Hardware Architecture - Digital Circuits
Introduction

Lecturer: Guillaume Beslon
(Lecture adapted from Lionel Morel)

3IF - Computer Science and Information Technologies - INSA Lyon

Fall 2025

/44

These slides are available at:
https://moodle.insa-1lyon. fr/course/view.php?id=1442

44

https://moodle.insa-lyon.fr/course/view.php?id=1442

Preamble: Who am |?

Guillaume Beslon (guillaume.beslon@insa-lyon.fr)
» Professor at the INSA-Lyon “Département informatique”
» Architecture des circuits (IF-3-AC)
» Architecture des ordinateurs (IF-3-AO)
» Tronc Commun Scientifique (IF-5-TCS0) et Sciences
computationnelles (IF-5-TCS2)
» Projet Scientifique, Artistique et Technique (IF-5-P-SAT)
» Leader of the “BioTiC Team” (INRIA/CITI)
» Computational biology
» Artificial evolution
» Artificial life
» In charge of the “Lumiére et Son” (aka “Teck”) artistic
option in the département des Humanités

Beware: my main office is NOT in the computer department
— You'll find me at the “Centre Inria de Lyon”, CEI-2 building

(or at M’'Roc at lunchtime on Tuesday and Thursday ;)

Preamble: Gentle Warning

THE CONSUMER IN A CONNECTED WORLD

Brain Drain: The Mere Presence of One’s Own
Smartphone Reduces Available Cognitive Capacity

ADRIAN F. WARD, KRISTEN DUKE, AYELET GNEEZY, AND MAARTEN W. BOS

ABSTRACT Our smartphones enable—and encourage—constant connection to information, entertainment, and
each other. They put the world at our fingertips, and rarely leave our sides. Although these devices have immense po-
tential to improve welfare, their persistent presence may come at a cognitive cost. In this research, we test the “brain
drain” hypothesis that the mere presence of one’s own smartphone may occupy limited-capacity cognitive resources,
thereby leaving fewer resources available for other tasks and undercutting cognitive performance. Results from two
experiments indicate that even when people are successful at maintaining sustained attention—as when avoiding
the temptation to check their phones—the mere presence of these devices reduces available cognitive capacity. More-
over, these cognitive costs are highest for those highest in smartphone dependence. We conclude by discussing the
nractical imnlications of this smartphone-induced brain drain for ¢ decisi and < welfare

Ward, A. F,, Duke, K., Gneezy, A., & Bos, M. W. (2017). Brain drain: The mere presence of one’s own smartphone
reduces available cognitive capacity. Journal of the Association for Consumer Research, 2(2), 140-154.

4/44

Preamble: Gentle Warning

THE COMNSLMEDR IN A CONNECTENWADRIND
A. Working Memory Capacity B. Fluid Intelligence for]
86 .
Brai
Yail e 1
g
S 5w
maj H
Bu
H
ADRIAN 3 s
2
:.g 76
ABSTRA 74
each other| 2
tenual to i Desk. Pocket/Bag Other Room Desk. Pocke/Bag. Other Room
drain” hYP Phone Location Phone Location
thereby led pigure 1. Experiment 1:effect of randomly assigned phone location condition on available WMC (OSpan Score, panel 4) and functional Gf
experimen| (Corrcty Slved Raven's Matrics, panel B). Partcpants i the “desk” condition (high salienc) dislaye the lowes: avalabl cogitive
‘capacit 0se in the “other room” i . Error stanc
the temptd pacity; those in the “othe d high dard
@ temp! errors of the means. Asterisks indicate significant differences between condnum, with *p < .05 and *p < .0L.
over, th Ts-are-mgresTTOTTT grresT T T v 4 ™
nractical |mnl|rahnn< of this smartnhone-induced hrain drain for ¢ decisil kino and welfare.

Ward, A. F, Duke, K., Gneezy, A., & Bos, M. W. (2017). Brain drain: The mere presence of one’s own smartphone
reduces available cognitive capacity. Journal of the Association for Consumer Research, 2(2), 140-154.

5/44

Back to the AC lecture...

44

Context: Architectures - Systémes - Réseaux

3IF

» Semester 1:
» |F-3-AC - Architecture des Circuits (Guillaume Beslon)
» |F-3-AO - Architecture des Ordinateurs (Lionel Morel)
» |F-3-PRC - Programmation C (Frédéric Prost)

» Semester 2:

» |IF-3-SYS - Systémes d’Exploitation (Guillaume Salagnac)
» |IF-3-RE - Bases Techniques pour les réseaux (Frédérique
Biennier)

41F

» Semester 1:
» |F-4-PR - Programmation réseau (Sara Bouchenak)
» Semester 2:

» |F-4-SERE - Sécurité Réseau (Lionel Brunie)
» IF-4-PLD-COMP - Projet Compilateur (Florent de Dinechin)

AC, AO, SYS: Objectifs

Objectives (cf ECTS files)

» AC: “Discover the theoretical and practical principles
governing the operation of digital circuits, from basic logic
gates to the construction of a simple microprocessor.”

» AO: “Understanding how a modern computer works and
the fundamentals of running a program on a machine.”

» SYS: “Acquire a basic understanding of the principles of
operating system operation: sharing and protection of
hardware resources, program isolation, interaction with the
user.”

= In summary, the objective is to build a solid foundation for
the effective practice of computer science.

People — first.last@insa-lyon. fr

In order of appearance:
- Guillaume Beslon (CM, TD-TP 3IF1)
- Jonathan Rouzaud-Cornabas (TD-TP 3IF4, TP 3IF3)
- Lionel Morel (TD-TP 3IF2) — CM IF-3-AO
- Florent de Dinechin (TD-TP 3IF3)
- Louis Ledoux (TP 3IF2)
Romain Bouarah (TP 3IF4)
- Guillaume Salagnac (TP 3IF1) — CM IF-3-SYS
But permutations may happen here and there...

None of us has his office in the computer science department...

and we are all very busy!
=We organize Q/A sessions every Monday 13h-14h (room
501.208) to answer your questions...

44

What is there in a computer'?

'source: http://www.ifixit.com
10/44

http://www.ifixit.com

What is there in a computer??

DRAM
Voltage conversion booster

. 1O controller
MAC/baseband/radio (FM) transceiver

. Audio codec

device driver

2source: http://uww.ifixit.com
11/44

http://www.ifixit.com

What is there in a computer3?

NAND Flash
3G/4G modem
RF Amp module

. Power supply IC

A5X processor

Ssource: http://uww.ifixit.com
12/44

http://www.ifixit.com

What is there in a computer?

In AC we will neglect all the “extra-components” (screen,
battery, power supply...) to focus on the computation machinery
(i.e. mainly on the processor and a bit on the memory)

We will focus on a single question: how are computers
organized such that they are able to efficiently execute
programs and such that we are able to efficiently
program/control them!

BUT remember that:

» 85% of the environmental impact of a computer is due to
its manufacturing and shipping,

» Computers require rare resources for their manufacture
(lithium, gold, silver, neodymium, etc.), whose extraction
has considerable ecological and social impacts.

— UE 3IF-REVE and 4IF-EESN

13/44

Computer Architecture: What do you know so far?

You (probably) know that computers manipulate Os and 1s...

0110010001
0101110101
0101001010
0010010010
1011010101
0100101010
1010100101
0010101110
0101001001
0010100100
1100101010
0011110110
0101001001
1101011010
1100100111

14/44

Computer Architecture: What do you know so far?

But how can we build computers that execute programs if we
only have 0s and 1s?

0110010001
0101110101

0101001010

0010010010

1011010101

0100101010

1010100101

0010101110 <
0101001001
0010100100
1100101010
0011110110
0101001001

1101011010
1100100111

15/44

Computer Architecture: What do you know so far?

You (probably) know that Os and 1s are actually electrical levels

In wires...
0110010001
0101110101
0101001010
0010010010
1011010101
0100101010
1010100101
0010101110
0101001001
0010100100
1100101010
0011110110
0101001001
1101011010
1100100111

Y

16/44

Computer Architecture: What do you know so far?

