
SCAT Instruction Set Architecture

CPU Registers
The CPU has 16 registers named R0 to R15, each 32 bits wide. Register R0 (aka zero) is hardwired with
all bits equal to 0. All writes to R0 are discarded. Register R15 (aka PC) is the Program Counter, i.e. it
holds the address of the current instruction. Other registers (R1 to R14) are general purpose, i.e. they are
freely available for software. Typically though, register R13 is used as the Stack Pointer SP and R14 as the
Link Register LR.

Instruction Format
All instructions are 32 bits in length, and follow a similar format as illustrated below. Bits bits 28 to 31 are
the Type field ; they indicate how the rest of the instruction bits should be interpreted. Bits 24 to 27 are
specific to each instruction type: opcode for ALU instructions, comparison code for conditional branches,
etc. The next fields are the destination (rd) and source (rs1, rs2) registers. Most instruction types use
just one source register. In that case, bits 0 to 15 encode a 16-bits immediate value that serves as an
additional operand to the instruction.

01112151619202324272831

ALU reg-reg type 1 op rd rs1 rs2 ignored

ALU reg-imm type 2 op rd rs1 imm
Cond. jump type 3 comp rd rs1 imm

Memory type 4 dir rd rs1 imm
Subroutines type 5 ignored rd rs1 imm

Type 1: Arithmetic and Logic Register-Register Operations
asm Name opcode Description Notes
add Addition 0000 rd = rs1 + rs2
sub Subtraction 0001 rd = rs1 - rs2
mul Multiplication 0010 rd = rs1 * rs2
div Integer Division 0011 rd = rs1 / rs2 quotient of floored division
mod Modulo 0100 rd = rs1 % rs2 remainder of floored division
or Bitwise OR 0101 rd = rs1 | rs2
and Bitwise AND 0110 rd = rs1 & rs2
xor Bitwise exclusive OR 0111 rd = rs1 ^ rs2
lsl Logical Shift Left 1000 rd = rs1 << rs2
lsr Logical Shift Right 1001 rd = rs1 >> rs2
asr Arithmetic Shift Right 1010 rd = rs1 >> rs2 rs1 as a signed integer
slt Set Less Than 1011 rd = (rs1 < rs2)?1:0 rs1/rs2 as signed integers
sltu Set Less Than, Unsigned 1100 rd = (rs1 < rs2)?1:0 rs1/rs2 as unsigned integers

Notes:
• In shift instructions, rs2 is always interpreted as a positive (unsigned) number. However, shifts only

make sense when 0 < rs2 < 32.
• Multiplication discards the upper bits of the result.
• The div and mod instructions implement floored division semantics: the mathematical result is

always rounded towards negative infinity. For example 8 ÷−3 gives −3 with a remainder of −1.



Type 2: Arithmetic and Logic Register-Immediate Operations
These instructions are similar to type 1 but the second operand is a sign-extended 16-bits immediate
value.

asm Name op code Description
addi Addition 0000 rd = rs1 + sxt(imm)
subi Subtraction 0001 rd = rs1 - sxt(imm)
muli Multiplication 0010 rd = rs1 * sxt(imm)
divi Integer Division 0011 rd = rs1 / sxt(imm)
modi Modulo 0100 rd = rs1 % sxt(imm)
ori Bitwise OR 0101 rd = rs1 | sxt(imm)
andi Bitwise AND 0110 rd = rs1 & sxt(imm)
xori Bitwise exclusive OR 0111 rd = rs1 ^ sxt(imm)
lsli Logical Shift Left 1000 rd = rs1 << imm
lsri Logical Shift Right 1001 rd = rs1 >> imm
asri Arithmetic Shift Right 1010 rd = rs1 >> imm
slti Set Less Than 1011 rd = (rs1 < sxt(imm))?1:0
sltiu Set Less Than, Unsigned 1100 rd = (rs1 < imm)?1:0

Note: Shift instructions only make sense with 0 < imm < 32.

