
INSA INSTITUT NATIONAL
DES SCIENCES
APPLIQUÉES
LYON IST Semester / Operating Systems

Chapter 1 – First steps on the Unix command line
As users of digital services we are familiar with the notion of application program, a piece of software
that performs a a specific task, such as writing documents, playing games, or browsing the web. But
applications are not designed to run alone on bare hardware: computers are too complex and too diverse
for every application to support every machine. Instead, computers are equipped with an operating
system, a set of utility programs that collectively form an execution platform for applications. Example
OSes include Microsoft Windows, MacOS, Android, etc.

1 Setting up your work environment
In this course, we will be doing all our practical work on Linux. There are several flavours of Linux OSes
available out there, like Fedora, Ubuntu, Debian, etc. If you already have a favourite version of Linux,
then use it and skip directly to section 3 on page 4. Otherwise, please read on.

The easiest way to get started is to use INSA’s Virtual Desktop Infrastructure, as described in section 2
below. However, there are several alternatives that would work just as well (in no particular order):

• Install a Linux distribution on your laptop, possibly as a dual boot option alongside Windows.
• Create a bootable USB stick with a live version of e.g. Ubuntu or Fedora.
• Install a Linux distribution inside a virtual machine (through VirtualBox or VMWare).
• Use the Windows Subsystem for Linux (WSL).
• Work through SSH on a remote Linux host. For instance, INSA provides such machines with

names of the form 2d-linux-NNN.insa-lyon.fr (for NNN in 001 to 150).
• Not use Linux but another system from the Unix family, such as macOS. Most of this course (not

all, but most) will still apply.
You are encouraged to explore (and/or combine several of) those solutions. Please don’t hesitate to ask
us for help, even though we cannot promise to solve all your setup problems. In all cases, please do
give us feedback on your work environment of choice !

2 Using INSA’s Virtual Desktop Infrastructure (aka “Bureau Virtuel”)
Visit https://bv.insa-lyon.fr/ and login with your INSA credentials. You get a selection page looking
like figure 1. Choose “2D-LINUX”. You should see an in-browser Linux desktop (cf figure 2).

2.1 Switching your interface to English
By default, INSA’s Bureau Virtuel is configured in French. Here is the procedure to switch the whole
interface to English. First open the main menu in the bottom-left corner, and type “langues” in the search
box and then click on “Prise en charge des langues” (see figure 3). A small window appears, cf figure 4.
In the first tab “Langues”, move English to the top of the list. In the “Format régionaux” tab, choose
English from the dropdown menu. Click on “Fermer”.
Now log out then reconnect to the 2D-LINUX virtual machine. A new window appears (see figure 5)
asking you to “Update standard folders to current language”. Click on “Update Names”.
Your system is now configured to show all messages (menus, help pages, etc) in English.

2.2 Configuring the keyboard
By default, INSA’s Bureau Virtuel is configured for French keyboards with AZERTY layout, which is not
what you want.
In the main menu, click “Preferences” then “Keyboard” and go to the third tab “Layouts”. Click “+” and
add your preferred layout, then remove “French” with “–” and close the window.

1

https://bv.insa-lyon.fr/


Figure 1: Selecting the Linux VM

Figure 2: The BV’s Linux desktop

2



Figure 3: Finding the "change your language"
option.

Figure 4: The window allowing to change the
system’s language.

Figure 5: Updating standard folder names.

Figure 6: Terminal shortcut in the main menu.

Figure 7: Terminal shortcut in the taskbar.

3



3 Through the Looking Glass: First Steps in Unix Land

Modern Linux systems such as Ubuntu come with a Graphical User Interface (GUI) similar to Windows
or MacOS. But for the purpose of this course, we will mostly interact with the system through its
Command-Line Interface (CLI). Historically, command-line interfaces emerged in the 1960s as a more
user-friendly alternative to punched cards. Sitting in front of a computer terminal (a screen+keyboard
device connected to a computer) the user would type their inputs interactively and read the results as
text in real-time.

