailed
in Refs. [40] and [43]. However, thoracic image registration
involves several difficulties [44–46], including the very large
breathing displacements (as the lung base is pulled by the dia-
phragm by several centimeters), and the displacement discontinu-
ity at the border (as the lung is sliding against the thorax). Thus,
for each subject the lung motion tracking is performed in multiple
steps:

(1) A binary mask of the lungs at end-inhalation, denoted by
Ml;i, is generated following the same procedure as the
binary mask of the lungs at end-exhalation Ml;e.

(2) A finite element mesh is created from the binary mask at
end-exhalation Ml;e, including a layer of elements lying
outside the mask.

(3) The displacement between the masks at end-exhalation Ml;e

and end-inhalation Ml;i is computed, following [40] and
including a very small hyperelastic regularization term [47]
to prevent convergence issues induced by the ill-posedness
of the shape registration problem. It corresponds to the dis-
placement of the lung shape, and is denoted by Ushape. Dur-
ing this process, the mesh layer ensures that voxels on both
sides of the mask border are considered, so that the border
motion is well tracked.

(4) Two masked images, denoted by IMl;e and IMl;i, are com-
puted as the multiplication of the CT image Ie=i and the
binary masks Ml;e=i, so that pixels inside the lungs are tex-
tured as in the CT image and pixels outside the lungs have
zero intensity.

(5) The displacement between the masked images at end-
exhalation IMl;e and end-inhalation IMl;i is computed,
following [40] and including an equilibrium gap regulariza-
tion term [48] to impose that the tracked displacement field
be compatible with mechanical equilibrium. It corresponds
to the estimated lung displacement UDIC. For this process,
the displacement field Ushape is used as an initial guess,
making the tracking robust.

Ie=i; Ml;e=i, and IMl;e=i can be seen in Fig. 3, both for end-
exhalation and end-inhalation. The registration process is done for
each lung separately.

2.3.5.3 Cost function based on displacement fields. The first
cost function considered to estimate compliance parameters corre-
sponds to the finite element model updating (FEMU) approach
[49–51] and relies on displacement fields computed through
motion tracking. It compares the displacement field UðhÞ com-
puted with the model for a given set of parameters h with the dis-
placement field UDIC computed by image registration. It
corresponds to the following expression:

fdisp hð Þ :¼ kU hð Þ � UDICkL2

kUDICkL2

(16)

Fig. 3 Visualization of the different images used in the whole process of image registration. I are the raw
images, Ml are the binary images computed by the segmentation of lungs on I, IMl are the multiplication between
I and Ml. The first step of the image registration consists in correlating lung shape between Ml ;e and Ml ;i . Then
lung volume is correlated during the second step using IMl ;e and IMl ;e

2http://www.vtk.org
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2.3.5.4 Cost function based on images. The second consid-
ered cost function corresponds to an integrated image correlation
approach [52,53] and relies on the images themselves. It is com-
posed of two terms weighted by the factor k

fimagðhÞ :¼ fregðhÞ þ kfshapeðhÞ (17)

where

freg hð Þ :¼
kMl;eMl;i Ii � v hð Þ � Ie

� �
kL2

kMl;eMl;iIekL2

(18)

is the same energy that is minimized during image registration,
comparing image intensities, and fshapeðhÞ quantifies the similarity
between the computed and the measured end-inhalation shapes,
which is needed mainly for fibrosis cases. Indeed, as was already
mentioned, the fibrotic parts and lung surroundings have a similar
image intensity. Thus, the lung shape resulting from the estima-
tion process tends to be overinflated. The shape term is computed
using the Dice coefficient [54] between two binary images, Ml;i

coming from the lung segmentation of Ii and Ml;i;modelðhÞ masking
Ii with the deformed mesh surface computed with the model for a
given set of parameters h, and is defined as

fshape Ml;i;Ml;i;model hð Þ
� �

:¼ 2TP

2TPþ FPþ FN
(19)

where TP, FP, and FN are the true positives, the false positives,
and the false negatives, respectively. In the image registration term
freg, the use of the factor Ml;eMl;i implies that only the pixels corre-
sponding to the lung area are taken into account, which makes freg

independent from the surrounding area of the image. Computing
the cost function fimag using unmasked or masked images will then
lead to the same value. The choice of the weight factor k is made in
such a way as to balance the variation of each term of fimag.

