Chapter 1 - Information Coding

Modern computers are implemented using digital electronic technology, with basic building blocks such as transistors and logic gates. In the machine, every piece of information (numbers, text, pictures, programs) is encoded in terms of boolean values i.e. zeroes and ones. In other words, the computer thinks in binary. The goal for today is to get familiar with binary.

1 Counting in base 2

You're used to counting in base 10 :

- decimal digits take their value in $\{0,1,2,3,4,5,6,7,8,9\}$
- values bigger than 9 are represented by concatenating digits for successive powers of 10:
- $234=2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}$
- $45678=4 \times 10^{4}+5 \times 10^{3}+6 \times 10^{2}+7 \times 10^{1}+8 \times 10^{0}$

Binary numbers are the exact same idea but in base 2:

- binary digits (bits) take their value in $\{0,1\}$
- values bigger than 1 are represented by concatenating bits for successive powers of 2 :
- binary $110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=$ decimal 6
- binary $1100011=1 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=$ decimal 99

When the context is not enough to distinguish "binary 110 " from "decimal 110 " we will use a "0b" prefix to indicate binary numbers, e.g. $0 b 1010=10$.

Binary-to-Decimal Conversion Let x be a sequence of n bits $x_{n-1}, x_{n-2}, \cdots, x_{1}, x_{0}$ (warning: we always write bits x_{i} with descending values of i, down to zero). To interpret the value of x as a natural number, we apply the same formula as in decimal, but with a radix of 2 .

$$
x=\sum_{i=0}^{n-1} x_{i} \cdot 2^{i}
$$

Example: 0 b110010 reads as $32+16+0+0+2+0=50$. (Please don't learn the powers of 2 by heart! We provide all you need on the following page.)

Exercise Convert Ob101010 to decimal. Same question with Ob111110100.
Exercise (10 min max) Show that with n bits, the largest integer that can be represented is $2^{n}-1$.
Binary numbers: bit length vs numeric range A sequence of n bits can take any one of 2^{n} configurations. The smallest natural number encoded on n bits is 0 . The largest natural number encoded on n bits is $2^{n}-1$.
Examples:

- $n=4: x \in[0 . .15] \Rightarrow 16$ different values
- $n=8: x \in[0 . .255] \Rightarrow 256$ different values
- $n=16: x \in[0 . .65535] \Rightarrow 65536$ different values
- $n=32: x \in[0 . .4294967295] \Rightarrow 4294967296$ different values
(that's about $4 \times 10^{9} \sim 4$ Billion ~ 4 Giga)
- $n=64: x \in[0 . .18446744073709551615] \Rightarrow 18446744073709551616$ different values (that's about $1.8 \times 10^{19} \sim 18$ Quintillion)

$2^{0}=$	1	$2^{16}=$	65536	$2^{32}=$	4294967296	$2^{48}=$	281474976710656
$2^{1}=$	2	$2^{17}=$	131072	$2^{33}=$	8589934592	$2^{49}=$	562949953421312
$2^{2}=$	4	$2^{18}=$	262144	$2^{34}=$	17179869184	$2^{50}=$	1125899906842624
$2^{3}=$	8	$2^{19}=$	524288	$2^{35}=$	34359738368	$2^{51}=$	2251799813685248
$2^{4}=$	16	$2^{20}=$	1048576	$2^{36}=$	68719476736	$2^{52}=$	4503599627370496
$2^{5}=$	32	$2^{21}=$	2097152	$2^{37}=$	137438953472	$2^{53}=$	9007199254740992
$2^{6}=$	64	$2^{22}=$	4194304	$2^{38}=$	274877906944	$2^{54}=$	18014398509481984
$2^{7}=$	128	$2^{23}=$	8388608	$2^{39}=$	549755813888	$2^{55}=$	36028797018963968
$2^{8}=$	256	$2^{24}=$	16777216	$2^{40}=$	1099511627776	$2^{56}=$	72057594037927936
$2^{9}=$	512	$2^{25}=$	33554432	$2^{41}=$	2199023255552	$2^{57}=$	144115188075855488
$2^{10}=$	1024	$2^{26}=$	67108864	$2^{42}=$	4398046511104	$2^{58}=$	288230376151711744
$2^{11}=$	2048	$2^{27}=$	134217728	$2^{43}=$	8796093022208	$2^{59}=$	576460752303423488
$2^{12}=$	4096	$2^{28}=$	268435456	$2^{44}=$	17592186044416	$2^{60}=$	1152921504606846976
$2^{13}=$	8192	$2^{29}=$	536870912	$2^{45}=$	35184372088832	$2^{61}=$	2305843009213693952
$2^{14}=16384$	$2^{30}=1073741824$	$2^{46}=$	70368744177664	$2^{62}=$	4611686018427387904		
$2^{15}=32768$	$2^{31}=2147483648$	$2^{47}=140737488355328$	$2^{63}=9223372036854775808$				