But the problem holds! How can we build computers “simply”

from wires?

0110010001
0101110101
0101001010
0010010010
1011010101
0100101010
1010100101
0010101110
0101001001
0010100100
1100101010
0011110110
0101001001
1101011010
1100100111

17/44

Computer Architecture: What do you know so far?

To answer the question we will focus on a some universal
design principles invented in the early times of computer

science...
0110010001
0101110101
0101001010
0010010010
1011010101
0100101010
1010100101
0010101110
0101001001
0010100100
1100101010
0011110110
0101001001
1101011010
1100100111

The EDVAC (Electronic Discrete Variable Automatic Computer), 1945

18/44

Computer Architecture: What do you know so far?

The following courses (3-IF-AO, 3-IF-SYS...) will then
transpose these principles into modern machines...

0110010001
0101110101
0101001010
0010010010
1011010101
0100101010
1010100101
0010101110
0101001001
0010100100
1100101010
0011110110
0101001001
1101011010
1100100111

The EDVAC (Electronic Discrete Variable Automatic Computer), 1945

19/44

John von Neumann and the EDVAC

Most modern computers use
the “von-Neunann architecture”.
The ultimate aim of the AC lec-
ture is to understand this ar-
chitecture and how one can
build a von-Neumann computer
by “simply” connecting electric
wires...

20/44

First Draft Report on the EDVAC (1945)

21/44

The considerations which follow deal with the
structure of a very high speed automatic
digital computing system, and in particular
with its logical control.

An automatic computing system is a (usually
highly composite) device, which can carry
out instructions to perform calculations of
a considerable order of complexity—e.g. to
solve a non-linear partial differential equation
in 2 or 3 independent variables numerically.

bold faces added by us :)

22/44

Basic concepts in von Neumann'’s architecture

Example: Computing the sum of all integers from 1 to 1007
int main()

1
2
3
4
5
6
7
8
)
1

{

int x,1i;

x = 0;

i=20;

for (i = 1; i<100;i++)

x+1;

return x;

23/44

Let’s transform this high level list of orders into
elementary instructions

int main()

int x,i;

x = 0;

i=0;

for (i = 1; i<100;i++)

HOONIAU S WN -

0x0000000100000£70 <+0>: $rbp

0x0000000100000£71 <+1>: $rsp, $rbp
0x0000000100000£74 <+4>: $0x0,-0x4 (%$rbp)
0x0000000100000£7b <+11>: $0x0,-0x8(%rbp)
0x0000000100000£82 <+18>: $0x0,-0xc(%rbp)
0x0000000100000£89 <+25>: $0x1,-0xc ($rbp)
0x0000000100000£90 <+32>: $0x64,-0xc(%rbp)
0x0000000100000£94 <+36>: 0x100000fbl <main()+65>
0x0000000100000£9a <+42>: -0x8(%rbp) ,$eax
0x0000000100000£9d <+45>: $0x1,%eax
0x0000000100000£fa0 <+48>: %eax,-0x8(%rbp)
0x0000000100000£fa3 <+51>: -0xc(%rbp),%eax
0x0000000100000fa6 <+54>: $0x1, %eax
0x0000000100000£a9 <+57>: %eax,-0xc(%rbp)
0x0000000100000fac <+60>: 0x100000£90 <main()+32>
0x0000000100000£fb1l <+65>: -0x8 (%rbp) ,%eax
0x0000000100000fb4 <+68>: $rbp

24/44

And code theses instructions with (weird) numbers...

0x0000000100000£70
0x0000000100000£71
0x0000000100000£74
0x0000000100000£7b
0x0000000100000£82
0x0000000100000£89
0x0000000100000£90
0x0000000100000£94
0x0000000100000£9a
0x0000000100000£9d
0x0000000100000£a0
0x0000000100000£a3
0x0000000100000£a6
0x0000000100000£a9
0x0000000100000fac
0x0000000100000£b1
0x0000000100000£b4

0000£70
0000£80
0000£90
0000£a0
0000£b0

<+0>:

<+1>:

<t+4>:

<+11>:
<+18>:
Sh25>s
<+32>:
<+36>:
<+42>:
<+45>:
<+48>:
<+51>:
<+54>:
<+57>:
<+60>:
<+65>:
<+68>:

$rbp

%rsp, $rbp

$0x0,-0x4 (%rbp)
$0x0,-0x8(%rbp)
$0x0,-0xc (%rbp)
$0x1,-0xc(%rbp)
$0x64,-0xc(%rbp)
0x100000£fbl <main()+65>
-0x8(%rbp) ,%eax
$0x1,%eax

$eax,-0x8 (%rbp)

-0xc (%rbp),%eax
$0x1,%eax
%eax,-0xc(%rbp)
0x100000£90 <main()+32>
-0x8(%rbp) ,%eax

25/44

And code theses instructions with (weird) numbers...

0x0000000100000£70
0x0000000100000£71
0x0000000100000£74
0x0000000100000£7b
0x0000000100000£82
0x0000000100000£89
0x0000000100000£90
0x0000000100000£94
0x0000000100000£9a
0x0000000100000£9d
0x0000000100000£a0
0x0000000100000£a3
0x0000000100000£a6
0x0000000100000£a9
0x0000000100000fac
0x0000000100000£b1
0x0000000100000£b4

0000£70
0000£80
0000£90
0000£a0
0000£b0

<+0>:

<+1>:

<t+4>:

<+11>:
<+18>:
Sh25>s
<+32>:
<+36>:
<+42>:
<+45>:
<+48>:
<+51>:
<+54>:
<+57>:
<+60>:
<+65>:
<+68>:

$rbp

%rsp, $rbp

$0x0,-0x4 (%rbp)
$0x0,-0x8(%rbp)
$0x0,-0xc (%rbp)
$0x1,-0xc(%rbp)
$0x64,-0xc(%rbp)
0x100000£fbl <main()+65>
-0x8(%rbp) ,%eax
$0x1,%eax

$eax,-0x8 (%rbp)

-0xc (%rbp),%eax
$0x1,%eax
%eax,-0xc(%rbp)
0x100000£90 <main()+32>
-0x8(%rbp) ,%eax

26/44

At any rate a central arithmetical part of
the device will probably have to exist, and

this constitutes the first specific part: CA.

We need a component to execute these elementary
instructions = This is the Datapath. It contains an Arithmetic
and Logic Unit able to perform basic numerical computations.

27/44

von Neumann architecture

Datapath
ALU

28/44

A distinction must be made between the
specific instructions given for and defining a
particular problem, and the general control
organs which see fto it that these instruc-

tions—no matter what they are—are car-
ried out [...] By the central control we mean
this latter function only, and the organs which
perform it form the second specific part: CC.

We need a component to sequence the elementary instructions
= This is the Control Unit.

29/44

von Neumann architecture

Control
Unit

Datapath
ALU

30/44

von Neumann architecture

The Datapath and the Control Unit together form the Central
Processing Unit of the computer

Central Processing
Unit (CPU)

Control
Unit

Datapath
ALU

31/44

At any rate the total memory consti-

tutes the third specific part of the de-
vice: M.

=Memory able to store a large number of ... numbers!

32/44

von Neumann architecture

Control
Unit

Datapath
ALU

33/44

von Neumann architecture

Of course we need all these components to communicate with
each others... = Buses

Central Processing

Unit (CPU) Control

Control
Unit Address . Memory

L

A

4 2 Binary code of
\ A 4 Data o| instructions + data

Datapath
ALU

A

34/44

von Neumann architecture

75 years after being articulated, the von Neumann archi-
tecture is still the basic architecture of most modern computers...

Central Processing

Unit (CPU) Control

Control
Unit Address B

A

4 2 Binary code of
\ A / Data | instructions + data

A

Datapath
ALU

A

35/44

Conclusion: A computer is made of 3 (+1) elements

1. A Memory that contains the program and its data (von
Neumann architecture).

2. A Datapath. It is a computing tool that is able to perform
various computations.

3. A Control Unit. It reads the program one instruction at a
time and controls the datapath such that it computes the
result of the current instruction.

+1 Buses that enable to exchange data between the three
components.

The objective of the AC lecture is to understand how we can
build these elements (starting from very basic components) and
assemble them to build a (simple) computer.

36/44

Coarse-grain plan for AC lecture

In AC, we will take a bottom-up approach with six steps:

1.
2.

L

How information is coded (binary)?

How can we process an information to compute other
information from it (e.g. simple mathematical functions)?

How can we memorize information?
How to build machines with "simple" behaviors?
How to build machines with "complex" behaviors?

How to build von Neumann machines able to execute a
sequence of instructions?

Through the end of the course, we will build a (very) simple
programmable machine

The “Computer Architecture” course will further this
discussion towards “real” computers.

37/44

IF-3-AC: Expected Skills

» Coding and decoding information in binary
» Building combinatorial circuits from Boolean functions
» Building simple memory elements (registers, memories)

» Modelling simple sequential behaviour with Finite-State
Machines (FSM)

» Modelling complex sequential behaviour with
Algorithmic-State Machines (ASM)

» Building a von Neumann machine able to execute simple
programs

» Understanding basic performance issues of digital circuits

38/44

Readings

Protopoly

INSA

IF AC/AO 201572016
Architecture des ordinateurs

Paul Amblard - Jean-Cloude Fernander
abienne Lognier Florence Maraninchi
Pasca Scrd « Philippe Waille

ENIEURS

Architectures logicielles
et mateérielles

Cours, études de cas
et exercices corrigés

) R
[oaxo)

F. de Dinechin, protopoly — (avail-

able on Moodle)

D. Patterson & J. Hennessy, Com-
puter Organization and Design —
(the bible but quite expansive!)

P. Amblard et al, Architecture Logi-
cielle et Matérielle — (out of print
but you can easily find it on Inter-
net)

39/44

All you need is on Moodle (and regularly updated)

€l

INSAE

Accueil Tableau de bord Mes cours Aide v Accés rapides v

Informatique / Informatique / Informatique / Informatique / IF-3
3IF - Architecture des circuits numériques

Cours Paramétres Participants Notes Rapports Plus v

v Organisation ¢
Course Info

Code: IF-3-AC

ECTS: 2.0

Lectures Hours: 9hrs (6*1.5hrs)

Lab Hours: 16hrs (2*2hrs + 3*4hrs)

Personal Work: 25hrs

Language: spoken French, lecture slides in English, labworks in French

ECTS description: EN/FR

https://moodle.insa-1lyon.fr/course/view.php?id=1442

40/44

https://moodle.insa-lyon.fr/course/view.php?id=1442

Practical matters

Evaluation
Final exam: December 18th - 8:30AM-10h00AM

» 20 questions, 1 point per question whatever its difficulty.
» No digital device allowed.

» One single document allowed: 1 A4 paper sheet with
personal notes.

Self-evaluation

Moodle quizzes will be regularly proposed to allow
self-evaluation.

They will NOT be evaluated but we urge you to use them to
self-evaluate your mastering of the module.

Q/A sessions
Every Monday from 1 to 2PM, Room 501.208
(Starting September 29th).

41/44

Organization of lab. works
5 lab sessions

» 2 "Travaux Dirigés" (TDs, 2h each)

>

3 "Travaux Pratiques" (TPs, 4h each)

Organization of the lab sessions

>

We will use the “Digital” simulation platform (free, multi-OS,
digital circuits simulator).

Booklet with all lab instructions for the module is available
on Moodle (no paper-version will be provided).

Labwork will not be evaluated. Learning is the unique
objective ...

Final objective: Build a (very simple — 4 instructions!)
“‘computer” able to control a scrolling display.

Important: You are asked (actually summoned!) to start
working on the labworks before the lab sessions.

42/44

Conclusion: Gentle warning

In this lecture we will manipulate highly non-intuitive concepts
and iteratively build on these concepits...

1. All teachers say that but attending the lectures REALLY
helps!

2. If you start to feel lost, don’t wait! Come to the next Q/A
sessions to have things explained...

43/44

Demo time

44/44

	Context
	Introduction

