IST-ASM Final Exam — Fall 2022

Name:

- First, write your name in the box above. Then, have a quick read through all 5 questions.
- In the end, you will write up your answers on this paper.
- But please make a draft elsewhere first. Only hand in something readable.
- This is an open-book open-laptop exam: you may work on scrap paper or on your screen.
- Each questions is independent from others, except stated otherwise.

Question 1 Perform the binary addition $77+43$: convert both numbers to binary, then compte the sum entirely in binary. Show the details of your work.
\square

```
    10011101
    + 101011
-----------------
    1111 0 0 0 = 120
```

Question 2 Convert the program below to ASM syntax.
source program (asm)


```
addi r9, zero, 1000
subi r9, r9, 1
blt zero, r9, -4
```

```
    leti r9, 1000
loop:
    dec r9
    bgtz r9, loop
```

Question 3 Write a program which raises a number N to a power P . The idea is to multiply N by itself P times: $N \times N \times \ldots \times N$. Initially N and P are stored in R1 and R2, respectively. Both are assumed to be strictly positive.
\square

```
leti R1, 5
leti R2, 4
;; 5**4 = 625
leti R3, 1 ; ; result
loop:
    beqz R2, done
    mul R3, R3, R1
    dec R2
    bra loop

Question 4 Write a program which fills the left half of the screen in yellow.
```

 leti R11, 0xB0000000 ;; base address of BRAM buffset
 leti R12, 0xFFFF0000 ;; RGB triplet for yellow
 leti R1, 0 ;; Y offset
 y_loop:
leti R2, 0 ;; X offset
add R10, R11, R1 ;; base address of our line of pixels
x_loop:
add R9, R10, R2 ;; address of pixel
store [R9], R12
addi R2, R2, 4
leti R3, 160 ;; 80/2 = 40 pixels, 4 bytes each
blt R2, R3, x_loop
addi R1, R1, 320
leti R3, 19200 ;; 60 lines, 80*4 = 320 bytes each
blt R1, R3, y_loop
done:
bra +0

```

Question 5 Definition: the decimal digital root of a natural number is defined as the value obtained by repeatedly summing the decimal digits of \(N\) until a single-digit number is reached. For instance, the decimal digital root of number 12345 is 6 because \(1+2+3+4+5=15\) and \(1+5=6\).
Write a recursive ddr function which computes the decimal digital root of a positive integer \(N\) :
- if \(N<10\) then \(\operatorname{ddr}(N)=N\)
- if \(\mathrm{N} \geqslant 10\) then \(\operatorname{ddr}(\mathrm{N})=\operatorname{ddr}((\mathrm{N} \div 10)+(\mathrm{N} \bmod 10))\)
for instance \(\operatorname{ddr}(12345)=\operatorname{ddr}(1234+5)=\operatorname{ddr}(1239)=\operatorname{ddr}(123+9)=\ldots\)
Notes: You'll want to use DIV/DIVI and MOD/MODI instructions to get the quotient and remainder of the integer division, respectively.
\begin{tabular}{|l|}
\hline leti SP, 0x10000000 \\
main: \\
leti R1, 12345 \\
call ddr \\
bra +0
\end{tabular}
bra +0
ddroot:
push LR
push R2
push R3
push R4
leti R2, 10
blt R1, R2, done
div R3, R1, R2 ; R3 = N/10
\(\bmod R 4, R 1, R 2 ; R 4=N \% 10\)
add R1, R3, R4
call ddroot
done:
\[
\begin{array}{ll}
\text { pop } & R 4 \\
\text { pop } & R 3 \\
\text { pop } & R 2 \\
\text { pop } & L R \\
\text { ret }
\end{array}
\]```

