
Operating Systems
Kernel, System Calls and Processes

Guillaume Salagnac - Lionel Morel

Insa de Lyon – IST OPS

2023–2024

Some definitions

User = the human in front of the computer
• might be : a “final” user, a developper,

depending on context
• interacts directly with the hardware (through

screen, keyboard, microphone, etc)

Applications = software with which the final
user wants to interact

• messanging app, text processing, music
player, web browser, etc.

Hardware = the physical machine

The Operating System is everything else :
• all the infrastructure software : “kernel”,

“drivers”, “services”, etc.
• “between the hardware and the applications”

Operating System

Applications

Hardware

User

2/15

Role of the OS : two fundamental functions
et largely inter-dependant !

Virtual Machine
• hides the complexity (of the hardware) under a “nicer”

interface
• provides some base services to applications

• HCI, persistent storage, network access, time management
• allow for the portability of programs

• make it possible to execute the same program on different
hardware

Resource management
• share resources amongst applications
• exploit available resources
• protect applications and the system itself

3/15

The OS and its kernel

Application 1

Hardware

Application 2

Kernel

Definition : the Kernel
The kernel is that par of the Operating System that is not an
application

4/15

The OS is a “nice” interface to HW for applications

source : Tanenbaum. Modern Operating Systems (4th ed, 2014). page 5
5/15

Applications use the CPU in “restricted mode”

CPU

memory

Reminder : le cycle de Von Neumann
while True do :

Fetch an instruction from “memory”
decode its bits : what operation, what
operands, etc.
execute the operation and store its result

repeat

Definition : restricted mode = slave mode = ring 3 = user mode
• the application has a partial view of the machine : 1 CPU + 1

mémoire
• some instructions and some addresses are forbidden
• useful to execute application code without fearing to break

anything

• available instructions : ALU operations, memory reads and
writes, jumps
ADD R1 <- R3, R4 WRITE [R8] <- R5 CALL 123456

6/15

Kernel = CPU use in “supervisor mode”
CPU1 CPU2 CPU3

I/O bridge

System bus

main
memory

I/O bus

USB
controller

disk
network

keyboardmouse

USB bus
controller

disk network
adapter

Definition : supervisor mode = ring 0 = kernel mode = privileged mode
• direct access to hardware : needed for executing kernel functions

and drivers as well
• SW 7→HW = Memory-mapped I/O HW7→SW = Interruptions

• NB : this is the default mode when the machine is booted 7/15

Changing the execution mode : traps
Problem : how can an application invoke a function of the
kernel?

BAD solution : allow application to jump to functions that are
inside the kernel.

• jump destination can be chosen arbitrarily by application ▶
security breaches

• At some point, we need to move from restricted to
supervisor mode ▶ when? how?

Solution : provide a dedicate CPU instruction
• examples : TRAP (68k), INT (x86), SWI (ARM), SYSCALL (x64)
• software interrupt = trap = exception
• how it works :

• save the CPU context (register content)
• switch to supervisor mode
• jump to an address in the kernel code. The address is

pre-determined, and well know (solves the security breach
problem)

8/15

System call : principle

system call = syscall
Function located in the kernel, invoked by a user process
through a trap

Application-side :
• the call is invoked with a TRAP instruction
• independant from the programming language used
• generally encapsulated inside library functions (eg : libc)

Kernel-side :
• The TRAP instruction makes the CPU jump into a dedidated

routine (an ISR)
• that itself calls the “right” function, corresponding to the

desired system call
• finally (when the system call is finished) hands the CPU

back to the application, through a RETI (return from
interrupt) instruction.

9/15

Example system calls

• read(), write(), fork(), gettimeofday()...
• several hundreds of syscalls in linux

10/15

System call : progress
Application Noyau

printf("hello world")

write(1,"hello world",11)

TRAP

sys write(1,"hello world",11)

RETI
RET

RET
RET

packing of
arguments and
syscall number

ISR TRAP:
...
...

”syscall
dispatcher”

unpacking of arguments
decoding of syscall number
re-packing of arguments
calling the right procedure

...

”syscall
wrapper”

”syscall
implementation”

”syscall
interface”

11/15

Processes

Applications are executed on the “userland virtual machine” :
• restricted instruction set (CPU in user mode)

• no access to low-level HW mechanisms (interrupts, MMIO)
• memory read/write forbidden to some addresses

• eg : code and data of the kernel, peripherals

Protection by «sandboxing» : a new instance of virtual machine
is created for each application that starts execution

process
“A program during its execution”

The operating system is both an illusionist (VM) and a
sub-contractor (HW)

12/15

Processes : remark
Intuitions :
• a process = a program + its execution state
• execution state = values contained in registers + memorycontent

The kernel :
• shares hardware resources amongst processes
• creates/recycles processes when needed

• in the kernel : a Process Control Block for each living process
• PCB = id card of the process
• contents (amongst other things) : (PID) number, list of open

files...

Homework :
• try the commands ps aux and top

• then man ps and man top

• Finally try : strace ./monprogramme
13/15

The userland VM

Application 1

syscallsrestricted
instruction set

CPU
supervisor mode

Kernel

Application

CPU in
user mode

complete
instruction set

• application code executed by CPU in user mode
• to make a call to the kernel : user the system call interface

14/15

Where does the OS stand....

Process 1

Hardware

Process 2

Kernel

Architecture

VM2VM1

• each application that executes is in a userland process
• The kernel virtualises and manages accesses to the HW

15/15

