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Previously on IST-OPS

Application 1

Hardware

Application 2

OS Kernel

• The CPU implements the Von Neumann cycle
• executes instructions one after the other

• The kernel is the part of the OS which is not an application
I but what is it then ?
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Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls
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Hardware architecture of your average computer
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Warning: peripheral device 6= device controller 6= device driver !
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How software talks to to hardware

PMIO = port-mapped input/output
• program uses special-purpose instructions

VS

MMIO = memory-mapped input/output
• program writes to special “memory” addresses

in real life: combination of both
in this course: only MMIO
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Memory-mapped Input/Output: illustration

CPU
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Example: reading a disk sector 1/3
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To initiate a disk read operation:
CPU writes command + block number + dest. mem. address
to a memory address associated with the disk controller
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Example: reading a disk sector 2/3
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The disk controller reads the requested sector and then performs
a Direct Memory Access (DMA) transfer into main memory
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How hardware talks to software

Polling: frequently read the device registers from software
• complicated to write: how often is often enough ?
• inefficient at runtime: many CPU cycles wasted

VS

Interrupts: allow outside events to preempt execution
• requires ad-hoc support in the processor...
• ... but all processors have it

in real life: avoid polling as much as possible
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Example: reading a disk sector 3/3

CPU1 CPU2 CPU3

I/O bridge

System bus

main
memory

I/O bus

USB
controller

disk
network

keyboardmouse

USB bus
controller

disk network
adapter

After DMA transfer is done, the disk controller notifies the CPU
by sending it an Interrupt Request (IRQ)
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Supporting interrupts in the processor

The Von Neumann cycle with interrupt support
while True do:

fetch one machine instruction from “memory”
decode its bits: which operation, which operands, etc
execute the required action and store the result
if interrupt requested then:

save CPU state to memory: registers, PC, SR, etc
lookup the address of the interrupt service routine
jump there = load this address into PC

endif
repeat

11/39



Interrupts: illustration
Main

program

save contents of
CPU registers

Interrupt
service routine

interrupt
request

ISR: ...

...

...

...

...

RETI

load address
of ISR into PC

restore CPU
registers

“return from
interrupt”
instruction

12/39



Do you speak interrupts ?
• IRQ = Interrupt Request

• asynchronous «message» sent from peripheral to CPU
• ISR = Interrupt Service Routine

• routine = program i.e. a sequence of instructions in memory
• each ISR is located at a well-known address
• must end with a RETI instruction

• concept of interrupt masking (aka disabling)
• when interrupts masked⇐⇒ CPU ignores IRQs
• any IRQ received is put on hold (not dropped)
• implementation: boolean flag in the Status Register

• IRQs get automatically masked while running an ISR
• driver code runs without a risk of being disturbed
• instruction RETI enables interrupts again

Definition: operating system kernel
The kernel consists in all interrupt service routines (as well as
all the functions called by these ISRs) and nothing more.
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Interrupts come from various sources

• the System Timer
• system tick = periodic IRQ, typically at 100Hz or 1000Hz
• enables the OS to perceive the passing of time
• bonus: allows the kernel to regain control of execution over

untrusted application code

• input/output peripheral devices
• keyboard, mouse, disk, network interface...

• hardware failures
• overheating, power outage...

• exceptional software events
• computational errors: division by zero, invalid instruction...
• deliberate traps in the program (more on that in a minute)
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Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls
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Instruction set vs Interrupts

Adding interrupt support requires new instructions:
• RETI: return to interrupted program (x86: IRET)
• DINT: disable (=mask) interrupts (x86: CLI)
• EINT: enable (=unmask) interrupts (x86: STI)

Problem
How can we protect the system against applications misusing
these instructions?

example: main: ...
...
DINT

loop: JMP loop
...
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Solution: “dual-mode operation”

all modern processors actually offer two execution modes :

supervisor mode = ring 0 = master mode = kernel mode
• unrestricted access to the real hardware
• useful to execute OS code

VS

user mode = ring 3 = slave mode
• restricted architecture: virtual machine
• some instructions are forbidden: EINT/DINT, RETI...
• useful to safely execute application (=untrusted) code

implementation: boolean flag in the Status Register
I CPU behaves differently depending on this mode bit

obviously: changing this flag is a priviledged instruction !
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user mode 6= userland

Applications execute on the “userland virtual machine”
• restricted instruction set (CPU in user mode)

• no concept of interrupts
• restricted view on memory

• access to some addresses denied: kernel code/data,
peripheral devices, other processes’ memory

• implementation: in the «Bus interface» box (cf chap 3)

Sandboxing: one userland virtual machine per application
• virtual CPU (chap 2), virtual memory (chap 3)
• peripherals: only reachable by asking the kernel politely

Classical concept of the UNIX process
an instance of a computer program that is being executed

Operating system = illusionnist (VM) + sub-contractor (HW)
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The UNIX process: remarks