2.3.5.5 Estimated Parameters. Either the effective parameters

fa;b1;b2; dg or the rescaled parameters fea; eb1;
eb2; dg can be esti-

mated: the estimation of the rescaled parameters requires a poros-
ity field Uf0 contrary to the estimation of the effective parameters.
However, the estimation of four parameters with such data
(images at only two different time steps, with essentially a surface
pressure loading) is highly ill-posed. Consequently, only the main

stiffness parameters, eH ¼ feag or H ¼ fag, are estimated and the
others are set. The parameters are taken homogeneous by regions,
which are defined as sets of elements. In this study, the lung is
considered as composed of either one or two regions, typically to
represent healthy and fibrotic tissues, but there is no restriction to
consider more than two regions.

2.3.5.6 Implementation. The optimization process is solved
using the stochastic derivative-free numerical optimization

algorithm CMA-ES [55,56], which evaluates the direct problem
several times with different sets of parameters. For each evalua-
tion of the direct problem, a set of parameters is considered and
both steps described in Sec. 2.2 are computed, i.e., the computa-
tion of the unloaded configuration and the computation of the
deformed configuration. At each iteration, the evaluations of the
cost function are performed in parallel.

2.4 Synthetic Data. In order to validate the mechanical
parameters estimation, which corresponds to the material part of
the model personalization, we generate synthetic data for both model
parametrizations (i.e., effective and rescaled parameters) and both
cost functions (i.e., displacement-based and image-based). These
synthetic data are based on the model of subject P1. All ingredients
of the model are fixed: the lung and thorax geometries, the partition
into healthy and diseased regions, the material parameters and the
porosity, the thorax displacement, and the pleural pressure.

2.4.1 Synthetic Displacements. First, a synthetic displacement
field, denoted by UDIC;synth, is generated by simply running the
model. It will be used as synthetic data for the validation of the
displacement-based fdisp cost function.

2.4.2 Synthetic Images. Then, using the same simulation, two
synthetic images are generated: an initial image Ie;synth and a
deformed image Ii;synth, corresponding to the end-exhalation and
the end-inhalation configurations, respectively. They will be used
as synthetic data for the validation of the image-based fimag cost
function. The intensity field of Ie;synth is defined as

Ie;synth xð Þ ¼
0 if x 62 X				 sin

px0

s

				
				 sin

px1

s

				
				 sin

px2

s

				 if x 2 X

8><
>: (20)

with x0, x1, x2 the three spatial coordinates of x and s ¼ 1=3 cm
the tagging period. This is the simplest model of tagged magnetic
resonance imaging, which we use here for its good tracking prop-
erties [57]. Such an intensity field means that the image is textured
only in the lung volume. The intensity field of Ii;synth is defined as

Ii;synthðxÞ ¼ Ie;synthðvsynth
ðxÞÞ (21)

where v
synth

is the transformation associated with the synthetic
displacements UDIC;synth.

3 Results

In this section, we present results based on both synthetic and
clinical data. All the simulations are performed under the free
breathing assumption (pf ¼ 0) since all subjects studied were
breathing freely. Unless specific values are mentioned in the fol-
lowing paragraphs, the model parameters used in the simulations
are presented in Table 2.

