

Lecture 3: Radiation

Curricula

2 x 4h Lectures

Conduction

Convection

Radiation

Coupled heat transfer

2 x 4h Tutorials and project

Model your own SmartHome

Simulate and discuss

1 x 2h Defend your project

1 x 2h Written exam

Prerequisites

Calculus

Linear algebra

Thermodynamics

Heat and mass transfer

Physical quantities

Radiation

Physical quantities

Radiation

Physical quantities

Physical quantities

Function of wavelength "spectral"

$$G_{\lambda} = \frac{dG}{d\lambda}$$

$$G = \int_0^\infty G_\lambda d\lambda$$

Function of direction

"directional"

"hemispheric"

Physical quantities

Emission

Intensity

Luminance of the viewed surface in a direction

Flux dans tout l'espace

Emissive power

total

$$\Phi[W]$$
 $M = \frac{d\Phi}{dS} \left[\frac{W}{m^2} \right]$

$$I_{\Delta} = \frac{d\Phi_{\Delta}}{d\Omega} \left[\frac{\mathbf{W}}{\mathrm{sr}} \right]$$

$$I_{\Delta} = \frac{d\Phi}{dS} \left[\frac{W}{m^2} \right] \qquad I_{\Delta} = \frac{d\Phi_{\Delta}}{d\Omega} \left[\frac{W}{sr} \right] \qquad = \frac{d^2\Phi_{\Delta}}{d\Omega dS \cos \theta} \left[\frac{W}{sr \cdot m^2} \right]$$

spectral

$$\Phi = \int_0^\infty \Phi_\lambda . d\lambda$$

$$M_{\lambda} = \frac{d\Phi_{\lambda}}{dS}$$

$$I_{\Delta\lambda} = \frac{d\Phi_{\lambda}}{d\Omega}$$

$$\Phi = \int_0^\infty \Phi_\lambda \cdot d\lambda \qquad M_\lambda = \frac{d\Phi_\lambda}{dS} \qquad I_{\Delta\lambda} = \frac{d\Phi_\lambda}{d\Omega} \qquad \qquad L_{\Delta\lambda} = \frac{d^2\Phi_\lambda}{d\Omega \cdot dS \cos \theta}$$

Energy Building Simulation slide 7

Radiation

Physical quantities

Building Simulation

Introduction **Thermal Analysis**

Conduction

Convection

Radiation

Physical quantities Radiation laws

Radiation exchange ems-recep

> view factor black

gray

Coupled Transfer

total illuminance

$$E = \frac{d\Phi}{dS} \left[\frac{W}{m^2} \right]$$

- spectral illuminance

$$E_{\lambda} = \frac{d\Phi_{\lambda}}{dS}$$

Physical quantities

Introduction Thermal Analysis

Conduction Convection

Radiation

Physical quantitie Radiation laws Radiation exchange

ems-recep view factor

Coupled Transfer

gray

• Relation emissive power - illuminance

Heat Flux directional $d^2\Phi_{Ox} = L_{Ox} \cdot dS \cos\theta \cdot d\Omega$

Hemispheric flux

$$d\Phi = L \cdot dS \int_{S} \cos \theta \cdot d\Omega$$

$$= L \cdot dS \int_C ds'$$
$$= L \cdot dS \cdot \pi$$

$$\frac{d\Phi}{dS} = L \cdot \pi$$

Relation emissive power - illuminance

$$M = \pi L$$

Energy Building Simulation slide 9

Radiation

Physical quantities

Building Simulation

Introduction **Thermal Analysis**

Conduction Convection

Radiation

Physical quantitie Radiation laws Radiation exchange

> ems-recep view factor black

gray

Coupled Transfer

Relation between physical quantities: de Bouguer

$$d^{2}\Phi_{12} = L_{1} \cdot dS_{1} \cos \theta_{1} \cdot d\Omega_{1} \qquad d\Omega_{1} = \frac{dS_{2} \cos \theta_{2}}{D^{2}}$$

$$d\Omega_1 = \frac{dS_2 \cos \theta_2}{D^2}$$

 $ds = d\Omega \cdot R^2$

 $= d\Omega$

 $ds' = ds \cdot \cos \theta$

$$dE = \frac{d^2 \Phi_{12}}{dS_2} = L_1 \frac{\cos \theta_1 \cdot \cos \theta_2}{D^2} dS_1$$

