%% CANTILEVER BEAM MODEL : % 2 meters long 10cm x 10cm cross section area : % Two horizontal EBFE with a localized force clear all ; close all ; clc; %% INPUTS E = 200e9 ; S = 0.1*0.1 ; I = 0.1^3*0.1/12 ; F = 1000 ; %% MESH XY(1,:) = [0 0] ; XY(2,:) = [1 0] ; XY(3,:) = [2 0] ; TC(1,:) = [1 2] ; TC(2,:) = [2 3] ; DOF(1,:) = [1 2 3] ; DOF(2,:) = [4 5 6] ; DOF(3,:) = [7 8 9] ; %% FE STIFFNESS MATRICES % === FE1 FE1 FE1 FE1 FE1 === P1 = XY(1,:) ; P2 = XY(2,:) ; Le = norm(P2-P1) ; ke1 = [E*S/Le 0 0 -E*S/Le 0 0 ; ... 0 12*E*I/Le^3 6*E*I/Le^2 0 -12*E*I/Le^3 6*E*I/Le^2 ; ... 0 6*E*I/Le^2 4*E*I/Le 0 -6*E*I/Le^2 2*E*I/Le ; ... -E*S/Le 0 0 E*S/Le 0 0 ; ... 0 -12*E*I/Le^3 -6*E*I/Le^2 0 12*E*I/Le^3 -6*E*I/Le^2 ; ... 0 6*E*I/Le^2 2*E*I/Le 0 -6*E*I/Le^2 4*E*I/Le] ; % === FE2 FE2 FE2 FE2 FE2 === P2 = XY(2,:) ; P3 = XY(3,:) ; Le = norm(P3-P2) ; ke2 = [E*S/Le 0 0 -E*S/Le 0 0 ; ... 0 12*E*I/Le^3 6*E*I/Le^2 0 -12*E*I/Le^3 6*E*I/Le^2 ; ... 0 6*E*I/Le^2 4*E*I/Le 0 -6*E*I/Le^2 2*E*I/Le ; ... -E*S/Le 0 0 E*S/Le 0 0 ; ... 0 -12*E*I/Le^3 -6*E*I/Le^2 0 12*E*I/Le^3 -6*E*I/Le^2 ; ... 0 6*E*I/Le^2 2*E*I/Le 0 -6*E*I/Le^2 4*E*I/Le] ; %% FE ASSEMBLING K = zeros(numel(DOF),numel(DOF)) ; % === FE1 === numDOF = [DOF(1,:) DOF(2,:)] ; K(numDOF,numDOF) = ke1 ; % === FE2 === numDOF = [DOF(2,:) DOF(3,:)] ; K(numDOF,numDOF) = K(numDOF,numDOF) + ke2 ; %% LOADING Fext = zeros(numel(DOF),1) ; Fext(8) = 100*F ; %% BC numDOF_BC = [1 2 3] ; K(numDOF_BC,:) = [] ; K(:,numDOF_BC) = [] ; Fext(numDOF_BC) = [] ; %% Reso U = inv(K)*Fext ; U = [zeros(3,1) ; U] ; %% Plot figure(1) ; clf ; hold on ; plot(XY(:,1),XY(:,2),'-ko','LineWidth',2) ; Ux = U(1:3:end) ; Uy = U(2:3:end) ; amp =1 ; plot(XY(:,1)+amp*Ux,XY(:,2)+amp*Uy,'-ro','LineWidth',2) ; xlabel('x (m)') ylabel('y (m)') axis equal ; grid on ;