
INSA INSTITUT NATIONAL
DES SCIENCES
APPLIQUÉES
LYON IST Semester / Operating Systems

Chapter 3 – Introduction to the C language
The C language was created in the 1970s by Dennis Ritchie and Brian Kernighan, and was instrumental
in the development of Unix. The language was made very popular in part thanks to a “tutorial” book by
the two designers, simply titled The C Programming Language. This book remains relevant to this day,
and we will be relying heavily on references to it in this course.

Exercise Search the web for an electronic copy of the K&R in a format that you like (web, epub, pdf...)
Warning: we want the second edition from 1988, not the original from 1973. For instance, you can use
this version from the Internet Archive: https://archive.org/details/the-ansi-c-programming-
language-by-brian-w.-kernighan-dennis-m.-ritchie.org

1 Basic Syntax

A program written in the C language is a collection of functions which call each other. There must be a
function named main(), which the operating system (Linux, in our case) is responsible for executing.

Exercise Create a file named hello.c and type in the program below. Compile it to executable form
with command gcc -g -Wall -Wextra -Werror -o hello hello.c , then run it with ./hello . Ask
us questions about anything mysterious. From here on, always use these gcc options to compile your
code.

#include <stdio.h>

void print_hello() {
printf("Hello, world\n");

}

int main() {
print_hello();
return 0;

}

The printf() function (provided by library stdio.h) is useful to display text on screen but it can also
be invoked with several arguments, in which case it will perform data formatting. The first argument, the
so-called format string is searched for percent signs, which will then be interpreted as format codes.
Each format code describes how one of the subsequent arguments should be displayed. For instance,
printf("%d vs %x vs %c\n",42,42,42) prints the same value three times: as a number written in
decimal, in hexadecimal, and as as an ASCII character. Try it out !

1

https://archive.org/details/the-ansi-c-programming-language-by-brian-w.-kernighan-dennis-m.-ritchie.org
https://archive.org/details/the-ansi-c-programming-language-by-brian-w.-kernighan-dennis-m.-ritchie.org

Exercise Type the program below in a file named formatting.c, then compile and execute it. Read
the docs (K&R §7.2 and/or link below) and ask us questions until you understand what happens.
https://www.gnu.org/software/libc/manual/html_node/Table-of-Output-Conversions.ht
ml

#include <stdio.h>

int main() {
printf("0. %c \n", ’a’);
printf("1. %c \n", 65);
printf("2. %d \n", 100);
printf("3. %x \n", 100);
printf("4. %o \n", 100);
printf("5. %#x \n", 100);
printf("6. %#o \n", 100);
printf("7. %6.2f \n", 3.1416);
printf("8. %6.2f \n", 31.416);
printf("9. %E \n", 3.1416);
printf("10. %*d \n", 5, 10);
return 0;

}

Exercise Write a program that prints the number −1 in hexadecimal notation. What does it show on
screen ? Give a one sentence explanation of why this is the case.

2 Variables

A variable is a symbolic (i.e. plain-text) name which identifies a memory location. In C, there are global
variables which are visible from everywhere, and local variables which belong to one particular function.
Each variable has a fixed type:

• int for whole numbers, such as 0, 1, 2 or −42,
• float for numbers with a decimal point, like 3.14 or −5.3
• char for one-byte integer values (typically, ASCII-encoded characters).

For more info on types and variable declaration, read K&R §2.2 and §2.4.

Variables can be assigned a new value using the “equals” sign, e.g. x = 36; or y = x+10; The job of
the compiler is to translate such a statement into machine instructions doing two things: 1) evaluating
the expression on the right-hand side, and 2) storing the result in memory at the correct address.
Warning: expressions are always evaluated with the same type as their operands. For instance, 5/10
is an integer division and evaluates to zero, but 5.0/10.0 evaluates to 0.5. Try variations around
printf("%d %g\n",5/10,5./10.); with different combinations of floats and ints.