Table 2 Model parameters used in simulations, with either the effective parameters or the rescaled parameters

Simulations with effective parameters Simulations with rescaled parameters

Material b1 (kPa) 0.1 —

b2 (kPa) 0.2 —eb1 (kPa) — 0.2eb2 (kPa) — 0.4

d (–) 0.5 0.5

Loading pf (kPa) 0.00
ppl;e (kPa) �0.50
ppl;i (kPa) �1.85

The parameters are the effective parameters h ¼ fb1;b2; dg of the solid free energy ws, or the rescaled parameters eh ¼ feb1;
eb2; dg of the

solid free energy ews, as well as the fluid pressure pf (which is zero according to the free breathing assumption), the end-exhalation pleural
pressure ppl;e, the end-inhalation pleural pressure ppl;i.
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3.1 Verification and Analysis Based on Synthetic Data.
This section focuses on results with synthetic data, as described in
Sec. 2.4. The personalized model of the subject P1 is used (geom-
etry, boundary conditions, and porosity). However, the data used
in the estimation pipeline, either lung displacements or images, is
synthetic.

3.1.1 Regional Compliances Identifiability. We first validate
the estimation process with synthetic data for which exact mate-
rial parameters are known. Such synthetic data are generated as
described in Sec. 2.4: parameters are set, then the resulting dis-
placement field is computed through the direct problem (data used
with the displacement-based cost function fdisp) and an initial
image is generated and deformed based on this displacement field
to generate the deformed image (data used with the image-based
cost function fimag). More specifically, the model components of
the subject P1 are used: lung and thorax geometries, thorax dis-
placement, porosity field, and disease segmentation. Two datasets
are generated, with effective and rescaled parameters, respec-
tively. The model parameters concerning the pressure loading or
the fixed material parameters are those presented in Table 2. The
parameters that were used to generate the synthetic data and that
are estimated are reported as Hsynth in Table 3.

The validation is performed for both cost functions,
displacement-based and image-based, as well as for both types of
parameters, effective and rescaled. The results are presented in
Table 3. Among all the cases, the error in the parameter value is at
most 1%. The synthetic parameters are then well estimated using
the CMA-ES algorithm, for both cost functions and both types of
parameters.

3.1.2 Pleural Pressure Approximation. The patient-specific
pleural pressure is not measured in our study. As a consequence, a
generic inhalation pressure of �1:85 kPa � �18:6 cmH2O, cho-
sen in the physiological range, is used for all patients and the
results of the parameter estimation are relative to this value. This
is why the impact of the pleural pressure uncertainty on the com-
pliance is investigated in this section. To that purpose, we
consider the same synthetic data as in Sec. 3.1.1 for which
the end-inhalation pleural pressure ppl;i;synth is known
(ppl;i;synth ¼ �1:85 kPa � �18:6 cmH2O). Then, we estimate the
material parameters using this data and a model where the only
change is the end-inhalation pleural pressure ppl;i, which is differ-
ent from ppl;i;synth. The four cases considered have the
following values for the end-inhalation pleural pressure:
ppl;i ¼ k ppl;i;synth with k 2 f0:8; 0:9; 1:1; 1:2g. The material param-
eters are estimated with the displacement-based cost function fdisp

for both effective and rescaled parameters.
The results of the four cases studied are presented in Fig. 4. The

regional pressure–volume curves for each pressure value are

shown in the left plots; in the right plots, the regional compliance
error as well as the compliance ratio (diseased compliance over
healthy compliance) error are plotted as a function of k, for each
type of parameter.

The compliance is underestimated when the pressure is overes-
timated (which is consistent with the fact that we consider a
higher pressure for the same deformation), and vice versa, for
both effective and rescaled parameters. Moreover, the compliance
error is larger in the diseased region (which is stiffer) than in the
healthy region (which is less stiff). However, the compliance error
is reduced when considering rescaled parameters compared to
effective parameters.

The compliance ratio is also impacted by the pressure in the
model, for both effective and rescaled parameters. Indeed, we see
an underestimation of the compliance ratio when the pressure is
itself underestimated, and vice versa. However, the error on the
compliance ratio is reduced compared to the error on the compli-
ances themselves.

