
Operating Systems
System calls

Guillaume Salagnac

Insa-Lyon – IST Semester

Fall 2019

Previously on IST-OPS

Application 1

Hardware

Application 2

OS Kernel

• The CPU implements the Von Neumann cycle
• executes instructions one after the other

• The kernel is the part of the OS which is not an application
I but what is it then ?

2/39

Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls

3/39

Hardware architecture of your average computer

CPU1 CPU2 CPU3

I/O bridge

System bus

main
memory

I/O bus

USB
controller

disk
network

keyboardmouse

USB bus
controller

disk network
adapter

Warning: peripheral device 6= device controller 6= device driver !

4/39

How software talks to to hardware

PMIO = port-mapped input/output
• program uses special-purpose instructions

VS

MMIO = memory-mapped input/output
• program writes to special “memory” addresses

in real life: combination of both
in this course: only MMIO

5/39

Memory-mapped Input/Output: illustration

CPU

6/39

Example: reading a disk sector 1/3

CPU1 CPU2 CPU3

I/O bridge

System bus

main
memory

I/O bus

USB
controller

disk
network

keyboardmouse

USB bus
controller

disk network
adapter

To initiate a disk read operation:
CPU writes command + block number + dest. mem. address
to a memory address associated with the disk controller

7/39

Example: reading a disk sector 2/3

CPU1 CPU2 CPU3

I/O bridge

System bus

main
memory

I/O bus

USB
controller

disk
network

keyboardmouse

USB bus
controller

disk network
adapter

The disk controller reads the requested sector and then performs
a Direct Memory Access (DMA) transfer into main memory

8/39

How hardware talks to software

Polling: frequently read the device registers from software
• complicated to write: how often is often enough ?
• inefficient at runtime: many CPU cycles wasted

VS

Interrupts: allow outside events to preempt execution
• requires ad-hoc support in the processor...
• ... but all processors have it

in real life: avoid polling as much as possible

9/39

Example: reading a disk sector 3/3

CPU1 CPU2 CPU3

I/O bridge

System bus

main
memory

I/O bus

USB
controller

disk
network

keyboardmouse

USB bus
controller

disk network
adapter

After DMA transfer is done, the disk controller notifies the CPU
by sending it an Interrupt Request (IRQ)

10/39

Supporting interrupts in the processor

The Von Neumann cycle with interrupt support
while True do:

fetch one machine instruction from “memory”
decode its bits: which operation, which operands, etc
execute the required action and store the result
if interrupt requested then:

save CPU state to memory: registers, PC, SR, etc
lookup the address of the interrupt service routine
jump there = load this address into PC

endif
repeat

11/39

Interrupts: illustration
Main

program

save contents of
CPU registers

Interrupt
service routine

interrupt
request

ISR: ...

...

...

...

...

RETI

load address
of ISR into PC

restore CPU
registers

“return from
interrupt”
instruction

12/39

Do you speak interrupts ?
• IRQ = Interrupt Request

• asynchronous «message» sent from peripheral to CPU
• ISR = Interrupt Service Routine

• routine = program i.e. a sequence of instructions in memory
• each ISR is located at a well-known address
• must end with a RETI instruction

• concept of interrupt masking (aka disabling)
• when interrupts masked⇐⇒ CPU ignores IRQs
• any IRQ received is put on hold (not dropped)
• implementation: boolean flag in the Status Register

• IRQs get automatically masked while running an ISR
• driver code runs without a risk of being disturbed
• instruction RETI enables interrupts again

Definition: operating system kernel
The kernel consists in all interrupt service routines (as well as
all the functions called by these ISRs) and nothing more.

13/39

Interrupts come from various sources

• the System Timer
• system tick = periodic IRQ, typically at 100Hz or 1000Hz
• enables the OS to perceive the passing of time
• bonus: allows the kernel to regain control of execution over

untrusted application code

• input/output peripheral devices
• keyboard, mouse, disk, network interface...

• hardware failures
• overheating, power outage...

• exceptional software events
• computational errors: division by zero, invalid instruction...
• deliberate traps in the program (more on that in a minute)

14/39

Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls

15/39

Instruction set vs Interrupts

Adding interrupt support requires new instructions:
• RETI: return to interrupted program (x86: IRET)
• DINT: disable (=mask) interrupts (x86: CLI)
• EINT: enable (=unmask) interrupts (x86: STI)

Problem
How can we protect the system against applications misusing
these instructions?

example: main: ...
...
DINT

loop: JMP loop
...

16/39

Solution: “dual-mode operation”

all modern processors actually offer two execution modes :

supervisor mode = ring 0 = master mode = kernel mode
• unrestricted access to the real hardware
• useful to execute OS code

VS

user mode = ring 3 = slave mode
• restricted architecture: virtual machine
• some instructions are forbidden: EINT/DINT, RETI...
• useful to safely execute application (=untrusted) code

implementation: boolean flag in the Status Register
I CPU behaves differently depending on this mode bit

obviously: changing this flag is a priviledged instruction !