Radiation laws

Radiation

Energy Building Simulation

Radiation laws

Black body:

- absorbs all incident radiation (regardless of wavelength or direction)
- emits the maximum energy for a given temperature and wavelength
- is a diffuse emitter (but in function of temperature and wavelength) according to Lambert law

$$L^0 = rac{M^0}{\pi}$$
 $L^0_\lambda = rac{M^0_\lambda}{\pi}$

Black body is:

- reference for real bodies: "yardstick" for radiation
- perfect "source" and "absorber"
- characterized by hemispheric physical quantities (noted °)

Radiation laws

Plank law

• Plank law
$$M^{\circ}_{\lambda,T} = \frac{C_1 \lambda^{-5}}{\frac{C_2}{\lambda T} - 1}$$

$$C_1 = 2\pi hc^2 = 3.74 \cdot 10^{-16} [\text{W} \cdot \text{m}^2]$$

$$C_2 = hc/k = 1.4 \cdot 10^{-2} [\text{m} \cdot \text{K}]$$

$$c \text{ speed of light}$$

$$h \text{ Plank constant}$$

$$C_1 = 2\pi hc^2 = 3,74 \cdot 10^{-16} [\text{W} \cdot \text{m}^2]$$

 $C_2 = hc/k = 1,4 \cdot 10^{-2} [\text{m} \cdot \text{K}]$

- h Plank constant
- Boltzmann constant

longwave (LW)

$$M^{\circ}_{\lambda,T} = \frac{C_1 T}{C_2 \lambda^4}$$

Energy Building Simulation slide 13

Radiation

Radiation laws

- Plank law
- 1. Emissive power varies with wavelength.
- 2. Emissive power increases with the temperature of the source for every wavelength.
- 3. Visible spectrum contains a large majority of solar radiation.

4. Effective emission band depends on source temperature: higher the temperature, higher the frequency radiation (Wien laws, separation SW / LW).

Radiation laws

Wien laws

 λ for maximum spectral power emission

$$\frac{dM_{\lambda T}^{0}}{d\lambda} = 0 \Rightarrow \lambda_{M}T = 2.897 \cdot 10^{-3} [\text{m} \cdot \text{K}]$$

2. maximum spectral power emission

$$M_{\lambda_u T}^0 = B \cdot T^5$$
; $B = 1.286 \cdot 10^5 [\text{W} \cdot \text{m}^{-3} \cdot \text{K}^{-5}]$

Stefan - Boltzmann law

$$M^{0} = \int_{0}^{\infty} M_{\lambda T}^{0} d\lambda = \sigma_{0} T^{4}$$

$$M^{0} = 5.68 \left(\frac{T}{100}\right)^{4}$$

$$\sigma_0 = 5.68 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

Energy Building Simulation slide 15

Radiation

Radiation laws

Effective emission band

Fraction of total emission in a band $F_{\lambda_1-\lambda_2} = \frac{\int_{\lambda_1}^{\lambda_2} M_{\lambda T}^0 d\lambda}{M^0}$

Effective spectral band

 $F_{0.5\lambda-5\lambda} = 0.956$

solar emission: 50% visible, 40% IR, 8% UV^{*}

SW and LW radiation

ems-recep
view factor
black
gray

Coupled Transfer

Emissive power of black body

Temperature		Emissive power	Max. wavelength	Spectral band
Absolue, T	Celsius, θ	M^{0}	$\lambda_{\scriptscriptstyle M}$	$0.5\lambda_{\scriptscriptstyle M} - 5\lambda_{\scriptscriptstyle M}$
[K]	[°C]	$[W/cm^2]$	[<i>μ</i> m]	$[\mu \mathrm{m}]$
300	27	0.05	9.6	4.8 - 41
500	227	0.36	5.7	3.0 - 25
750	477	1.80	3.8	2.0 - 16
1000	727	5.70	2.9	1.5 - 12
1200	927	11.82	2.4	1.2 - 11
1500	1227	28.90	1.9	1.0 - 8
2000	1727	91.00	1.4	0.7 - 6
3000	2727	462.00	0.96	0.5 - 4
5790	5517	6383.6	0.50	0.25 - 2.5

Energy Building Simulation slide 17

Radiation

Radiation laws

Building Simulation
Introduction
Thermal Analysis
Conduction
Convection
Radiation
Physical quantities
Radiation laws
Radiation exchange
ems-recep
view factor
black
gray
Coupled Transfer

Emission from real surfaces: comparison with a black body for the same temperature and wavelength = emissivity

Radiation laws

Emissivity

spectral, hemispherical

$$\varepsilon_{\lambda} = \frac{M_{\lambda}}{M_{\lambda}^{0}}$$

spectral, directional

$$\varepsilon_{Ox,\lambda} = \frac{L_{Ox,\lambda}}{L_{\lambda}^{0}} = \frac{L_{Ox,\lambda}}{M_{\lambda}^{0}/\pi}$$

Energy Building Simulation slide 19

Radiation

Radiation laws

Building Simulation

Introduction
Thermal Analysis

Conduction

Convection Radiation

Physical quantities

Radiation laws

Radiation exchange

ems-recep

view factor

black gray

Coupled Transfer

Emissivity: particular cases

Gray body

peinture noire crown

- Diffuse (isotropic) emission
- Gray and diffuse

 $\mathcal{E}_{Ox,\lambda} \to \mathcal{E}_{Ox}$; $\mathcal{E}_{\lambda} \to \mathcal{E}$

$$\mathcal{E}_{Ox,\lambda} \to \mathcal{E}_{\lambda}; \ \mathcal{E}_{Ox} \to \mathcal{E}$$

$$\varepsilon_{Ox,\lambda} \to \varepsilon$$

Inconel oxydé

Example of emissivity

Radiation laws

Radiation reception

 $\alpha + \tau + \rho = 1$

— Peinture blanche automobile — Peinture blanche 9010

Energy Building Simulation slide 21

Radiation

Radiation laws

Building Simulation

Introduction **Thermal Analysis**

Conduction

Convection Radiation

Physical quantities

Radiation laws Radiation exchange

> view factor black

> > gray

ems-recep

Coupled Transfer

Kirchhoff law: relation emissivity and absorptivity

$$\varepsilon_{Ox,\lambda} = \alpha_{Ox,\lambda}$$

emission:

$$\left(d^2\Phi_{Ox,\lambda}\right)_e = \varepsilon_{Ox,\lambda} L_{\lambda}^0 dS \cos\theta d\Omega$$

absorption:

$$\left(d^2\Phi_{Ox,\lambda}\right)_a = \alpha_{Ox,\lambda} L_{\lambda}^0 dS \cos\theta d\Omega$$

Energy Building Simulation

Radiation laws

Kirchhoff law

 $^{-}$ $\varepsilon_{\scriptscriptstyle Ox,\lambda}$ = $\alpha_{\scriptscriptstyle Ox,\lambda}$

diffuse emission

 $\varepsilon_{\lambda} = \alpha_{\lambda}$

in general

 $\varepsilon \neq \alpha$

 $\varepsilon(T) = \frac{M(T)}{M^{0}(T)} = \frac{\int_{0}^{\infty} \varepsilon_{\lambda} M_{\lambda}^{0}(T) d\lambda}{\int_{0}^{\infty} M_{\lambda}^{0}(T) d\lambda} = \frac{\int_{0}^{\infty} \varepsilon_{\lambda} M_{\lambda}^{0}(T) d\lambda}{\sigma T^{4}}$ (own temp.)

 $\alpha = \frac{\varphi_a}{E} = \frac{\int_0^\infty \alpha_\lambda E_\lambda d\lambda}{\int_0^\infty E_\lambda d\lambda}$ (depends on received radiation)

- exceptions
 - gray bodies $\varepsilon = \alpha$
 - black body $\varepsilon = \alpha = 1$

Energy Building Simulation slide 23

Coupled Transfer

Radiation

Radiation laws

• Practical consequences: radiative heating

Radiation in different spectral bands $F_{0.5\lambda-5\lambda} = 0.956$

Radiation laws

Building Simulation

Introduction Thermal Analysis

Conduction

Convection Radiation

Physical quantities Radiation laws

Radiation exchange ems-recep view factor

gray

Coupled Transfer

Practical consequences: radiative heating

for every surface, ε corresponding to a spectral band

$$\varepsilon_{20^{\circ}C} = \frac{1}{50 - 5} \int_{5}^{50} \varepsilon_{\lambda} \cdot d\lambda = 0.9$$

$$\varepsilon_{20^{\circ}C} = \frac{1}{50 - 5} \int_{5}^{50} \varepsilon_{\lambda} \cdot d\lambda = 0.9$$
 $\varepsilon_{1000^{\circ}C} = \frac{1}{5 - 1.25} \int_{1.25}^{5} \varepsilon_{\lambda} \cdot d\lambda = 0.43$

