
Registers and memories

Lecturer: Guillaume Beslon
(Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon

Fall 2024

1 / 32



Content

Sequential behaviors

Registers

n-bit Registers

Addressable memories

2 / 32



Why Sequential circuits?

A combinatorial circuit implements a function (in the
mathematical sense of the term):

I For a given input value, it always produces the same
output, whatever input values it received in the past.

Question
Sometimes, we’d like to keep some information within a circuit,
when inputs change.

3 / 32



Running Example

Let’s design a circuit with input w , and output z.

I z becomes true whenever w was true for “long enough”
I z becomes true whenever w was true 4 “instants” in a row

⇒ need memory to “remember” occurrences of w .

4 / 32



Sequential circuits

A sequential element keeps a state.
So a sequential circuit is not a function:

I for a given input value, the output value depends on:
I the current input value
I the sequence of input values that have been received in

the past

⇒ Representing a sequential circuit with a truth table is
impossible

5 / 32



Representing sequences of values
Two forms:

I time-diagrams, called chronograms
→ Chronograms describe graphically a specific sequence of

input/output values
→ A chronogram is only a representative example of the

circuit’s behavior
→ Example: 4-in-a-row

I State machines (FSM):
→ Describe the full system’s behavior formally
→ Next lecture

6 / 32



Clocks

I 99% of existing processors are synchronous
I A synchronous sequential circuit receives a clock signal

7 / 32



Synchronous circuits
I 99% of existing processors are synchronous
I A synchronous sequential circuit receives a clock signal
I signals can then be synchronized, either on rising or falling

edges of the clock
I clock ticks are supposed to be long enough to mask

propagation delays.

8 / 32



Content

Sequential behaviors

Registers

n-bit Registers

Addressable memories

9 / 32



D-Latch (Verrou, bascule asynchrone)
I Specifications:

I When Keep = 0, copy IN to OUT
I When Keep = 1, stay unchanged

I Can easily be implemented using a MUX (multiplexer)

! Care you really understand the behavior of this circuit !

10 / 32



We need more

A latch’s output changes whenever the keep signal is up...

This is not accurate: signal is up for while!
We need a memory element that:

I is driven by a clock
I changes on edges

This can be implemented using TWO D-Latches...

11 / 32



D-Flip-flop (bascule synchrone)

I The D-FlipFlop stores the “D” (Data) bit when its CLK input
goes high

I Beware: there are various types of Flip-Flop (T-FlipFlop,
RS-FlipFlop, JK-FlipFlip) which behave differently

12 / 32



We need more

A D-Flip-Flop stores the D input On each rising edge of the
clock signal...

Hmm... memory content may changes at each time step!
We need a memory element that:

I is driven by a clock
I changes on edges
I can change or not depending on a WRITE-ENABLE (or

ENABLE or “EN”) signal
This can be implemented by adding a MUX to the Flip-Flop...

13 / 32



Write-enabled flip-flop

14 / 32



Reset command
With the same kind of idea, one can add a RESET command to
the Flip-Flop

WARNING: This circuit implements a Synchronous reset but
many D-FlipFlop (including the one of the Digital simulator) are
Asynchronous.

15 / 32



Reset command
Note that the exact behavior of the circuit depends on the
relative positions of the two multiplexers

Here the Reset signal is effective whatever the state of the EN
signal...

16 / 32



Content

Sequential behaviors

Registers

n-bit Registers

Addressable memories

17 / 32



n-bits register (registre n-bits)
The simplest possible n-bits register is made of n D-flip-flops in
parallel (all flip-flops having the same clock signal):

Chronogramme:

data1 data2 data3 data4 data5

data1 data2 data3 data4data0

signaux

temps

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

E

S

C

I The input is stored at the
CLK rising hedge; the
output is stable during the
whole CLK cycle

I Between two CLK rising
hedges, all variations of
the input signal are
ignored

18 / 32



Write-Enable n-bits register
To memorize a data over several cycles, we add a signal WE
(Write Enable, sometimes simply called“EN”):

example chronogramme:

temps

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

C

data1

data0

data2 data3 data4

data1 data2 data3

signaux

E

S

W

At the end of each cycle:
I If WE=1→ the input data

is stored and made
available on the output;

I if WE=0→ the output is
kept constant.

19 / 32



Content

Sequential behaviors

Registers

n-bit Registers

Addressable memories

20 / 32



Von Neumann

I In a von Neumann machine, memories are used to store
data and instructions

I Memories contain several words (actually a lot!) identified
by their address

I One word can be read/written at a time depending on the
control signal

21 / 32



Memory in general

Interface

A: addresses on k bits for a memory of 2k words
DI: Data Input, on m bits (generally a multiple of 8). The
input will be written to word (aka memory cell) of address A
is WE is true
DO: Data Output, always outputs the m bits contained in
the memory cell of address A.
WE: Write Enable

22 / 32



REMEMBER

Size of the memory

k specifies the number of words (2k )
m is the size of the words (in bits).

I The capacity of the memory is m × 2k bits
I If m = l × 8, the capacity of the memory is l × 2k bytes

23 / 32



Memory: possible implementation

24 / 32



Memory as seen from Software
A memory is a Vector of 2k m bits elements.
With k address bits we have:

address ←− m bits −→
0


2k

1
2
3
4
5
...

2k − 1

But in practice, such memories are difficult to implement...
I Memories are generally made of 8-bits cells
I Adresses correspond to 8-bits elements but several

(l = m/8) elements are read simultaneously

25 / 32



Hardware Organization

With k address bits and l = 4:

←8→ ←8→ ←8→ ←8→
address offset 0 offset 1 offset 2 offset 3

0


2k

4

4
8

12
16
...

2k

4 − 1 ︸ ︷︷ ︸
4

26 / 32



Von Neumann on Memory

Ideally one would desire an indefinitely large memory capacity
such that any particular [...] word would be immediately
available. [...] We are [...] forced to recognize the possibility of
constructing a hierarchy of memories, each of which has
greater capacity than the preceding but which is less quickly
accessible.

Preliminary Discussion of the Logical Design of an Electronic
Computing Instrument, 1946

27 / 32



Memory Hierarchy

Capacity/Latency trade-off

⇓

I a fast memory is small
I a big memory is slow

This is due to the laws of physics and cannot be overcomed!

28 / 32



Memory Hierarchy

29 / 32



Memory Hierarchy1

1Numbers as of 2012
30 / 32



Latencies — order of magnitude

31 / 32



Memory hierarchies in practice

In “real computers”, a typical memory hierarchy is generally
composed of 5 different levels:

1. Registers
2. Cache memories (managed by the CPU)

I L1
I L1-D
I L1-Ins

I L2
I L3

3. Main memory (RAM)
4. Storage devices (ROM, Hard Drives, Removable Drives...)
→ Virtual memory (managed by the Operating System)

5. Network/Internet storage

32 / 32


	Sequential behaviors
	Registers
	n-bit Registers
	Addressable memories