Type 3: Conditional Jumps aka Compare-And-Branch
These instructions compare the values of two registers and take a jump (i.e. change the value of PC) when
the condition is verified.

asm Name comp code Description
beq Branch if equal 0000 if (rd == rs1) PC += sxt(imm)
bne Branch if not equal 0001 if (rd != rs1) PC += sxt(imm)
blt Branch if lower than 0010 if (rd < rs1) PC += sxt(imm)
bge Branch if greater or equal 0011 if (rd >= rs1) PC += sxt(imm)
bltu Branch if lower than, Unsigned 0100 if (rd < rs1) PC += sxt(imm)
bgeu Branch if greater or equal, Unsigned 0101 if (rd >= rs1) PC += sxt(imm)

Note: blt/bge perform a signed comparison, whereas bltu/bgeu interpret both operands as unsigned
numbers.

Type 4: Memory transfers

asm Name dir code Description
load rd, [rs1 + offset] Load Word 0000 rd = MEM[rs1 + sxt(imm)]
store [rd + offset], rs Store Word 0001 MEM[rd + sxt(imm)] = rs1

Type 5: Subroutine calls

asm Name Description
jal Jump-And-Link rd = PC+4 ; PC = rs1 + sxt(imm)

Typically, jal is used with R14 (aka LR) as destination register. Returning from subroutine can be achieved
with jal R0, LR.



Pseudo Instructions

asm Base Instruction(s) Description
nop addi r0, r0, 0 Preferred encoding for NOP
mov rd, rs addi rd, rs, 0 Copy a value from one register to another
leti rd, imm addi rd, zero, imm Assign constant (see below for large values)
not rd, rs xori rd, rs, -1 One’s complement aka bitwise NOT
neg rd, rs sub rd, zero, rs Two’s complement aka sign change
seqz rd, rs sltiu rd, rs, 0 Set rd if rs = 0
snez rd, rs slt rd, zero, rs Set rd if rs =/ 0
sltz rd, rs slt rd, rs, zero Set rd if rs < 0
sgtz rd, rs slt rd, zero, rs Set rd if rs > 0
halt addi R15, R15, 0 Stop execution
bra offset addi R15, R15, offset Branch always
beqz r, offset beq r, zero, offset Branch if r = 0
bnez r, offset bne r, zero, offset Branch if r =/ 0
blez r, offset bge zero, r, offset Branch if r ⩽ 0
bgez r, offset bge r, zero, offset Branch if r ⩾ 0
bltz r, offset blt r, zero, offset Branch if r < 0
bgtz r, offset blt zero, r, offset Branch if r > 0
bgt r1, r2, offset blt r2, r1, offset Branch if r1 > r2
ble r1, r2, offset bge r2, r1, offset Branch if r1 ⩽ r2
bgtu r1, r2, offset bltu r2, r1, offset Branch if r1 > r2, both unsigned
bleu r1, r2, offset bgeu r2, r1, offset Branch if r1 ⩽ r2, both unsigned
push reg subi r13, r13, 4

store [r13], reg Push onto stack (r13 is our stack pointer)
pop reg load reg, [r13]

addi r13, r13, 4 Pop from stack
jmp offset jal zero, R15, offset Relative jump, return address discarded
call offset jal R14, R15, offset Relative jump, return address saved to LR
ret jal zero, R14 Return from subroutine

Immediates above 16 bits

The leti pseudo-instruction assigns a literal value to a register. When the number is between −32768 and
32767 (both included) it will simply be encoded in 16-bits two’s complement, and used as the immediate
operand in an addi instruction.

For larger values, the assembler will have to generate several instructions in a row. For example, writing
leti r1, 0x12345678 will produce three instructions:

addi r1, zero, 0x1234
lsli r1, r1, 16 ; shift into upper half
addi r1, r1, 0x5678

This is often enough, but because addi always performs a sign-extension, some (rare) values are trickier
to compute correctly. For example leti r1, 0x43218765 translates into no less than five instructions.

An alternative (manual) approach is to have the value somewhere as a named .word and load it through
PC-indirect addressing, as illustrated below. Note: be sure to choose a “safe” place (e.g. just after an
unconditional jump) where the CPU will not attempt to execute a value as an instruction.

load r1, [myvalue] ; assembled as [r15+8]
jmp +0

myvalue: .word 0x43218765