	5790 <i>K</i>	300 <i>K</i>	
Matériau	a	ε	
Carton goudronné noir	0,82	0,91	
Brique rouge	0,75	0,93	
Blanc de zinc	0,22	0,92	
Neige propre	0,200,35	0,95	
Chrome poli	0,40	0,07	
Or poli	0,29	0,026	
cuivre poli	0,18	0,03	
cuivre, oxydé	0,70	0,45	

Energy Building Simulation slide 25

Radiation

Radiation laws

Building Simulation

Introduction **Thermal Analysis**

Conduction Convection

Radiation

Physical quantities Radiation laws

Radiation exchange ems-recep

> view factor black

gray

Coupled Transfer

Practical consequences: radiative heating

$$P_a = \varepsilon_{1000^{\circ}C} M^0 = 0.43 \sigma (1273)^4 = 6.7 \cdot 10^4 \text{ W/m}^2$$

$$P_e = \varepsilon_{20^{\circ}C} M^0 = 0.9 \sigma (293)^4 = 3.76 \cdot 10^2 \text{ W/m}^2$$

 $P_a > P_e \implies \text{body is heating}$

Temperature

- source of radiation
- own

Radiation laws

Practical consequences: greenhouse effect

CLO $(0.25 \le \lambda \le 2.5 \,\mu\text{m})$, $T = 5780 \,\text{K} \,(\lambda_M = 0.5 \,\mu\text{m})$

T GLO(3 ≤ λ ≤ 30 µm),T = 450 K (λ_M = 6.1 µm)

GLO $(5 \le \lambda \le 50 \,\mu\text{m}), T = 300 \,\text{K} (\lambda_M = 9.8 \,\mu\text{m})$

Bilan sur la vitre

$$2\varepsilon \cdot \sigma T_1^4 = \alpha_1 E + \alpha_2 \sigma T^4 + \alpha_3 \sigma T_a^4$$

Rayonnement absorbé:

 $\alpha_{1}E$ -solaire

 $\alpha_2 \sigma T^4$ - émis par la surface noire

 $\alpha_3 \sigma T_a^4$ -émis par l'environnement

Rayonnement émis:

 $2\varepsilon \cdot \sigma T_1^4$ - les deux surfaces de la vitre

Energy Building Simulation slide 27

Radiation

Radiation laws

Practical consequences: greenhouse effect

• GLO (3 $\leq \lambda \leq$ 30 µm), $T = 450 \text{ K} (\lambda_M = 6.1 \text{ µm})$

→ GLO (5 ≤ λ ≤ 50 µm), T = 300 K (λ_M = 9.8 µm)

Balance on black absorber

Absorbed radiation:

 $\tau_{1}E$ transmitted solar radiation through the glass

emmitted by the glass

 $\rho_2 \sigma T^4$ reflected by the glass

 $\sigma T^4 = \tau_1 E + \varepsilon \sigma T_1^4 + \rho_2 \sigma T^4$

Emmitted radiation:

 σT^4 - towards the glass

Radiation laws

Introduction
Thermal Analysis

Conduction

Convection
Radiation

Physical quantities

Radiation laws

Radiation exchange ems-recep

gray

view factor

Coupled Transfer

Practical consequences: greenhouse effect

 $2\varepsilon\sigma T_1^4 = \alpha_1 E + \alpha_2 \sigma T^4 + \alpha_3 \sigma T_a^4$

 $\sigma T^4 = \tau_1 E + \rho_2 \sigma T^4 + \varepsilon \sigma T_1^4$

 $\Rightarrow T = 460 \text{ K} = 187 \,^{\circ}\text{C}$

CLO $(0.25 \le \lambda \le 2.5 \,\mu\text{m})$, $T = 5780 \,\text{K} (\lambda_M = 0.5 \,\mu\text{m})$ GLO $(3 \le \lambda \le 30 \,\mu\text{m})$, $T = 450 \,\text{K} (\lambda_M = 6.1 \,\mu\text{m})$

