IST-ASM Retake Exam — 1st December 2022

Name:

- First, write your name in the box above. Then, have a quick read through all 5 exercises.
- In the end, you will write up your answers on this paper.
- But please make a draft elsewhere first. Only hand in something readable.
- This is an open-book open-laptop exam: you may work on scrap paper or on your screen.
- Each question is independent from others.

Question 1 Perform the binary addition $-43+50$ in two's complement on 7 bits: convert both numbers to (signed) binary, then compute the sum on 7 bits. Show the details of your work, especially carry bits.
\square

Question 2 The code below implements a certain mathematical function f : from two integers A and B, it computes $C=f(A, B)$. Give a simple expression for f.

$$
f(A, B)=
$$

```
A: .word ...
B: .word ...
C: .word ...
main:
    load R1, [A]
    load R2, [B]
    mul R3, R1, R1
    mul R4, R2, R2
    add R3, R3, R4
    mul R4, R1, R2
    add R4, R4, R4
    add R1, R3, R4
    store [C], R1
    bra +0
```

Question 3 Write a program which computes the sum of the squares of the first N positive integers. For instance, with $N=7$ you should find $1 \times 1+2 \times 2+3 \times 3+4 \times 4+5 \times 5+6 \times 6+7 \times 7=140$. Initially N is stored in R1, and at the end the result should be stored in R2.
\square

Question 4 Write a program that loops over an array of numbers and finds both the maximum and minimum values. The length of the array is a (known) constant, as illustrated below.

T: .word $13,18,5,3,10,8,20,1,14,6$
len: .word 10
main:

Question 5 Definition: Given a pair of positive integers n and k such that $n \geqslant k \geqslant 0$, we define their binomial coefficient as the number of different k-element subsets of a fixed n-element set. This number is usually written $\binom{n}{k}$ and is read as " n choose k ". For example, $\binom{4}{2}=6$ because there are 6 ways to choose 2 elements from a 4-element set $\{a, b, c, d\}$: the different subsets are $\{a, b\},\{a, c\},\{a, d\}$, $\{b, c\},\{b, d\}$, and $\{c, d\}$.

In this exercise, we are interested in the fact that there exists a recursive formula to compute these coefficients:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

The base case of the recursion is the fact that for any integer $n \geqslant 0$, we have $\binom{n}{n}=\binom{n}{0}=1$.
Your task is to write a recursive binomial function which receives n and k in R 1 and R 2 , respectively and returns $\binom{n}{k}$ in R1.
leti SP, 0x10000000
main:
leti R1, 4
leti R2, 2
call binomial
bra +0
binomial:

