INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

LYON IST Semester / Operating Systems

INSA

Chapter 5: Processes, Kernel, System Calls

In Unix, every application program runs in a dedicated execution environment called a process. The OS
gives each process its own virtualized processor and its own virtualized memory space. Within this safe
sandbox, the program has no restrictions on how it uses their CPU and RAM. However, any interaction
with the outside world must go through the OS: showing text on screen, reading a file, opening a network
connection, etc.

All these Input/Output operations are performed by the operating system’s kernel, a special program
with complete control over everything in the system.

The process must use a special CPU instruction called a system call, typically through a wrapper
function.

1 Warm-up, simple syscalls: sleep() and getpid()

Exercise The sleep() syscall pauses execution for a given number of seconds. A unix command
named sleep exists to offer this feature directly in the shell (it's mostly useful in script programs). Try it

with then read the doc with |man 1 sleep|or just .

Exercise We now want to implement a similar command, which also prints its process identifier (PID)
and the remaining duration every second. The expected behavior is illustrated below. Read the two
syscall docs with ’man 3 sleep ‘ and ’man getpid ‘ Write a countdown. c program which expects just
one command-line argument and sleeps that many times for one second. To convert argv[1] to an
integer, use the atoi() function from stdlib.h.

$./countdown 5
41098: start
41098: 5

41098:
41098:
41098:
41098:
41098: end

= N WD

2 Creating processes with fork()

Exercise Write a forky.c program which prints its PID, then spawns a child process, then prints its
PID again (from both processes). The expected output is illustrated below.

$./forky

54365: hello world
54365: I am the parent
54366: I am the child

Exercise Add a global int variable to forky and print its value (with "/d") and address (with "/p")
before the call to fork(). After the fork, decrement the variable in the parent and increment it in the
child. Then, print its value and address again (in both processes). Observe how the two processes see
distinct values at the same memory address. Do the same but with a local variable. Ask us questions
until you're comfortable with what you’re observing.

1

Exercise Read the code below without executing it. How many times does it print “X” in total ?

main()
{
fork(Q);
if (fork())
{
fork();
}
printf("X\n");
}

3 Executing programs with exec()

From within a process, one can ask the kernel to change the program that is currently executed. This
can be done by using the exec system call. This is available with different functions, each of which
with slightly different interfaces and behavior: execl, execle, execlp, execv, execvp ... This call never
returns: on the contrary, the process simply forget everything it was doing, and starts executing the
newly designated program, from the start. It's nothing like a temporary replacement. It’s final: when the
new program will terminate, the process will terminate as well and will never go back to execute the
previous program.

Exercise What does this program print ? If unsure, type it in and execute it.

int main(void)

{
printf("4\n");
execl("./countdown"”, "./countdown", "5", NULL);
printf("4\n");
return 0;
}
Remarks

e The code above uses the exec syscall. Go and read the documentation, so type or
go and see the page here: https://www.gnu.org/software/libc/manual/html_node/Execu
ting-a-File.html

e Our example uses execl (), whose parameters should be:

e the path to the new executable file, either absolute (eg . "/dir/prog") or relative (eg
"./prog"or "../dir/prog")

e command line arguments (including argument number 0 which, by convention is the name of
the program),

e and a NULL pointer to mark the end of the argument list.

Exercise Write a doublecount.c program which forks into two processes, and then each process
exec ()utes program countdown with a different parameter e.g. 2 and 4, or 5 and 1. Swap these
parameters and observe how the shell always waits for the “main” process (its own child) but not for the
child process (the shell’s grandchild), as illustrated below on the right.

2

https://www.gnu.org/software/libc/manual/html_node/Executing-a-File.html
https://www.gnu.org/software/libc/manual/html_node/Executing-a-File.html

$./doublerebours $./doublerebours
5338: start 8599: start
5338: 2 8598: start
5337: start 8599: 5
5337: 4 8598: 1
5338: 1 8598: finish
5337: 3 8599: 4
5338: finish $ 80599: 3
5337: 2 8599: 2
5337: 1 8599: 1
5337: finish 8599: finish
$

Remarks

e If the parent process terminates before the child process, your program will output something
like the listing on right, in the above picture: the shell is able to print its own prompt before our
command is actually done executing.

e To clean the terminal, you can type ENTER several times to force it to show its prompt correctly
again.

e This is not a bug: the process executes in the background compared to the shell. Some commands
in the linux environment are even designed to be used in this way.

e However, this is not the expected behavior for our program. The next exercise explains how to
solve this.

4 Waiting for a child with wait()

The goal of this part is to implement a C program that will be called parexec. This program takes as
argument from the command line the name of another program prog, followed by an arbitrary long
list of arguments. It executes prog in parallel (in separate processes) over each of its arguments. For
example, typing ’ ./parexec gzip filel file2 ... fileN ‘ from the command line will launch in

parallel the commands | gzip filel

3

gzip file2|...[gzip fileN|

Exercice Write a parexec.c program. You will use the system calls we have seen so far. The name
of the program (prog) to be executed in parallel as well as all corresponding arguments are received by
the program from the command line (through argc, as we have seen in the previous chapter). Beware,
we want parexec to give back control to the shell only after all executions of prog are over. This is
illustrated below with countdown. To help you, please also read the remarks below.

% ./parexec ./rebours 4 % ./parexec ./rebours 3 6 % ./parexec ./rebours 1 2 3
28393: start 41035: start b7371: start
28393: 4 41035: 6 57372: start
28393: 3 41034: start 57371: 2
28393: 2 41034: 3 57372: 3
28393: 1 41035: 5 57370: start
28393: finish 41034: 2 57370: 1
% 41034: 1 57371: 1
41035: 4 57370: finish
41034: finish 57372: 2
41035: 3 57371: finish
41035: 2 57372: 1
41035: 1 57372: finish
41035: finish YA
%

Remarks

e To wait for the child processes to terminate, use the wait () system call. You'll find its documenta-
tion by typing or on the web here: https://www.gnu.org/software/libc/manu
al/html_node/Process-Completion.html#index-wait

e Beware: wait () only works on direct children processes only, not on other descendants (eg
grand-children).

e Note that our usage of wait doesn’t require any argument, so you can simply write wait (NULL) ;

e Beware as well of the fact that, as said in the documentation, this primitive “is used to wait until
any one child process terminates”. Since you eventually want to wait for the termination of several
children processes, you will need to call wait (NULL) the right number of times.

https://www.gnu.org/software/libc/manual/html_node/Process-Completion.html#index-wait
https://www.gnu.org/software/libc/manual/html_node/Process-Completion.html#index-wait

	Warm-up, simple syscalls: sleep() and getpid()
	Creating processes with fork()
	Executing programs with exec()
	Waiting for a child with wait()