Nowadays, most users rely on graphical user interfaces for their everyday use. However, many programs
and operating system utilities have no GUI, and are intended to be used through the command-line.
For this reason, modern systems generally include a terminal emulator program, often referred to
as just a terminal. This combination brings the benefits of both worlds: the expressive power of the
command-line and the comfort of a graphical interface.

3.1 Terminal, Shell, Commands

Exercise Open a terminal window. On the Bureau Virtuel, the Terminal application can be launched
from the main menu (in “System Tools” cf figure 6) or by clicking on its icon in the task bar (cf figure 7).

Exercise Text typed in the terminal window is fed to a shell1, i.e. a command-line interpreter, in our
case the bash shell. The shell presents itself as a command prompt (cf figure 8) waiting for you to type
a line of text. Start by typing your login name then press “enter”. The shell will complain that it is not a
valid command, cf figure 9. The shell only understands a finite number of command names. We will
explore some of them today.2

Figure 8: A new terminal window, ready to take
commands.

Figure 9: Trying to execute an unknown command.

Exercise Type command date and observe the results. A command line is a list of words separated
by spaces: the first word is the command name and the rest are the arguments. By convention,
arguments starting with a dash are called options. Type command date -d yesterday and compare
the results.
It is the responsibility of the shell to split the line into arguments before running the actual command.
When needed, we can also group multiple words into a single argument, by enclosing them in quotes,
e.g. date -d "next month" .

1yes, like an eggshell. cf https://en.wikipedia.org/wiki/Shell_(computing)
2Thanks to Igor Khmelnitsky for the inspiration. http://www.lsv.fr/∼khmelnitsky/teaching/2019-2020/

arch_sys/tp01_eng.pdf

4

https://en.wikipedia.org/wiki/Shell_(computing)
http://www.lsv.fr/~khmelnitsky/teaching/2019-2020/arch_sys/tp01_eng.pdf
http://www.lsv.fr/~khmelnitsky/teaching/2019-2020/arch_sys/tp01_eng.pdf


Exercise You have probably already come across other types of prompts. For instance in the Python
interpreter, the prompt looks like “>>> ”. Type python3 and play with python for a bit. Notice how our
input is not interpreted by bash anymore, until we type quit() to terminate python and go back to the
shell. What happens is, a terminal can accommodate several programs at the same time but only one
of them can be in the foreground at any point. All programs can print text on the terminal, but only the
foreground program will receive keyboard input.

Exercise While in the middle of typing a command line, you can press the “tab” key and the shell will
try to auto-complete your command. Type “dat” and then press “tab”. Press Ctrl-C to cancel. If there
are has a multiple matches for completion, the shell will do nothing, but pressing “tab” again will print out
all of the completion matches. Type just “da” and then press “tab” twice. Notice how there are several
matches. Type an additional “t” and press “tab” again.

Exercise You may have noticed that in a terminal, pressing Ctrl-C does not trigger the usual copy-and-
paste mechanism3, but instead it means “stop the current command”. However, you can copy-and-paste
with Shift-Ctrl-C and Shift-Ctrl-V.

3.2 Looking for help
Of course there are many ways to find help:

• invoke a command with option --help at the end usually shows a help screen, e.g. date --help ,
• use a web search engine, e.g. visit https://duckduckgo.com and type “unix date command”.
• ask a fellow student or teacher,
• but when everything else fails, you might want to just RTFM.

Linux comes with a builtin documentation system that is accessible through a dedicated shell command
named man (short for “manual”) You can type man followed by the name of a command and you will see
some documentation for that command. All man pages are organized in a similar way:

1. NAME : name and purpose
2. SYNOPSIS : short summary of the command-line syntax
3. DESCRIPTION : long description, typically listing all supported options
4. sometimes other sections, like EXAMPLES, or KNOWN BUGS
5. AUTHOR : the people who developed the program
6. SEE ALSO : references to other docs: man pages, websites, etc

Exercise Type man date and try the following: scroll with up/down arrows, advance by one screen
with “space”, and go back to the top with “g”. To search for some text, press “/” then your search query
followed by “enter”, then use keys “n” and “p” to navigate between search results. Press “h” to get some
help and press “q” to exit and return to the shell.