Exercise (hands-on) Open a terminal window and type python (or maybe python3 ; ask for help until you get to the standard prompt i.e. ">>>"). Type a binary number e.g. Ob110010 then press Return. Observe how python prints numbers in decimal by default (it can be changed, as we'll see later)

Exercise (hands-on) Besides usual arithmetic operations (+,,$- \times$ etc) python also offers a built-in exponentiation operator: writing $x * * y$ will compute x^{y} i.e. x to the power of y. Try computing a few examples of powers of two e.g. $2 * * 10$, or $2 * * 32$ etc. (btw, this is how we generated the table above !)

2 Decimal-to-Binary Conversion

Method A: divide by two, repeatedly Given a number x, the remainder of the euclidean division of x by 2 gives the right-most digit of its binary representation (in other words $x_{0}=x \bmod 2$):

$$
\begin{aligned}
x & =x_{n-1} \cdot 2^{n-1}+x_{n-2} \cdot 2^{n-2}+\cdots+x_{2} \cdot 2^{2}+x_{1} \cdot 2^{1}+x_{0} \\
& =\underbrace{\left(x_{n-1} \cdot 2^{n-2}+x_{p-2} \cdot 2^{n-3}+\cdots+x_{2} \cdot 2^{1}+x_{1}\right)}_{\text {quotient }} \cdot 2+\underbrace{x_{0}}_{\text {remainder }}
\end{aligned}
$$

If we repeat this procedure to the quotient until we reach 0 , then we get all successive digits x_{1}, x_{2} and so on (from right to left). Example with $x=423$:

$$
\begin{aligned}
423 & =211 \times 2+1 \\
211 & =105 \times 2+1 \\
105 & =52 \times 2+1 \\
52 & =26 \times 2+0 \\
26 & =13 \times 2+0 \\
13 & =6 \times 2+1 \\
6 & =3 \times 2+0 \\
3 & =1 \times 2+1 \\
1 & =0 \times 2+1
\end{aligned}
$$

From this we conclude that: $423=0 b 110100111$

Method B: subtract powers of two Given a number x, we search the biggest i such that $2^{i}<x$. This tells us that bit $x_{i}=1$. Then we subtract 2^{i} from x and repeat until x reaches one or zero, which tells us our final bit x_{0}.

Example with $x=423$ again:

- what's the biggest power of 2 smaller than 423 ?
- that's $256=2^{8}$
- $423-256=167$
- what's the biggest power of 2 smaller than 167 ?
- that's $128=2^{7}$
- $167-128=39$
- what's the biggest power of 2 smaller than 39 ?
- that's $32=2^{5}$
- $39-32=7$
- what's the biggest power of 2 smaller than 7 ?
- that's $4=2^{2}$
- $7-4=3$
- what's the biggest power of 2 smaller than 3 ?
- that's $2=2^{1}$
- $3-2=1$

In conclusion, we find that $423=2^{8}+2^{7}+2^{5}+2^{2}+2^{1}+1=0 \mathrm{~b} 110100111$
Exercise (pen \& paper) Convert 23 to binary. Same question with 200.
Exercise (hands-on) Play with the bin() function of python to convert a few numbers to binary notation. For instance, bin(423) returns Ob110100111.

