From Sequential Circuits to “Real” Computers

Lecturer: Guillaume Beslon
(Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon

Fall 2025

/47

Introduction

v

What we have done so far is implementing “simple” FSM
by using Moore Machines
BUT FSM cannot manipulate complex data (e.g., integers)
because this would require too many states...
» Hum ... but digital circuits (and of course computers) DO
deal with data!
We need a methodology to have both:
» The "security" of FSM (formal description of the behavior),
» The ability to manipulate complex data.
to build circuits manipulating data (typically integers) and
ultimately real computers.

v

v

= Algorithmic State Machines, aka control-data separation

47

From FSM to ASM

» FSM can have a VERY large number of states (typically
larger than 232)

» Conceiving such an FSM with a Moore machine is
theoretically possible but practically impossible

» All machines dealing with numerical values typically have a
very large number of states

» ASMs (Algorithmic State Machines) devide this large
number of states between two machines:

» A datapath dealing with numerical values — large number
of states, simple flow

» A controller dealing with control flow — low number of
states, complex flow

» Both systems are synchronized on the same Clock
» Control-Data separation principle

The Control-Data separation principle

From FSM to ASM: a simple example, the stopwatch

o B
3 ’”/’?ffﬁa;}ﬂ}éili'\\!lfuﬁﬁ\‘\@\/“\

5/47

A Sequential Circuit within the Control-Data
Separation Scheme

Orders

ASM

Data in

Commands .

Acknowledgments

Data out

»
»

6/47

Datapath

» Offers computational ressources needed for the
operations to be implemented

» Typically includes arithmetic and logical components
(possibly integrated into an ALU — Arithmetic and Logic
Unit) and registers connected by buses and multiplexers

» Exchanges data (in/out) with the outside of the circuit
» Performs all operations on data

» But typically doesn’t know which operation to perform and
when to perform it

» Clock drives registers (synchronous circuits)

The stopwatch datapath

RESET [O}
cLk [O}

COUNT

@ data

Control

» Knows which operations to perform and when

» Doesn’t deal with data directly (doesn’t no how to do the
operations)
» Typically implemented as a Finite State Machine, i.e., an
automaton (see lecture 5)
Input alphabet: Orders (from the outside of the circuit) and
Reports (from the datapath)
Output alphabet: Acknowledgements (to the outside of
the circuit) and Commands (to the datapath)

» Clock drives automaton state changes (synchronous
circuits)

Control of the stopwatch
| = {BUTTON}
O = {COUNT, RESET}

10/47

Control of the stopwatch
| = {BUTTON}
O = {COUNT, RESET}

11/47

Control of the stopwatch
| = {BUTTON}
O = {COUNT, RESET}

12/47

Control (cont'd)

Control is just about implemeting a Moore machine (no more,
no less !!). Biggest difficulty is to not forget any control
signal:

» Between Control and outside world (Orders,
Acknowledgments)

» Between Control and Datapath (Commands, Reports)

VERY IMPORTANT
» Commands will control datapath registers through their
enable pin (NOT by modifying the clock signal!!!!)
» Commands control datapath routing through mutiplexers

» Control “never” has access to the data. It only receives
Reports computed by the datapath. Reports are used to
choose automaton transitions.

13/47

Control (cont'd)
Then control is implemented as a classical FSM (remember
lecture 5)
| = Orders U Reports
O = Acknowledgements U Commands
Q = set of states
T = Q x (Orders U Reports) — Q (transition function)
F = Q — (Acknowledgements U Commands) (output
function)

v

vVvyYyYyywy

Current
tat
state F

e e e e e e e e e e e e e e e ————— - = 14/47

Reminder: Control of the stopwatch
| = {BUTTON}
O = {COUNT,RESET}

gt
i Bt

15/47

Transition function for the stopwatch control

/
So

/
1

/
)