- → GLO (5 ≤ λ ≤ 50 μm), T = 300 K (λ_M = 9.8 μm)

Radiative properties of glass

	Spectral band	Temperature	α	ρ	τ
1	$0.25 \le \lambda \le 2.5 \mu\text{m}$	5780 K ($\lambda = 0.5 \mu\text{m}$)	0	0.05	0.95
2	$3 \le \lambda \le 30 \mu m$	450 K ($\lambda = 6.1 \mu m$)	0.65	0.30	0.05
3	$5 \le \lambda \le 50 \mu\text{m}$	$300 \text{ K} (\lambda = 9.8 \mu\text{m})$	1.00	0	0

Energy Building Simulation slide 29

Radiation

Radiation laws

Building Simulation

Introduction

Thermal Analysis
Conduction

Convection

Radiation

Physical quantities

Radiation laws

Radiation exchange

ems-recep

black

gray

Coupled Transfer

Radiation laws

• Practical consequences: greenhouse effect

Propriétés radiatives du verre ρ Température de Bande α τ spectrale rayonnement 1 $0.25 \le \lambda \le 2.5 \,\mu\text{m}$ 0.95 5780 K ($\lambda = 0.5 \,\mu m$) 0 0.05 2 $5 \le \lambda \le 50 \ \mu m$ $300 \text{ K} (\lambda = 9.8 \, \mu\text{m})$ 1.00 0 0

Radiation exchange: emission-reception

• Bouguer relation

$$d^2\Phi_{12} = \frac{M_1^0}{\pi} \cdot dS_1 \cos \theta_1 \cdot \frac{dS_2 \cos \theta_2}{D^2}$$

Energy Building Simulation slide 31

Radiation

Radiation exchange: emission-reception

Radiation exchange: emission-reception

$$\Phi_{12} = M_1^0 \int_{S_1} \int_{S_2} \frac{dS_1 \cos \theta_1 \cdot dS_2 \cos \theta_2}{\pi \cdot D^2}$$

View factor

$$F_{12} = \frac{\Phi_{12}}{\Phi_{1}} = \frac{\Phi_{12}}{M_{1}^{0}S_{1}} = \frac{1}{\pi S_{1}} \int_{S_{1}S_{2}} \frac{dS_{1}\cos\theta_{1} \cdot dS_{2}\cos\theta_{2}}{D^{2}}$$

$$F_{21} = \frac{\Phi_{21}}{\Phi_2} = \frac{1}{\pi S_2} \int_{S_1 S_2} \frac{dS_1 \cos \theta_1 \cdot dS_2 \cos \theta_2}{D^2}$$

Energy Building Simulation slide 33

Radiation

Radiation exchange: view factors

Building Simulation

Introduction

Thermal Analysis

Conduction Convection

Radiation

Physical quantities

Radiation laws

Radiation exchange ems-recep

view fac

gray

Coupled Transfer

- Relations between view factors
 - reciprocity
 - complementarity(closed enclosure)

$$S_1 F_{12} = S_2 F_{21}$$

$$\sum_{i=1}^{n} F_{ij} = 1$$

$$\Phi_i = \sum_{j=1}^n \Phi_{ij}$$

$$\Phi_i = \sum_{i=1}^n F_{ij} \Phi_i$$

Radiation exchange: view factors

Radiation

Radiation exchange: view factors

Radiation exchange: view factors

Introduction

Thermal Analysis

Conduction

Convection

Radiation

Physical quantities

Radiation laws Radiation exchange

ems-recep

view factor

Coupled Transfer

Two small surfaces

$$d^2\Phi_{12} = L_1^0 \cdot dS_1 \cos \theta_1 \cdot d\Omega_1 = \frac{M_1^0}{\pi} \cdot dS_1 \cos \theta_1 \cdot \frac{dS_2 \cos \theta_2}{D^2}$$

$$\Phi_{12} = M_1^0 \frac{dS_1 \cos \theta_1 \cdot dS_2 \cos \theta_2}{\pi D^2}$$
 $\Phi_1 = M_1^0 \cdot dS_1$

$$\Phi_1 = M_1^0 \cdot dS_1$$

$$F_{12} \equiv \frac{\Phi_{12}}{\Phi_{1}} = \frac{\Phi_{12}}{M_{1}^{0} \cdot dS_{1}} = \frac{\cos \theta_{1} \cdot \cos \theta_{2}}{\pi D^{2}} dS_{2}$$

$$F_{21} = \frac{\cos \theta_1 \cdot \cos \theta_2}{\pi D^2} dS_1$$

$$\mathbf{F} = \begin{bmatrix} 0 & \frac{\cos\theta_1 \cdot \cos\theta_2}{\pi D^2} dS_2 \\ \frac{\cos\theta_1 \cdot \cos\theta_2}{\pi D^2} dS_1 & 0 \end{bmatrix}$$

