
Simple wall 
MATLAB / Octave file:  
t02SimpleWall.m 

fReadWeather.m 

fSolRadTiltSurf.m 

 
Objectives: 

• Physical analysis 
• Discrete mathematical model: DAE and state-space 
• Implement the model 
• Discuss time step, stability and precision 
• Discuss initial conditions 

 

1 Physical analysis and mathematical model 
 
Let’s consider a simple concrete wall with indoor insulation (Figure 1).  
 
Physical properties: 
Wall surface:  𝑆𝑤 = 3 m × 3 m ; 
Air volume:  𝑉𝑎 = 3 m × 3 m × 3 m 
Concrete:   𝜆1 = 2.00 W mK⁄ ;  𝜌1𝑐1 = 2.5 ∙ 106 J K m2⁄ ;  𝑤1 = 0.20 m;  
Insulation:  𝜆2 = 0.04 W mK⁄ ;  𝜌2𝑐2 = 2.0 ∙ 106 J K m2⁄ ;  𝑤2 = 0.08 m;  
A fan-coil in the indoor space. 
 

 
Figure 1 Simple wall: concrete and insulation 

 
If the length and the height of the wall are much larger than the width (i.e. about 10 
times larger), the heat transfer can be considered only in one direction (1D model).  
The heat transfer phenomena: 

• convection from wall to outdoor air, ℎ𝑜 = 10 W/m2K 
• conduction through the wall, 
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• convection from wall to indoor air, ℎ𝑖 = 4 W/m2K 
The temperature of the indoor air is considered homogenous. 
 
No other heat transfers are considered. 
 
 

2 Discrete mathematical model 
 

2.1 Choice of space and time discretization step 
For explicit Euler method, Von Neumann stability analysis for heat equation requires the 
conditions [1]: 
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with 𝑅 =
𝑤

𝜆𝑆
; 𝐶 = 𝑤𝑆𝜌𝑐 = 𝑉𝜌𝑐 = 𝑚𝑐. This is applicable for heat equation. In general, the 

stability condition for explicit Euler method requires that all eigenvalues 𝜆𝑖 ∈ 𝐙 of the 
transfer matrix satisfy the condition [2]: 
 

|1 + 𝜆𝑖 Δ𝑡| ≤ 1, ∀𝑖   (3) 

 
or, if the eigenvalues are all real (as is the case for thermal networks): 
 

 −2 ≤ 𝜆𝑖 Δ𝑡 ≤ 0, ∀𝑖   (4) 

 
Since the eigenvalues are related to the time constants: 
  

𝜆𝑖 = −
1

𝑇𝑖
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it results that the condition for stability is  
 

Δ𝑡 ≤ min 𝑇𝑖/2   (6) 

 
which is related to Shannon-Nyquist sampling theorem which requires that the 
sampling time is smaller than half of the shortest time constant. Note that if the 
discretization time step is larger than twice a time constant, that time constant can be 
neglected.  
 
 
 
 



2.2 Thermal network 
Discretization: concrete in 4 slices and insulation in 2 slices 
 

 
 

 
 

2.3 Differential-algebraic equations 

 
 

 
 
The differential-algebraic equations (DAE) model is 
 

𝐂𝛉̇ = −𝐀𝑇𝐆𝐀𝛉 + 𝐀𝑇𝐆𝐛 + 𝐟   (7) 



  
If 𝐂 is not singular, then the systems of equations may be put in the state-space 
representation 
 

𝛉̇ = 𝐀𝐒𝛉 + 𝐁𝐒𝐮 (8) 

where  
𝐀𝐒 ≡ −𝐂−1𝐀𝑇𝐆𝐀 is the transfer matrix; 
𝐁𝐒 ≡ 𝐂−1([𝐀𝑇𝐆   𝐈])   is the input matrix.  
 

2.4 State-space representation 

 
Note that the size of B is initially 7 x 14: 

• 7 lines for the number of temperatures in nodes; 
• 14 columns for the inputs: 7 temperature sources on the seven branches and 7 

heat-flow sources in the seven nodes. 
 

Since only 2 inputs are really in the model, 𝑇𝑜 (input 1) and 𝑄̇ℎ (input 14), only they will 
be kept. This is done by MATLAB/Octave line: 

 
  



 

2.5 Eigenvalues and eigenvectors 
 

 
 [Boyd, 10-expm] 

 



 
[Boyd 11-eig] 
Interpretation: an eigenvector is an initial condition for which the evolution is simple:  

  
the solution stays on the constant vector v . 
 
Two modes http://www.youtube.com/watch?v=8RV3gXm6j2I 0:00 -  
Three modes http://www.youtube.com/watch?v=jhGhSXAqXmU : 0:00 – 0:35  
 

3 Implementation 
See t02SimpleWall.m  
 

3.1 Thermal network and state-space 
Arc-node incidence matrix written as difference matrix (related to discretization) 

 
 
Change of context from thermal network to state-space (matrices A and C change their 
meaning). 

 
 

3.2 Integration by using Euler forward and backward methods 
The formulas for Euler forward (explicit) 

http://www.youtube.com/watch?v=8RV3gXm6j2I
http://www.youtube.com/watch?v=jhGhSXAqXmU


 
𝛉𝑘+1 = (𝐈 + 𝛥𝑡 𝐀)𝛉𝑘 + 𝛥𝑡 𝐁 𝐮𝑘 

 
and for Euler backward (implicit) 
 

𝛉𝑘+1 = (𝐈 + 𝛥𝑡 𝐀)−1(𝛉𝑘 + 𝛥𝑡 𝐁 𝐮𝑘) 
 
are implemented as: 

 
 
See D. Rowell (2002) for more information. 
 

4 Numerical experiments and discussions 
 

4.1 Display 
Change the display of the time-axis: 

 
and 

 
to display in seconds and in days. 
 

4.2 Stability 
The condition of stability is 

 −2 ≤ min 𝜆𝑖Δ𝑡  ≤ 0   
 

  
 
This condition is respected if the time step is 𝑑𝑡 < 1819 s; if 𝑑𝑡 > 1820 s, the system is 
numerically unstable. Compare with the results for the explicit method. 
 

Table 1 Eigenvalues and numerical stability [sort(eig(A)*dt)] 

𝜆𝑖 𝜆𝑖Δ𝑡 for 𝑑𝑡 = 1819 s 
(stable) 

𝜆𝑖Δ𝑡 for 𝑑𝑡 < 1827 s 
(instable) 

  -1.0994e-03 

  -6.6320e-04 

  -3.8761e-04 

  -2.2568e-04 

  -4.4772e-05 

  -1.7099e-05 

  -5.3887e-06 

  -1.9998011 

  -1.2063623 

  -0.7050680 

  -0.4105097 

  -0.0814404 

  -0.0311030 

  -0.0098021 

  -2.0085962 

  -1.2116679 

  -0.7081689 

  -0.4123151 

  -0.0817986 

  -0.0312398 

  -0.0098452 

 
Change the value of dt = 1827  

http://web.mit.edu/2.14/www/Handouts/StateSpaceResponse.pdf


 
Compare the results given by forward and backward Euler methods. 
 

 
Figure 2 Comparison between forward (explicit) and backward (explicit) Euler methods 
for numerical integration. 

 

4.3 Step responses 
Make the system stable, by choosing in line 55: dh 1.98 or larger. 
 
Step response for 𝑻𝒐 = 𝟏 °𝐂 
 
Find the heat flow rate in steady-state: 𝑄̇ℎ = (𝜃6 − 𝜃7)/𝑅𝑣𝑖 ≅ 0 W 

 
 
Explain the values of the temperature distribution. 
 
Step response for 𝑸̇𝒉 = 𝟏 𝐖 
Find that the final temperature is 𝜃7,𝑒𝑛𝑑 = 0.2722 °C. 
Deduce the total thermal resistance and verify that it is equal to 𝑅𝑣𝑜 + 𝑅𝑐 + 𝑅𝑖 + 𝑅𝑣𝑖 =
0.2722 °C/W. 

 
 
Explain the values of the temperature distribution. 
 
Simulation for outdoor temperature 
Discuss the evolution of indoor temperature for the two numerical integration methods 
(Euler explicit and implicit). 
 
Compare the mean outdoor temperature with the mean indoor temperature.  
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