3.1.3 Effective Versus Rescaled Potentials. In order to inves-
tigate the error induced by the use of effective potentials, which
basically neglect the porosity variations within the lung regions,
we use the synthetic data generated with rescaled potentials
(which thus take into account the local porosities of the lung), and
estimate effective parameters using the displacement-based cost
function fdisp. The resulting optimized cost function is 3.75%,
which is rather small compared to the errors obtained with in vivo
data (17–23%, see Sec. 3.2). This result reflects that the porosity
is quite homogeneous in each region, and that the porosity hetero-
geneity, mainly located at the interface between regions, does not
impact the compliance estimation results significantly.

3.2 Validation and Analysis Based on Clinical Data. This
section presents results with clinical data from one control and
three diseased subjects, as described in Sec. 2.1.

3.2.1 Effective Versus Rescaled Potentials. We start by com-
paring the results obtained with effective and rescaled parameters.
Both computations are performed for each subject and each cost
function. Since there is no ground truth associated with this data,
we compare the optimized cost function value, i.e., the fit between
the estimated model and the data. The normalized difference
between the optimal cost function value using rescaled parameters
compared to the optimal cost function value using effective
parameters is presented in Table 4.

For subjects C1 and P1, using rescaled parameters (thus taking
into account local variations of porosity within lung regions) allows
the optimized model to better fit the data, using both displacement-
based and image-based cost functions. For subjects P2 and P3, it is
the opposite: effective parameters allow for a better fit.

3.2.2 Displacement Versus Image CRITERIA. Another ques-
tion raised in this work is the comparison between displacement-
based and image-based criteria. Thus, for each subject and each
type of parameters (effective versus rescaled), we now compare
the compliance estimated from displacement data and the compli-
ance estimated from image data. For the patients, we estimated
both the global compliance (i.e., one zone) and the regional com-
pliances (i.e., two zones, healthy versus diseased).

The results are represented in a Bland–Altman plot, shown in
Fig. 5. The difference between compliances estimated based on both
criteria is plotted as a function of the mean compliance. The bias in
the difference between compliances is 0.0460.21 L/kPa, which
means that in average the image-based criterion fimag gives a slightly
higher compliance than the displacement criterion fdisp. However, the
bias is small compared to other error sources, and can be neglected.
Consequently, both criteria can be considered to be equivalent.

3.2.3 Physiological Versus Arbitrary Disease Segmentation.
We now investigate the impact of disease segmentation on the
model-data fit. To do so, we define arbitrary disease

Table 3 Synthetic validation of the estimation process with
both criteria (displacement-based fdisp and image-based fimag)
and both effective and rescaled parameters

fdisp fimag

Hsynth Hestim Error (%) Hestim Error (%)

Effective ah 0.052 0.0520 3:7� 10�4 0.0520 �1:2� 10�2

a1 0.052 0.0520 0.0520
ad 0.67 0.6700 �1:5� 10�5 0.6702 2:7� 10�2

Rescaled eah 0.09 0.0910 1.1 0.0910 1.1ead 0.62 0.6200 3:9� 10�3 0.6200 2:3� 10�4

ah and eah are the effective and rescaled parameters of the healthy region,
respectively, whereas ad and ead characterize the diseased region. Hsynth

are the parameters chosen to create the synthetic data as explained in Sec.
2.4. Hestim are the estimated parameters, resulting from the optimization
algorithm explained in Sec. 2.3.5. The error between the synthetic parame-
ters and the estimated parameters is computed as ðHestim �HsynthÞ=Hsynth.
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segmentations and compare the associated estimations to the esti-
mation based on the physiological disease segmentation. We per-
form this study based on the data from subject P1 only. Twenty-
six different lung divisions are defined. In all cases, the organ is
divided into two parts by a plane defined by its normal and its
position along the normal. We consider 13 normals corresponding
to the edges and diagonals of a cube to define each plane. For
each normal, we consider two divisions, by putting the diseased
region on one side or the other, while maintaining the exact dis-
ease volume ratio, which is 31% for subject P1. For each division,
the estimation of the material parameters is performed using the
displacement-based criterion fdisp and the rescaled parameters
only.