Energy Building Simulation

Radiation

Radiation exchange: black surfaces

Building Simulation

Introduction

Thermal Analysis

Conduction Convection

Radiation

Physical quantities Radiation laws

Radiation exchange

ems-recep view factor

gray Coupled Transfer

- Net radiative heat exchange
 - exchange in a closed black enclosure

$$q_{i} \equiv \Phi_{i,net} = \Phi_{i} - \sum_{j=1}^{n} \Phi_{ji} = \Phi_{i} - \sum_{j=1}^{n} F_{ji} \Phi_{j} = S_{i} M_{i}^{0} - \sum_{j=1}^{n} S_{j} F_{ji} M_{j}^{0}$$
net sent reçeived

Black surfaces

Radiation exchange: black surfaces

Net heat

- black, closed enclosure

$$S_{i}F_{ij} = S_{j}F_{ji} \Rightarrow \Phi_{i,net} = S_{i}M_{i}^{0} - \sum_{j=1}^{n} S_{j}F_{ji}M_{j}^{0} = S_{i}M_{i}^{0} - S_{i}\sum_{j=1}^{n} F_{ij}M_{j}^{0}$$
Réciprocité met émis reçu

$$\sum_{j=1}^{n} F_{ij} = 1 \qquad \Rightarrow \Phi_{i,net} = S_i M_i^0 - S_i \sum_{j=1}^{n} F_{ij} M_j^0 = S_i M_i^0 \sum_{j=1}^{n} F_{ij} - S_i \sum_{j=1}^{n} F_{ij} M_j^0$$

$$\Phi_{i,net} = \sum_{i=1}^{n} S_i F_{ij} (M_i^0 - M_j^0)$$

flux échangé entre les surfaces noires $S_i \rightarrow S_j$

$$\Phi_{i,net} = \sum_{j=1}^{n} S_{i} F_{ij} (M_{i}^{0} - M_{j}^{0}) = \sum_{j=1}^{n} (S_{i} F_{ij} M_{i}^{0} - S_{j} F_{ji} M_{j}^{0}) = \sum_{j=1}^{n} \Phi_{ij,net}$$
émis reçu net

Energy Building Simulation slide 39

Radiation

Radiation exchange: black surfaces

Thermal circuit

Radiation exchange: black surfaces

Thermal circuit

Energy Building Simulation slide 41

Radiation

Radiation exchange: black surfaces

Radiation exchange: gray surfaces

Radiosité

$$J = \varepsilon M^{0} + \rho E$$
Opaque surface $\tau = 0$

$$\Rightarrow \rho = 1 - \alpha = 1 - \varepsilon$$

$$\Rightarrow J = \varepsilon M^{0} + (1 - \varepsilon)E$$
equal if the same wavelength!

Energy Building Simulation slide 43

or gray body

Radiation

Radiation exchange: gray surfaces

Radiation exchange: gray surfaces

• Thermal circuit (between surfaces)

$$\underbrace{\Phi_{12,net}}_{\text{net}} = \underbrace{S_1 F_{12} J_1}_{\text{émis}} - \underbrace{S_2 F_{21} J_2}_{\text{reçu}} = S_1 F_{12} (J_1 - J_2) = S_2 F_{21} (J_1 - J_2)$$

Energy Building Simulation slide 45

Radiation

Radiation exchange: gray surfaces

$$\begin{aligned} q_{12} &\equiv \Phi_{12,net} = S_1 F_{12} (J_1^0 - J_2^0) = S_2 F_{21} (J_1^0 - J_2^0) \\ q_2 &\equiv \Phi_{2,net} = \frac{\varepsilon_2 S_2}{1 - \varepsilon_2} (M_2^0 - J_2) \end{aligned}$$

Radiation exchange: gray surfaces