Button

S1 S

So

Next State

Q

a1

Q

ai

Q

a3

Qs

a3

Q4

as

Qo

as

Button

~—

State

Qo

Qo

o)

a

Q2

Qo

a3

a3

Q4

Q4

as

as

16/47

Output function for the stopwatch control

State || Reset | Count S 81 Sp || Reset | Count
Qo 1 0 0O 0 O 1 0
a1 0 1 0O 0 1 0 1
Qo 0 1 =0 1 O 0 1
g3 0 0 o 1 A1 0 0
Qa 0 0 1 0 O 0 0
gs 1 0 1 0 1 1 0

17/47

Control circuit for the stopwatch

buten [OF———

0
a3 é[g

18/47

Stopwatch final circuit

I

datapath_stopwatch R iy

RESET
—tCLK

~1COUNL

control stopwatc1
l !} buttonRESET

CLK COUNT

19/47

Demo Time!

20/47

Conception Methodology

1. Start with:
» The algorithm describing the expected behavior
» The general scheme of an ASM
2. Using knowledge about circuit’s environment and expected
functionalities, identify Orders and Acknowledgements.
3. Build the Datapath:
» Identify registers and computational resources (ALU)
» Connect them such that all computations can be performed
(including reports computation)
4. Design Datapath/Control interface (Commands and
Reports signals). Interface will connect:
» Commands: Outputs of the automaton to control the
datapath (registers, plexers, ALU...)
» Reports: Synthetic indicators of datapath state (e.g. ALU
Flags). Sent to control
5. Transform the (unformal) algorithm into a Moore machine:
» |ldentify states and transitions
» Associate Acknowledges and Commands to each state.

21/47

Example: a telemeter

Let’s build a telemeter with digital display.

Usage:
» User presses a button
Telemeter emits an ultrasound impulse
Measures the echo travel time
Travel time is translated into a distance

v

v

v

v

Distance is displayed on screen

22/47

Telemeter: definition of input/output signals

Inputs are:

» GO: triggers a new measure. Telemeter waits for GO to be
1 to start a new measure.

» Receive: 0 when the ultrasound sensor hears “nothing”, 1
when sensor hears an echo.

Outputs are:

» Emit: Needs to be set to 1 during one clock cycle to emit
an ultrasound impulse.

» Distance: unsigned, 16 bits precision (but maximum value
can be different from 65,535) due to time—distance
convertion); ® until Receive.

» OK: 0 whenever the telemeter counts, 1 as soon as
Distance is valid. Stays 1 until we ask for a new measure

» ERR: 1 if echo “never” comes back, ® otherwise.

23/47

Telemeter: Algorithm

tant_que Go==
fin_tant_que
tant_que 1
temps =0
emit
tant_que receive==0 and carry==
(temps, carry) = temps + 1
fin_tant_que
si carry ==
tant_que Go==1
error
fin_tant_que
tant_que Go ==
error
fin_tant_que
fin_s
si carry == 0 and receive ==
tant_que Go ==
oK
distance = f(temps)
fin_tant_que
tant_que Go ==
oK
distance = f(temps)
fin_tant_que
fin_s
fin_tant_que

24/47

Telemeter: from algorithm to datapath

tant_que Go==0
fin_tant_que
tant_que 1
temps =0
emit
tant_que receive==0 and carry==0
(temps, carry) = temps + 1
fin_tant_que
sicarry==1
tant_que Go==1
error
fin_tant_que
tant_que Go ==
error
fin_tant_que
fin_si
si carry == 0 and receive ==
tant_que Go ==
oK
distance = f(temps)
fin_tant_que
tant_que Go ==
oK
distance = f(temps)
fin_tant_que E
fin_si
fin_tant_que

Load

g
&
©

[O] Reset

=

s

© Distance

25/47

Telemeter: from algorithm to control

tant_que Go==0 q
fin_tant_que 0
tant_que 1

. o Go
emps =
emit }q1 1 Q

tant_que receive==0 and carry==0
(temps, carry) = temps + 1 q,
fin_tant_que
si carry ==
tant_que Go==1 l
error rds3
fin_tant_que
tant_que Go ==
error N
fin_tant_que J
fin_si
si carry == 0 and receive ==
tant_que Go ==
oK
distance = f(temps) r9s
fin_tant_que
tant_que Go ==
oK g
distance = f(temps) J
fin_tant_que
fin_si
fin_tant_que

26/47

Demo Time!