Intuitively:
• one process = one program + its execution state
• execution state = value of CPU registers + memory contents

The kernel:
• shares available resources among active processes
• creates/recycles processes when necessary

• one Process Control Block per process
• PCB contains the process number aka PID

Try this on a Linux machine: ps aux , top
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Dual-mode operation vs interrupts

Problem: interrupt routines must be able to access their devices

Solution: CPU changes modes when jumping to an ISR

The Von Neumann cycle with dual-mode operation
while True do:

fetch, decode, execute
if (IRQ received) and (interrupts not masked) then:

save CPU state
switch to supervisor mode and mask further interrupts
lookup the ISR address
jump to the routine = load its address into PC

endif
repeat

Note: RETI will eventually switch us back to user mode
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Dual-mode operation vs traps

Problem: how can an application invoke a kernel service ?

Bad idea: allow application code to branch into kernel code
• branch target location is arbitrary I security problems
• switch to supervisor mode I where ? how ?

Solution: add an instruction dedicated for this purpose
• various names: TRAP (68k), INT (x86), SWI (ARM)
• software interrupt = trap = exception
• works in the same way as other interrupts

• save CPU state
• switch to supervisor mode
• branch to associated service routine

I concept of system call
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System call: working principle

System call (aka syscall)
a software routine implemented in the kernel but invoked by a
process through a software interrupt

userland side
• call is invoked via machine instruction TRAP
• agnostic to the programming language
• usually encapsulated into library function (ex: libc)

kernel side
• all syscalls go through the ISR associated with TRAP
• which itself calls the right function in the kernel,
• and finally returns execution to the application with RETI

Examples
• read(), write(), fork(), getpid(), gettimeofday()...
• Linux has hundreds of different syscalls
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System call: illustration
Application KernelC library

printf("hello world")

write(1,"hello world",11)

TRAP

sys write(1,"hello world",11)

RETI
RET

RET
RET

place syscall id
and arguments in
CPU registers

ISR TRAP:
...
...

”syscall
dispatcher”

unpack arguments
decode syscall id
call the right function
with the right arguments

...

”syscall
wrapper”

”syscall
implementation”

”syscall
interface”
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Observe system calls in action: ltrace and strace

Try this on a Linux machine:

hello.c
#include <stdio.h>

void main()
{

printf("hello linux world !\n");
}

• gcc -o ./hello ./hello.c

• ltrace ./hello

• strace ./hello

also: man ltrace and man strace
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Userland VM: summary

Application 1

syscallsrestricted
instr. set

CPU in
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CPU in
user mode

complete
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• application code executed directly by the CPU but in user mode
• to invoke a kernel method: must use the system call interface
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Operating system placement

Application 1

Hardware

Application 2

OS Kernel

Architecture

VM2VM1

• each application runs as a userland process
• the kernel mediates all accesses to peripherals
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Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls
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System calls exist on all operating systems

source: Silberschatz. Operating Systems Concepts Essentials (2011). p 59
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A C function with a syscall inside: gettimeofday()
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System calls: Remarks

Syscalls usually shown as C functions (because history)

But even in C, system call 6= library call
• details depends on your kernel
• Windows vs Linux vs Mac OS X vs FreeBSD vs ...

RTFM: man gettimeofday = man 2 gettimeofday

Every UNIX has several sections for manual pages:
1 shell commands: ls , cd , cat ...
2 system calls: getpid(), open(), read()...
3 C library functions: printf(), malloc(), sqrt()...
4 special files (/dev/...) and device drivers
... etc
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Terminating the current process: exit()
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Creating a new process: fork()
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The fork() syscall: remarks

This is the only way to create a UNIX process
• fork() duplicates the calling process
• both processes then execute concurrently
• each process has a its distinct memory space

"call once, return twice" paradigm
• in the new process (aka child) fork() returns 0
• in the original process, fork() return the PID of the child
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The fork() system call: illustration

1 // only one process
2 int y = 5 ;
3 int x = fork();
4 if ( x != 0 ) {
5 // parent only
6 } else {
7 // child only
8 }
9 // both processes

parent process

child process

1 2 3 4

4

x6= 0

x=0

5 9

7 9
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Changing programs in the same process: exec()
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Wait until a child process terminates: wait()
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My first command-line shell
char command[...];
char params[...];
main()
{

while(true)
{

print_prompt();
read_command(&command, &params);
pid=fork();

if (pid != 0) {
wait(&status);

} else {
exec(command, params);

}
}

}
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Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls
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Summary
Computer architecture
• the Von Neumann cycle + interrupts
• dual-mode operation: supervisor mode vs user mode

Kernel
• consists in all Interrupt Service Routines

• including the syscall dispatcher and the system timer ISR
• and all functions called by these ISRs

Userland
• a “virtual machine” for applications to run on
• simplified, restricted view of the underlying architecture

System call
• interface for applications to invoke kernel methods
• TRAP instruction encapsulated in library function

OS = kernel + libraries + utility programs
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