
INSA INSTITUT NATIONAL
DES SCIENCES
APPLIQUÉES
LYON IST Semester / Operating Systems

Chapter 2 – Compiling and Debugging a C program
The role of the computer processor aka the CPU (e.g. Intel i9, ARM Cortex) is to execute machine
language instructions, one after the other. But a modern computer typically runs several programs
“at the same time” on the same CPU. The kernel (e.g. Linux) is a special software program acting as
a “conductor” for other programs: its role is to load executable files from the disk into memory, and
somehow have the processor execute them all concurrently. An Operating System (e.g. Ubuntu) is
a collection of programs, including a kernel, a shell etc, that work well enough together to make the
machine usable by humans.

1 The GNU Compiler Collection toolchain
There are several steps necessary to build an executable program from source files, but modern
toolchains hide this complexity behind the scenes. The diagram below illustrates what happens when we
type gcc -o prog main.c util.c to build prog from hypothetical source files main.c and util.c,

and then ./prog to execute it.

Preprocessor Compiler Assembler Linker

GCC toolchain

main.c

stdlib.h

cpp main.i cc main.s as main.o

util.c cpp util.i cc util.s as util.o

ld

libc.so

prog

kernel
prog runs

on the CPU

Exercise Create a file named hello.c and type in the program below. Compile it with command
gcc -o hello hello.c , then run it with ./hello . Note: function puts() (i.e. “put string”) writes

some character string onto the screen, followed by a newline.

#include <stdio.h>

int main() {
puts("Hello, world");

return 0;
}

Exercise Now we will ask GCC to stop after a particular step:
• gcc -E runs the preprocessor, but does not compile.

• gcc -S runs cpp and compiles the result, but does not assemble.

• gcc -c preprocesses, compiles, and assembles, but does not run the linker.

Using these commands (with -o filename), produce hello.i, hello.s, and hello.o respectively.

1

Exercise Open hello.i in a text editor and browse the code until you locate the main() function.
Everything above comes from file /usr/include/stdio.h (open this one too) and was copy-pasted
here by the preprocessor. Notice that the comments from stdio.h have been removed. In hello.c, try
and add some /* comments */ anywhere and run the preprocessor again.

Exercise Object files contain binary code, not ascii-encoded text, so we cannot open them directly in
a text editor. Type xxd hello.o > hello.xd to perform a “hex dump” then open the resulting file in a
text editor. It will look more or less like this:

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0100 3e00 0100 0000 0000 0000 0000 0000 ..>.............
00000020: 0000 0000 0000 0000 6802 0000 0000 0000h.......
00000030: 0000 0000 4000 0000 0000 4000 0e00 0d00@.....@.....
00000040: 5548 89e5 bf00 0000 00e8 0000 0000 b800 UH..............
00000050: 0000 005d c348 656c 6c6f 2c20 776f 726c ...].Hello, worl
00000060: 6420 2100 0047 4343 3a20 2847 4e55 2920 d !..GCC: (GNU)
00000070: 3133 2e31 2e31 2032 3032 3330 3631 3420 13.1.1 20230614
00000080: 2852 6564 2048 6174 2031 332e 312e 312d (Red Hat 13.1.1-
00000090: 3429 0000 0000 0000 0400 0000 2000 0000 4).......... ...
000000a0: 0500 0000 474e 5500 0200 01c0 0400 0000GNU.........
000000b0: 0000 0000 0000 0000 0100 01c0 0400 0000

The first column indicates the position in the file, the middle columns are the contents of the file in
hexadecimal (two bytes per column) and the right column is the same contents but interpreted as ASCII.
For instance, 0x45 0x4C 0x46 are the ASCII codes of letters “E”, “L” and “F”, which indicate that our
file is encoded in Executable and Loadable Format. Locate the "hello world" string in the hex dump,
and write down the ASCII codes for each letter.