3.3 Essential commands: ls, cd
Exercise Read the man page for ls and look for answers to the following questions:

1. In no more than 10 words, what is the purpose of this command ?
2. Which option will print the name of all the files, even the “hidden” ones ? (by default, filenames

starting with a dot are not shown, for instance .bashrc)
3. Which option will print the listing with a longer, more detailed format ?
4. Which option will print the size of the files in a human readable way ?
5. Which option will recursively print all the subdirectories of a given directory ?

Exercise Read the man page for cd and find our what this command is for. Then:
• Go to the /tmp directory at the root of the system and list its contents;
• Return to your home directory;
• What does cd - do ? What does cd with no arguments do ?
3this is for historical reasons: unix terminals and shells predate the idea of copy-and-paste by quite some time

5

https://duckduckgo.com


4 Working With Files

4.1 File system organisation

One of the key principles of the Unix philosophy is that “everything is a file”. To keep things organized,
all files in the system are structured as a giant tree, where every node has an associated name, like
illustrated in figure 10. Internal tree nodes are called directories (aka folders) and they contain other
directories as well as ordinary files. The topmost node is called the root directory and is denoted by “/”.
Every node can be denoted by its path from the root (e.g. /home/lmorel/.bashrc). Some important
directories:

• /bin is where most of the shell commands are stored, e.g. /bin/date or /bin/ls
• /home contains all the users’ personal directories
• /home/yourlogin is your personal home directory. In the shell, you can type “∼” as a shortcut

for this path, e.g. ls ∼

• /tmp is for temporary files. It is emptied every time the system reboots

/

homebinetcdev usr

ls gcc include lib share

math.h

lmorel gsalagnac

syscall.h

firefox

OPS Work vivado.log .bashrc

Figure 10: Typical directory hierarchy of a Linux filesystem.

A command-line shell provides basically the same features as a graphical file manager. In the following
exercises you will learn how to create new files and directories (sections 4.2 and 4.3), how to copy
and move things around (section 4.4), how to look into files (section 4.5), and also how to delete them
permanently (section 4.6).

Warning A CLI shell is a powerful tool and it will blindly obey your commands. However, what you
type may or may not be what you wanted. Compared to a typical GUI system, there are few safety nets
and some actions cannot be “undone”. This can feel intimidating at first, but having such a powerful tool
under your belt will often prove very useful.

4.2 Creating directories: mkdir

Exercise Type man mkdir and read the manual page. Within your home directory, create a directory
named “ops”.
Now we want to create a directory with path “∼/a/b/c/d”. Look in the mkdir man page for the option to
create this entire directory hierarchy in one command.

Exercise Try to create a directory under the /usr folder. What happens?
Indeed, most of the filesystem is protected against (accidental or intentional) damage by ordinary users.

6

~
~
~


4.3 Creating empty files: touch

Exercise Read the first lines of the touch man page. Create an empty file named readme.txt inside
the ops folder. Using cd and ls, make sure your file has been created.

4.4 Copying and moving things around: cp and mv

Exercise Browse the man page for the cp command.
Use it to create a copy of your readme.txt file named readme_new.txt.
Try to copy the readme_new.txt to a file that has the same name. What happens?
The cp command can also be used to copy folders. Go and look at the man page again and read the
description of the -r option.

Exercise Copy the whole the ops folder to a new location. Go into that location, and check that all the
original content has been duplicated here.
The mv command lets you move files and directories around. Now instead of duplicating things, we can
change their location anywhere in the file system. Anywhere? well, only in places we have write-access
to, of course. But we’ll cover this later.

Exercise Create a new directory named work inside your home folder. Note that you can do that from
anywhere in the file system, by specifying the full path, e.g mkdir /home/yourlogin/work or even
better, by using the “∼” shortcut.
Now move your original ops folder to place it in your work directory.

4.5 Looking at files

Many files in the system are plain text documents i.e. they contain simple ASCII characters with no
formatting. Plain text files are important for the rest of the course, and for programming in general,
because all programming tools (compilers, IDE, etc) rely only on those.