The results are presented in Fig. 6, as a box plot showing the
distribution of the optimized values of the cost function. The

two-region model is better in all the cases than the one-region
model. This is expected, since the number of optimization param-
eters is higher. Out of 26 models based on arbitrary disease seg-
mentations, 22 (i.e., 85%) lead to a larger optimal cost function,

Fig. 4 Impact of the nonpatient-specific pressure applied in the model on the estimated compliance and com-
pliance ratio (diseased compliance over healthy compliance), using both effective parameters (a) and rescaled
parameters (b). k is the ratio between the pressure used in the estimation and the pressure used to generate the
synthetic data. For both types of parameters: (left) Visualization of pressure–volume curves for each pressure
case (colored lines), compared to the pressure–volume curves obtained with the pressure used to create the
synthetic data (black line); (right) Compliance error for each region as a function of the value of the pressure
applied in the model, as well as the compliance ratio (Ch/Cd) error: (a) with effective parameters and (b) with
rescaled parameters. (Color version online.)

Table 4 Evaluation of the use of rescaled parameters com-
pared to effective parameters

fdisp fimag

C1 –0.46% –2.30%
P1 –2.77% –0.46%
P2 þ 9.45% þ 6.24%
P3 þ13.09% þ9.32%

The values, expressed in %, are computed as ðf ðeHestimÞ�
f ðHestimÞÞ=f ðHestimÞ. They are presented for both criteria, fdisp and fimag.

Fig. 5 Bland–Altman plot to compare the image and displace-
ment criteria. The quantities used for the comparison are the
compliances computed by both criteria. CDIC and Cim are
the compliances estimated with the displacement criterion and
the image criterion, respectively.
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i.e., a worst model-data fit, compared to the model based on physi-
ological disease segmentation.

In order to further analyze these statistical results, a Shapiro-
Wilk test is first performed to determine whether the distribution
is normally distributed. The p-value is 0.13%, which is not enough
to accept the hypothesis of a normal distribution. Thus, a nonpara-
metric Mann–Whitney U test is performed to evaluate if the opti-
mized cost function of the two-region model based on the disease
segmentation is smaller than the optimized cost function of a two-
region model based on random segmentation. The resulting p-
value is 13.7%, which is rather small, but not small enough to
conclude with certainty. However, to put this value into perspec-
tive, we also tested that the optimized cost function of a random
two-region model is smaller than the optimized cost functions of a
one-region model, which is indeed certain since the parameter
space of the one-region model is contained into the parameter
space of the two-region model, and found a p-value of 5.4%. This
suggests that more data is required to conclude with certainty.
Nevertheless, we conclude from this analysis that the two-region
model based on physiological disease segmentation almost cer-
tainly better fits the data than a two-region model with arbitrary
disease segmentation.

3.3 Clinically Relevant Analysis. The results in this Section
are obtained with the image criterion fimag, since we justified pre-
viously that both criteria give statistically equivalent results.

3.3.1 Regional Compliances. The global pulmonary compli-
ance is a common biomarker for clinicians to study the impact of
pulmonary fibrosis on the lungs. With our model, the regional
compliance can be also estimated, which gives information not
accessible with direct measurements. The compliances, global and
regional, are shown for each subject in Fig. 7. Note that complian-
ces cannot be directly compared between subjects since the value
is relative to the pleural pressure value used in this work, which is
not patient-specific.

The results of the subject P2 are different from those of subjects
P1 and P3. A very likely explanation for this lies in the very dif-
ferent amount of breathing, since the volume variation between
end-exhalation and end-inhalation is only 14%, whereas it is
between 80 and 90% for the other subjects. In what follows, we
thus consider only subjects C1, P1, and P3.

For both patients P1 and P3, the global compliance is between
healthy and diseased compliances, which can be easily understood
since the global compliance aggregates the contributions of both

regions. Moreover, the healthy region is more compliant than the
diseased region, which is consistent with the current knowledge of
pulmonary fibrosis [6,58].

For subjects C1, P1, and P3, effective compliance is smaller
than rescaled compliance, which is expected since it is directly
impacted by the porosity. More importantly, for patients P1 and
P3, the ratio between healthy and diseased compliances is larger
for effective parameters compared to rescaled parameters. This is
also a consequence of the fact that rescaled parameters are less
dependent on the porosity.

