
IST Semester / Assembly Programming

Chapter 7 – Programming with subroutines
How to avoid copy-pasting similar pieces of code in many places ?

Idea It is possible to break a program down into several sub-programs and execute each sub-program
when needed. This allows for code reuse, because a sub-program (also known as a subroutine, a
function, a procedure, a method, or many other names) can be written once and then invoked (aka
called) several times from various locations in the main program.
In terms of implementation, this mechanism is very similar to the branching instructions from chapter 4:
the processor can jump to another location in the program just by altering its program counter. However,
there is a major difference: after a sub-routine is finished, we want the CPU to return (i.e. jump back) to
where it was before and continue from there.

There are various strategies for saving this return address: some architectures (like x86) save it to
memory ; others (like ARM, or SCAT) save it to a CPU register.

1 Subroutines in SCAT
Our assembler offers two instructions to write subroutines: CALL and RET, illustrated below. CALL label
saves the address of the next instruction into register R14, then jumps to label. Conversely, RET copies
the contents of R14 back into PC. Because this register helps us link different procedures together, we
will call it the Link Register LR.

main:
leti r1, 0
leti r2, 0
call drawpixel

leti r1, 0
leti r2, 59
call drawpixel

leti r1, 79
leti r2, 0
call drawpixel

leti r1, 79
leti r2, 59
call drawpixel

bra +0

drawpixel:
muli R1, R1, 4 ; horiz: 4 bytes per pixel
muli R2, R2, 320 ; vertical: 320 bytes per line
add R3, R2, R1
leti R4, 0xB0000000 ; VRAM base address
add R5, R4, R3
leti R6, 0xFF00FF00 ; RGB hex triplet for magenta

store [r5], r6

ret

Exercise Retype the program above in a text file, assemble it and then execute it step-by-step in the
simulator. Observe how the CPU saves the return address to LR at each function call, and how RET
jumps back to the instruction immediately following the call site.

1



2 Implementation
In SCAT, both CALL and RET are pseudo-instructions. The processor only knows about a single machine
instruction named Jump-and-Link, or JAL:

asm Name Description
jal rd, rs, imm Jump-And-Link rd = PC+4 ; PC = rs + sxt(imm)

When it encounters a function call, the assembler generates a Jump-And-Link with R14 (aka LR) as
destination register and PC as a source register. The offset is computed as the distance between the
current instruction (i.e. the invocation site) and the address of the function. Conversely, returning from a
subroutine is simply achieved with JAL R0, LR, +0.

The binary format of Jump-And-Link is illustrated below:
0151619202324272831

imm0 1 0 1 ignored rd rs

3 Practice Exercises
Exercise Modify the drawpixel procedure from the previous page so that it receives three input
parameters: X/Y coordinates in R1/R2, and the desired color in R3. Then modify the main program so
that each corner of the screen gets painted with a different color.

Exercise Write a maximum function which receives two numbers in R1 and R2, finds the largest one of
the two and returns it in R3. Write a main program which calls this function several times with different
parameters.

Exercise Take your graphical program from chapter 6 (bubble sort visualization, or bouncing ball) and
rewrite the code so that is uses procedures.

2


	1 Subroutines in SCAT
	2 Implementation
	3 Practice Exercises