Exercise Write a program which initializes two integer variables with positive values, computes their
ratio as a float and then shows it as a percentage1 For instance with int a=3; and int b=9; your
program should print something like 3/9=33.33%

Each function can also send a return value to its caller using the “return” keyword, with e.g. return 42;
or return x+y; Functions that return nothing, like print_hello() on on the preceding page, must
declare their return type as being void and must use the return; keyword with no operand.

1To find out how to get printf() to show a literal percent sign, refer to K&R §7.2

2

https://www.gnu.org/software/libc/manual/html_node/Table-of-Output-Conversions.html
https://www.gnu.org/software/libc/manual/html_node/Table-of-Output-Conversions.html

3 Control Structures

Conditional statements use the “if” and “switch” keywords (cf K&R §3.1 to §3.4) as illustrated below:

if(condition)
{

... // then do something
}
// in both cases,
// execute here afterwards

if(condition)
{

... // then do something
}
else
{

... // do something else
}
// in both cases,
// execute here afterwards

switch(integer)
{

case 42:
...
break;

case -5:
...
break;

default:
...
break;

}
// ’break’ jumps here

Remarks:
• In C everything is an integer, there are no proper booleans: zero means “false” and anything

non-zero means “true”. Even comparison operators like “==” or “<” produce an integer. For this
reason, if(x != 0) and if(x) are equivalent (cf K&R §2.6).

• Within a switch-case construct, be sure to always add a break statement at the end of each
branch, otherwise control will fall through to the next branch which is perfectly allowed but rarely
what you wanted (cf K&R §3.4).

There are several looping constructs in C, which behave as repeated “if” statements (cf K&R §3.5).

while(expr)
{

body;
}

∼

label:
if(expr)
{

body;
goto label;

}

for(code1; expr; code2)
{

body;
}

∼

code1;
while(expr)
{

body;
code2;

}

Remarks (cf K&R §3.7):
• The continue keyword skips the remainder of the loop body and jumps directly to the next

iteration.
• The break keyword exits the current loop (or switch-case) entirely.

4 Functions

For the compiler to generate correct machine instructions when calling a function, it must know the
type of every argument (and return value), collectively known as the function’s signature. For historical
reasons, this information must come before (in line number order, in the source file) the place where
the function is invoked. If the definition of a function is above its first call site, like is the case with
print_hello() on on page 1, then everything is fine. Otherwise, the programmer must first provide a
declaration, as illustrated below:

3

#include <stdio.h>

void print_hello() ;

int main() {
print_hello();
return 0;

}

void print_hello() {
printf("Hello, world\n");

}

Exercise Open file /usr/include/stdio.h and find where printf() is declared. (You don’t need to
understand all the syntax details)

Exercise Implement a recursive function with signature int fib(int n) which computes the nth
Fibonacci number: fib(0) = 0, fib(1) = 1, otherwise fib(n) = fib(n − 1) + fib(n − 2).
In your main() function, invoke fib() in a for loop to print the first 20 Fibonacci numbers.

Exercise In another source file, implement an iterative (i.e. non-recursive) version of fib(), with the
same signature. You can reuse your main() function to check that both implementations produce the
same results.

1
2
IST
4
OPS
IST
7
8
IST
OPS
11
IST
13
14
IST OPS
16
17
...

Exercise Write a program which loops over every number k from 1 to 50 and:
• when k is a multiple of 3, print “IST ”,
• when k is a multiple of 5, print “OPS ”,
• when k is both a multiple of 3 and 5, print both “IST ” and “OPS ”,
• otherwise just print k .

The expected output is illustrated on the right.

To find out if x is a multiple of y, you can use the modulo operation (aka remainder
of the integer division) with e.g. if(x%y==0)

Exercise Implement a function with signature void tree(int R), which draws a
pine tree with R horizontal rows of “leaves” and a 3x2 centered “trunk”, as illustrated
below.

R=2
*

|||
|||

R=6
*

|||
|||

R=13
*

|||
|||

4

	Basic Syntax
	Variables
	Control Structures
	Functions