3.3.2 Stress Distribution. It is assumed that mechanics plays a
major role in the pulmonary fibrosis evolution. Indeed, the
assumption of a mechanical vicious circle in place for this disease
has been formulated: fibrosis leads to stiffer tissue and increased
stresses, which activates the production of collagen fibers by fibro-
blasts and induces still more fibrosis [5,8,59,60]. Our model
allows to investigate the impact of the disease on the stress field,
as shown for patient P1 in Fig. 8. It can be observed that the stress
field is largely heterogeneous close to the interface between the
two regions, i.e., the healthy and the diseased regions. In some
interfacial areas, the stress is up to twice as large as further away
from the interface. This stress concentration seems to support the
mechanical vicious circle assumption, although a more quantita-
tive analysis, with more data, would be necessary to conclude
with certainty.

4 Discussion

In this paper, we introduced a personalization procedure for a
recent pulmonary poromechanical model, which relies exclusively
on routine clinical data, namely, thoracic 3D CT images. In partic-
ular, during the model personalization, patient-specific regional
mechanical parameters are estimated, which cannot be measured
noninvasively in vivo. To demonstrate its applicability and inves-
tigate its performance, the model personalization has been applied
to one control and three diseased patients datasets. We now dis-
cuss several aspects of the personalization procedure, including
current limitations and potential improvements.

4.1 Quasi-Static Assumption. Since only two images are
acquired in routine clinical practice, we used a quasi-static lung
model, assuming the two images correspond to static equilibrium.
This could be revisited with the advancement of dynamic thoracic
magnetic resonance [61] or CT imaging. Our model would then
need to be updated to account for inertia and viscosity [62,63].
Furthermore, going from static to dynamic imaging would remove

Fig. 6 Box plot representing the value of fdisp(eHestim) for the 26
cases of divisions into two regions. The box extends from the
lower to upper quartile values. The horizontal black line is the
median, whereas the triangle is the mean. The lower and upper
whiskers extend to Q121:5(Q32Q1) and Q311:5(Q32Q1),
respectively, with Q1 and Q3 the lower and upper quartiles,
respectively. The box plot can be compared to the value of
fdisp(Hestim) in the case of the use of one region (blue line) and
the case where the two regions come from the disease segmen-
tation (orange line). (Color version online.)

Fig. 7 Effective and rescaled compliances estimated for each
subject. For each case, the global compliance, in black, is esti-
mated with a one-region model, whereas the compliance of
both healthy and diseased regions, in blue and orange, respec-
tively, are estimated with a two-region model. For the control
case C1, only the global compliance is estimated. Two types of
compliance are estimated: (left) the effective compliance, and
(right) the rescaled compliance. (Color version online.)
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any potential stress relaxation effect associated with breath-
holding.

4.2 Two-Phase Mixture Assumption. The model currently
only considers a two-phase mixture (solidþ air), and does not rep-
resent explicitly structural components such as fissures, airway
structures, etc. They are, however, implicitly taken into account
through the heterogeneous porosity field extracted from the
images and projected onto the mesh, although the underlying
assumption is that the stiffness of the solid part of the mixture is
homogeneous within one region of the mesh. Nevertheless, the
impact of adding an explicit representation of the fissures or the
airway tree [64], with a specific constitutive law, on the model
personalization should be investigated.

4.3 Pleural Pressure. As discussed in Sec. 3.1.2, the results
presented in this paper are relative to the pleural pressure applied
at end-exhalation and end-inhalation, since no patient-specific
pressure is available. Consequently, the estimated compliances
are relative to that pressure. Measuring the patient-specific pres-
sure would allow to compute the absolute compliance and to
make comparisons between subjects. Such data could be acquired
using an esophageal balloon to measure the esophageal pressure,
considered as very close to the pleural pressure [65–67], under the
scanner. However, this measurement is not part of the clinical rou-
tine for patients suffering from pulmonary fibrosis. Alternatively,
in future studies we could prescribe the compliance in the healthy
region and estimate the pleural pressure together with the compli-
ance of the fibrotic region.

4.4 Effective Versus Rescaled Potentials. The choice of
using poromechanics was made notably to take into account the
porosity of the lungs. However, as seen in Sec. 3.1.3, the use of
effective potentials, which do not explicitly take into account
porosity variations and are thus equivalent to a simple hyperelas-
tic model, still displays a good performance. Moreover, as seen in
Sec. 3.2.1, if for subjects C1 and P1 the model based on rescaled
potentials better fits the data than the model based on effective
potentials, it is not the case for subjects P2 and P3. One possible

explanation is that for subjects C1 and P1, the porosity variations
are rather smooth and induce strain variations that can be well rep-
resented by the finite element mesh, in the tracking and in the
model; in this case, taking into account the local variations of
porosity allows the model to better fit the data. Conversely, for
subjects P2 and P3, the fibrotic regions are more patchy, such that
the porosity variations, and thus the strain variations, are sharper
and cannot be well represented over the finite element mesh; in
this case the cost function is biased, which affects the estimation.
A thorough analysis of the impact of mesh size, for both the track-
ing and the model itself, will be conducted in a subsequent study.

Nevertheless, even with the current modeling and personaliza-
tion approach, the use of poromechanics has several advantages
compared to standard hyperelasticity. First, as illustrated in Refs.
[23] and [24], it allows to study various breathing regimes, includ-
ing ventilated breathing. Moreover, it brings useful information
about the material properties and stress state of the solid constitu-
ent, which cannot be measured in vivo. Furthermore, it allows to
introduce the effect of porosity onto the mixture behavior, which
we did here in the simplest possible way with the rescaled param-
eters. Such a model could also be used to study the impact of
porosity or of porosity gradient in the lungs.

4.5 Displacement Versus Image Criteria. Two criteria have
been investigated: one using a displacement field, like in FEMU
approaches, and one using images directly, as an integrated image
correlation approach. The displacement criterion is easier to
understand since the result can be expressed in terms of a length,
the RMSE error. For example, the RMSE errors for the cases P1
and P3 are 4.9 mm and 11.4 mm, respectively. It allows to quan-
tify the accuracy of the method in a meaningful way, especially
for clinicians. However, the use of the displacement method
requires to perform image registration between both images,
which introduces another source of error. On the other hand, the
image criterion includes the same term of similarity between
images than in image registration and allows to perform in one
step what is done in two steps with the displacement criterion.
Nevertheless, the optimized value of this criterion is less meaning-
ful. Moreover, because of the current choice for the shape

Fig. 8 Comparison of the mixture hydrostatic pressure (i.e., trace of Cauchy stress tensor)
and the disease segmentation in the same slice. (left) Visualization of the mixture hydrostatic
pressure in a sagittal slice of the lung. (right) Visualization of the segmentation of the fibro-
sis. The fibrotic region is in red, whereas the healthy region is in blue. (Color version online.)
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registration term, this criterion is not differentiable, which restricts
its use in other minimization tools.

4.6 Disease Segmentation. An important clinical outcome of
our proposed modeling and personalization pipeline is the estima-
tion of regional compliances, in the healthy and diseased regions
of the lungs. We have shown that a two-region model is more
accurate with respect to the data than a one-region model, since
more optimization degrees-of-freedom are present in a two-region
model. Based on our study, in most cases the definition of two
regions matching with the disease segmentation also brings better
results than the definition of two random regions, which is a prom-
ising result. However, more data is needed to further substantiate
this finding.

4.7 Regional Homogeneity. We assumed homogeneous
material properties in each region. Note however that, as already
mentioned in Sec. 2.2.2, in the case of rescaled potentials the
actual behavior is heterogeneous due to the porosity field
extracted from the images. Nevertheless, this assumption could be
further studied by defining several regions for the control subject
or by defining several healthy and diseased regions for the
patients. Then, the variability of estimated material parameters
in each region would give information about the lung
inhomogeneity.