17/39

user mode 6= userland

Applications execute on the “userland virtual machine”
• restricted instruction set (CPU in user mode)

• no concept of interrupts
• restricted view on memory

• access to some addresses denied: kernel code/data,
peripheral devices, other processes’ memory

• implementation: in the «Bus interface» box (cf chap 3)

Sandboxing: one userland virtual machine per application
• virtual CPU (chap 2), virtual memory (chap 3)
• peripherals: only reachable by asking the kernel politely

Classical concept of the UNIX process
an instance of a computer program that is being executed

Operating system = illusionnist (VM) + sub-contractor (HW)
18/39

The UNIX process: remarks

Intuitively:
• one process = one program + its execution state
• execution state = value of CPU registers + memory contents

The kernel:
• shares available resources among active processes
• creates/recycles processes when necessary

• one Process Control Block per process
• PCB contains the process number aka PID

Try this on a Linux machine: ps aux , top

19/39

Dual-mode operation vs interrupts

Problem: interrupt routines must be able to access their devices

Solution: CPU changes modes when jumping to an ISR

The Von Neumann cycle with dual-mode operation
while True do:

fetch, decode, execute
if (IRQ received) and (interrupts not masked) then:

save CPU state
switch to supervisor mode and mask further interrupts
lookup the ISR address
jump to the routine = load its address into PC

endif
repeat

Note: RETI will eventually switch us back to user mode

20/39

Dual-mode operation vs traps

Problem: how can an application invoke a kernel service ?

Bad idea: allow application code to branch into kernel code
• branch target location is arbitrary I security problems
• switch to supervisor mode I where ? how ?

Solution: add an instruction dedicated for this purpose
• various names: TRAP (68k), INT (x86), SWI (ARM)
• software interrupt = trap = exception
• works in the same way as other interrupts

• save CPU state
• switch to supervisor mode
• branch to associated service routine

I concept of system call

21/39

System call: working principle

System call (aka syscall)
a software routine implemented in the kernel but invoked by a
process through a software interrupt

userland side
• call is invoked via machine instruction TRAP
• agnostic to the programming language
• usually encapsulated into library function (ex: libc)

kernel side
• all syscalls go through the ISR associated with TRAP
• which itself calls the right function in the kernel,
• and finally returns execution to the application with RETI

Examples
• read(), write(), fork(), getpid(), gettimeofday()...
• Linux has hundreds of different syscalls

22/39

System call: illustration
Application KernelC library

printf("hello world")

write(1,"hello world",11)

TRAP

sys write(1,"hello world",11)

RETI
RET

RET
RET

place syscall id
and arguments in
CPU registers

ISR TRAP:
...
...

”syscall
dispatcher”

unpack arguments
decode syscall id
call the right function
with the right arguments

...

”syscall
wrapper”

”syscall
implementation”

”syscall
interface”

23/39

Observe system calls in action: ltrace and strace

Try this on a Linux machine:

hello.c
#include <stdio.h>

void main()
{

printf("hello linux world !\n");
}

• gcc -o ./hello ./hello.c

• ltrace ./hello

• strace ./hello

also: man ltrace and man strace

24/39

Userland VM: summary

Application 1

syscallsrestricted
instr. set

CPU in
supervisor mode

Kernel

Application

CPU in
user mode

complete
instr. set

• application code executed directly by the CPU but in user mode
• to invoke a kernel method: must use the system call interface

25/39

Operating system placement

Application 1

Hardware

Application 2

OS Kernel

Architecture

VM2VM1

• each application runs as a userland process
• the kernel mediates all accesses to peripherals

26/39

Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls

27/39

System calls exist on all operating systems

source: Silberschatz. Operating Systems Concepts Essentials (2011). p 59
28/39

A C function with a syscall inside: gettimeofday()

29/39

System calls: Remarks

Syscalls usually shown as C functions (because history)

But even in C, system call 6= library call
• details depends on your kernel
• Windows vs Linux vs Mac OS X vs FreeBSD vs ...

RTFM: man gettimeofday = man 2 gettimeofday

Every UNIX has several sections for manual pages:
1 shell commands: ls , cd , cat ...
2 system calls: getpid(), open(), read()...
3 C library functions: printf(), malloc(), sqrt()...
4 special files (/dev/...) and device drivers
... etc

30/39

Terminating the current process: exit()

31/39

Creating a new process: fork()

32/39

The fork() syscall: remarks

This is the only way to create a UNIX process
• fork() duplicates the calling process
• both processes then execute concurrently
• each process has a its distinct memory space

"call once, return twice" paradigm
• in the new process (aka child) fork() returns 0
• in the original process, fork() return the PID of the child

33/39

The fork() system call: illustration

1 // only one process
2 int y = 5 ;
3 int x = fork();
4 if (x != 0) {
5 // parent only
6 } else {
7 // child only
8 }
9 // both processes

parent process

child process

1 2 3 4

4

x6= 0

x=0

5 9

7 9

34/39

Changing programs in the same process: exec()

35/39

Wait until a child process terminates: wait()

36/39

My first command-line shell
char command[...];
char params[...];
main()
{

while(true)
{

print_prompt();
read_command(&command, ¶ms);
pid=fork();

if (pid != 0) {
wait(&status);

} else {
exec(command, params);

}
}

}
37/39

Outline

1. Interface between software and hardware peripherals

2. Interface between the kernel and applications: syscalls

3. A few important UNIX syscalls

38/39

Summary
Computer architecture
• the Von Neumann cycle + interrupts
• dual-mode operation: supervisor mode vs user mode

Kernel
• consists in all Interrupt Service Routines

• including the syscall dispatcher and the system timer ISR
• and all functions called by these ISRs

Userland
• a “virtual machine” for applications to run on
• simplified, restricted view of the underlying architecture

System call
• interface for applications to invoke kernel methods
• TRAP instruction encapsulated in library function

OS = kernel + libraries + utility programs
39/39

	Interface between software and hardware peripherals
	Interface between the kernel and applications: syscalls
	A few important UNIX syscalls
	Conlusion