Exercise Go into the ∼/work/ops directory, and type code readme.txt . This opens Visual Studio
Code, a simple IDE that you will use to write your programs.
Modify the file by adding some lines, save it.

Exercise We can edit files with a graphical editor. But we can also display their content from the
command line directly. This is often interesting for quickly checking some info (configurations of system
variables, quick tour of a program, etc).
Back in the shell, use commands cat and less to observe the content of the readme.txt file.
What is the difference between these two commands ? Browse their respective man pages to find out.

4.6 Deleting files: rm and rmdir

Exercise Navigate to your ∼/work/ops/ folder and type rm readme.txt to remove the file. Go back
to the parent folder with cd ../ . From there, we now want to delete the whole ops folder.
Try command rm ops and watch it fail:

:∼$ rm ops
rm: cannot remove ’ops’: Is a directory

Now try and type rmdir ops , which fails too:
:∼$ rmdir ops
rmdir: failed to remove ’ops’: Directory not empty

Indeed, the ops folder still contains the readme_new.txt file.

7

~
~
~
~
~


There are two ways to actually delete the entire ops directory:
• First remove everything inside, i.e. go into the folder, and remove the readme_new.txt file. Then,

remove the (now empty) directory itself with rmdir.
• Force the removal of the whole ops hierarchy by typing rm -rf ops . Go read the rm man page

to learn more about these options.
Warning ! Command rm -rf forces deletion of a whole directory tree, without asking for confirmation.
Use this command with extreme caution or you will lose precious data.

Exercise To make these commands more user-friendly, open file ∼/.bashrc in VSCode and add the
following lines at the bottom:

alias rm="rm -i"
alias cp="cp -i"
alias mv="mv -i"

4.7 File ownership and access rights

In the shell, go back to your home directory and type ls -l You will see something comparable to
figure 11.

Figure 11: Output of the ls -l command.

Let’s go through all columns, from right to left. For each file, we have: its name, its timestamp of last
modification (aka mtime),4 its size (in bytes)5 , then some ownership info (login and group names), then
its link count (let’s ignore that for now), and finally a series of rwx letters.

The leftmost column describes the access rights to the file, in a sequence of characters similar to e.g.
“-rw-r--r-” or “drwxr-xr-x”. You should read this sequence in four groups of 1, 3, 3, and 3 boolean
flags, respectively:

• The very first character is “-” for an ordinary file or “d” for a directory.6

• The first rwx trigram indicates the access rights (read, write, execute) for the file’s owner
• The second rwx trigram indicates the access rights for the members of the file’s owning group

(let’s ignore groups for now)
4Try to touch a file and observe that it changes its mtime
5Warning: a directory’s size info has nothing to do with the total size of files in that directory.
6Or it can be “l” for a symbolic link to another path, but we’ll ignore that for now

8

~


• The last rwx trigram indicates the access rights for everyone else.

The x flag means execute: for an ordinary file, it means that the file contains an executable program,
which we can run from the the shell can by typing its name. For directories, it means that one is allowed
to navigate (e.g. with cd) to that directory.

Exercise If you want to know more about access rights, read the man page of command chmod and
try it out on a few examples. Otherwise you can probably forget about it.

Exercise Even without the -l option, command ls can tell us some details about the file with the -F
option. Try it out, then find it in the ls man page. Open your ∼/.bashrc once more and add the aliases
below. Then play with them in your home directory.

alias ls="/usr/bin/ls -hF"
alias ll="ls -l"
alias la="ls -la"
alias lat="ls -lat"
alias lart="ls -lart"
alias larS="ls -larS"

9

~

	Setting up your work environment
	Using INSA's Virtual Desktop Infrastructure (aka ``Bureau Virtuel'')
	Switching your interface to English
	Configuring the keyboard

	Through the Looking Glass: First Steps in Unix Land
	Terminal, Shell, Commands
	Looking for help
	Essential commands: ls, cd

	Working With Files
	File system organisation
	Creating directories: mkdir
	Creating empty files: touch
	Copying and moving things around: cp and mv
	Looking at files
	Deleting files: rm and rmdir
	File ownership and access rights