Exercise Reading hex dumps is very crude. Fortunately GCC offers the objdump tool, which purpose
is to disassemble machine code into a readable listing. Type objdump -D hello.o > hello.lst
then open the resulting file. It will look more or less like this:

hello.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: bf 00 00 00 00 mov $0x0,%edi
9: e8 00 00 00 00 call e <main+0xe>
e: b8 00 00 00 00 mov $0x0,%eax

13: 5d pop %rbp

• Notice how bytes are now grouped into what objdump believes are instructions: 0x55 is the
machine encoding for push %rbp, 0x48 0x89 0xe5 is the machine encoding for mov %rsp,%rbp,
etc. On Intel processors instructions don’t always occupy the same number of bytes

• Notice that memory addresses (for instance, the destination address of the call instruction) are
not known at this stage. They will be overwritten by the linker.

• Notice how certain parts of the listing don’t make sense as instructions: where are the bytes that
encode our "Hello, world!" string ?

2 The GDB Debugger
One of the reasons programming in C is hard is because the language provides very few abstractions or
guarantees against programming errors. To help with that, the GNU toolchain offers the gdb debugger,
a tool which allows to execute the program step-by-step and inspect memory contents interactively.

2

Exercise Compile hello.c once again, this with gcc -g so as to keep debug info1 in the executable:
gcc -g -o hello ./hello.c . Then, launch the program inside the debugger:

$ gdb -q ./hello
Reading symbols from ./hello...
(gdb)

Play with these gdb commands:
• list shows source code
• help CMD gives some help about a command (try it with all commands !)
• break LINENUM or break FUNCNAME inserts a breakpoint at specified location
• start adds a temporary breakpoint on main and executes until there
• continue executes the program until it finishes or hits a breakpoint

Exercise Create a file named fact.c and type in the program below. Compile it with gcc -g.

#include <stdio.h>

int factorial(int n) {
if (n<=1)

return 1;

return n * factorial(n-1);
}

int T[10];

int main() {
for(int i=0; i<10; i++)
{

T[i] = factorial(i);
}

return 0;
}

Play with these gdb commands:
• step executes one line of source code, stepping into function calls
• next executes one line of source code, stepping over function calls
• until executes until the program reaches the following line in the source code (stepping over

calls and loops)
• where displays the call stack
• finish executes until the current function returns

Advanced usage: step N, next N, until LOCATION. Use help to learn more about these commands,
and read the documentation at https://sourceware.org/gdb/current/onlinedocs/gdb.html/C
ontinuing-and-Stepping.html

Exercise Make the program execute until the loop is finished and show the contents of the array with
command print T.

Exercise In the loop body, change the T[i] to T[i+1000]. The program will now try to write far beyond
the end of the T array, which will typically causes a crash at execution time, with a Segmentation fault
error message.2 Execute the program in gdb to see what line of source code causes the crash.

1debug info = a mapping between memory addresses in the program and line numbers in the source file
2note that we have no guarantee that execution will fail. An incorrect C program may run all the way until the end, and it

may produce a correct or incorrect result. Or it might crash. Try with T[i+10] instead and observe what happens.

3

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Continuing-and-Stepping.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Continuing-and-Stepping.html

Exercise On what iteration does the segmentation fault happen ?

Exercise Use the x command to “examine” memory and observe values which have been produced
before the crash.
This command is spelled x/nfu ADDR where n,f, and u arguments are optional.

• ADDR is a memory address or a symbol name
• n is the desired length, in number of values (default is 1 value)
• u is the size of one value: b (bytes), h (2 bytes), w (4 bytes, default) or g (8 bytes)
• f is the desired display format: s (text string), i (machine instructions) or x (hexadecimal, default)

For more info, type help x or read the GDB user manual at https://sourceware.org/gdb/current
/onlinedocs/gdb.html/Memory.html

Exercise Other commands are available to interact with the program at low-level:
• disassemble shows assembly code for the current function
• stepi and nexti are similar to step/next but they work in terms of machine instructions

Play with these commands too (hopefully you won’t need them too often in real life).

4

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Memory.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Memory.html

	The GNU Compiler Collection toolchain
	The GDB Debugger