4.8 Parameter Optimization. If inverse problems are gener-
ally ill-posed, the one formulated in the proposed personalization
procedure has relatively few parameters (one for controls, two for
patients) and relatively large data (the full displacement field or
image) so that parameter convergence was always smooth and
fast. Nevertheless, a fully quantitative analysis of parameter iden-
tifiability would help to gain confidence in the personalization
procedure.

4.9 Clinical Implications. The results obtained in this work
are consistent with the current knowledge of the disease. Indeed,
the effective global compliance of the control subject C1 is
1.75 L/kPa, whereas Ref. [68] showed that the global compliance
of one lung is 1.6760.55 L/kPa. The result has an adequate value,
even though it is relative to the nonpatient-specific pressure of the
model. Then, the personalization for the diseased subjects led to a
stiffer diseased region than the healthy region, which is consistent

with the literature [5,69–71]. More precisely, when considering
rescaled parameters, we obtained that the solid tissue in the dis-
eased region is stiffer than in the healthy region, which is an infor-
mation difficult to measure experimentally. The personalization
pipeline allows then to quantify the stiffening of the organ with
the pulmonary fibrosis.

When applied with more patients, stiffening quantification
obtained from the personalized model can be studied in relation to
other clinical quantities in order to investigate any correlation. In
particular, stiffening could be linked to the disease severity, either
determined by the volume of the diseased region or diffusing
capacity of the lung for carbon monoxide, or the disease decline
at 6- or 12-months.

The finding of a stress concentration at the border of the fibrotic
region is also a result of major clinical interest. It is a first step
toward the confirmation of the hypothesis of the mechanical
vicious circle which would govern pulmonary fibrosis. The valida-
tion of this phenomenon on more cases would help to better
understand and then predict the disease progress.

Some limitations appeared with the patient P2. The diseased
region for this patient appeared to have a similar or higher compli-
ance than that of the healthy region, which seems inconsistent
with what is known on pulmonary fibrosis. One hypothesis would
be that it corresponds to some specific characteristics of the dis-
ease. After further investigations, it is more likely that the cause
comes from the data itself. Indeed, the image registration does not
show smaller deformation in the diseased region. The diseased
region is also quite small (about 7% of the total volume), very dis-
continuous, and not significantly thick compared to the element
size, as can be seen in Fig. 9. A finer mesh might be required to
analyze patients with such disease patterns.

4.10 Experimental Validation. In order to fully validate the
compliances estimated from the images using our personalized
modeling procedure, more controlled experiments should be used.
Ex vivo experimental procedures including rich instrumentations
have recently been developed for lung tissue [33,72]. They could
be used in conjunction with in vivo imaging.

5 Conclusion

We presented a poromechanical model of the lung, which is
personalized to patients using routine clinical images. Applied on
one control and three diseased subjects suffering from idiopathic

Fig. 9 Details about the patient P2 to understand the related results. (a) Distribution of the
local variation of volume J for each region. In the healthy region, Jhealthy 5 1:13 6 0:15, whereas
in the diseased region, Jdiseased 5 1:32 6 0:42. (b) Visualization of the regions in a plane: the blue
part is the healthy region, whereas the red part is the diseased region. (Color version online.)
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pulmonary fibrosis, it allows in particular to quantify the regional
pulmonary compliance. The results are consistent with the knowl-
edge of the disease, especially as regards the stiffening of the
fibrotic regions. The estimation process brings information about
regional compliances, which are not available in vivo. This work
brings a proof of concept and still needs to be applied with more
patients before being used in clinical routine for diagnosis pur-
poses. A first step toward a better understanding of the IPF physi-
ology is also provided by the evidence of a stress concentration at
the border of the fibrotic zone, which would confirm the hypothe-
sis of the mechanical vicious circle underlying IPF progress. In
the longer term, this personalized model could be used with longi-
tudinal data to study the prognosis of the disease, as well as the
mechanical impact of drugs.
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