Remark Throughout this course, you should never hesitate to "cheat" (by using a computer) to save time and/or to check your results. But you should still be able to do things by hand when required !

3 Hexadecimal Notation

Significant Digits On paper we usually only write significant digits (i.e. 0011 really is the same as 11) but within the computer, bits are stored in bundles of 8 bits called bytes. A byte can take 256 distinct values, from 00000000 to 11111111 . Larger numbers are usually represented on 32 bits (4 bytes aka a word) or sometimes on 16 bits (2 bytes).

Counting in base 16 is actually easier than it sounds. Indeed $16=2^{4}$, so one digit in base 16 represents 4 digits in base 2. This means that we can represent each bundle of 4 bits with one hexadecimal digit, as illustrated below.

Dec	Hex	Bin
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100

Dec	Hex	Bin
5	5	101
6	6	110
7	7	111
8	8	1000
9	9	1001

Dec	Hex	Bin
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110

Dec	Hex	Bin
15	F	1111
16	10	10000
17	11	10001
18	12	10010
19	13	10011

Hexadecimal is very useful as a compact notation for binary numbers, but we will never compute in base 16, or do direct conversions. To avoid confusion, hexadecimal notation uses the "0x" prefix, e.g. $423=0 \times 1$ A7.

Exercise (pen \& paper) Fill in the following table by converting each value to all notations.

Decimal	Binary	Hexadecimal
218		
		AB
40		
		87
	10111110	

Exercise (hands-on) Use python to check your answers to the previous exercise. Play with the hex () function to convert a number to hexadecimal: hex (423) will return 0x1A7.

4 Representing text with ASCII

Binary encoding is also useful to represent text. There are several standards in use today (e.g. unicode, ISO-latin, windows-125x, etc) most of which are extensions of ASCII, the "American Standard Code for Information Interchange" created in the 60s. Originally based on the English alphabet, ASCII encodes 128 "characters" into seven-bit integers, from 0 to $0 \times 7 \mathrm{~F}$. In practice today we store each character on one eight-bit byte.

The majority of ASCII characters are ordinary letters, digits and punctuation (codes 0×20 to $0 \times 7 \mathrm{E}$). Code 0×20 represents the space between words. Codes 0×21 to $0 \times 7 \mathrm{E}$ are known as the printable characters. In addition, the standard defines so-called control characters (codes 0 to $0 \times 1 \mathrm{~F}$, and $0 \times 7 \mathrm{~F}$) which originated with electromechanical teletypewriter machines, but most of these values are obsolete nowadays and you can safely ignore them.

ASCII table (binary) In the chart below, the line position indicates bits 6-5 and the column position indicates bits 4-0. For instance letter "A" is encoded as 0b1000001 (line 0b10, column 0b00001).

ASCII table (hex) The chart below shows the exact same information but with hexadecimal numbers: the (half-)line position indicates the first hex digit, and the column position indicates the second hex digit.

Exercise (pen \& paper) What is the ASCII code of digit "7" ?
Exercise (pen \& paper) Decode the message below:

Byte (hex)	48	65	6 C	6 C	6 F	2 C	20	77	6 F	72	6 C	642021
Text												

Exercise (pen \& paper) Encode your first name in ASCII.
Exercise (hands-on) Use python to play with ASCII encoding and decoding. The relevant functions are chr () to go from integers to characters, and ord() to go the other way.

5 RGB

Binary numbers can also represent colors. In the RGB model, a color is described by indicating how much of each of the red, green, and blue light is included. The color is expressed as an RGB triplet (r,g,b), where each component can vary from zero to a defined maximum value. If all the components are at zero the result is black; if all are at maximum, the result is the brightest representable white.

Exercise (hands-on) Download rgb.py from Moodle, and type python3 rgb.py FFFFFF to execute it. The last argument on the command-line is a hex triplet describing the desired color with three byte values (from 00 to FF in hexadecimal). In other words 000000 means "black" and FFFFFF means "white". Try both. Then, using trial and error, find out the hex triplets corresponding to standard colors like yellow, purple, orange, cyan, etc.