27147

Telemeter: final circuit (one-hot-coding state encoding)

l??gi

O

utput Function_
@ >—I—. eMIT
ab———

‘ :D—Q ERROR
Do«

CREELEL
0

28/47

Final sprint: building a real (but simple) computer

» Great, we have all the necessary elements to build a
“Real” computer

» The only thing we still need is a way to organize things in
order to execute any program rather than always the
same algorithm...

» But a program is a sequence of instruction. Hence,
executing it can be “simply” viewed as an algorithm:

- Repeat forever
- read an instruction
- execute it
- go to the next one

» We will use Control-Data separation to build a
sequential circuit which function will be to compute
the execution of a sequence of instructions

= von Neumann architecture

29/47

Von Neumann’s computer

address

control

data

30/47

Von Neumann and the EDVAC

31/47

First Draft Report on the EDVAC (1945)

32/47

The considerations which follow deal with the
structure of a very high speed automatic
digital computing system, and in particular
with its logical control.

An automatic computing system is a (usually
highly composite) device, which can carry
out instructions to perform calculations of
a considerable order of complexity—e.g. to
solve a non-linear partial differential equation
in 2 or 3 independent variables numerically.

bold faces added by me :)

33/47

Basic concepts in von Neumann’s architecture

» A von Neumann machine executes instructions
» A program is a list of instructions ordered sequentially
» This sequence is the control flow

All possible instructions form the instruction set
There are three main types of instructions
» Data management (load, move...)
» Arithmetic and Logic (Add, Mul, Not, SHL, Sub...)
» Flow control (Jump, JGE, JLE...)
Each instruction of the program is stored in the computer
memory as a binary vector composed of its opcode
(what it does) and of its operands
The operands can be located at different places in the
computer (in the memory, in registers...).
» The way an operand is located is called the addressing
mode. Typical computers have many addressing modes!
» The opcode indicates both the instruction and its
addressing mode

v

v

v

v

34/47

More on addressing modes

» Typical computers have many addressing modes
» Different addressing modes used for different purposes
Immediate Instruction contains the operand value
(constant)
Direct Instruction contains the location (memory
address or register) of the operand
Indirect Instruction contains a location (memory
address or register) that contains the address
of the operand
Indexed Effective address = base address (stored in a
register) + offset (given with the instruction)
Implicit Operand is implied by the instruction itself

» The opcode specifies both the instruction and the
addressing mode.

» In assembly code, addressing modes are indicated by
writing conventions (eg: $0x64, %eax, -0x8(%rbp), ...)

35/47

Basic concepts in von Neumann'’s architecture

1
2
3
4
5
6
7
8
)
1

int main()

{

int x,1i;

x = 0;

i=20;

for (i = 1; i<100;i++)

x+1;

return x;

36/47

Basic concepts in von Neumann'’s architecture

HOUOSaAWU & WN

0x0000000100000£70
0x0000000100000£71
0x0000000100000£74
0x0000000100000£7b
0x0000000100000£82
0x0000000100000£89
0x0000000100000£90
0x0000000100000£94
0x0000000100000£9a
0x0000000100000£9d
0x0000000100000£a0
0x0000000100000£a3
0x0000000100000£a6
0x0000000100000£a9
0x0000000100000fac
0x0000000100000£b1
0x0000000100000£b4

int main()

{

<+0>:
<+1>:
<+4>:
ShISERS
<+18>:

<+45>:
<+48>:

<+68>:

return x;

1; i<100;i++)

$rbp

$rsp,%rbp
$0x0,-0x4(%rbp)
$0x0,-0x8(%rbp)
$0x0,-0xc(%rbp)
$0x1,-0xc(%rbp)
$0x64,-0xc(%rbp)
0x100000£fbl <main()+65>
-0x8 (%rbp),%eax
$0x1,%eax
%eax,-0x8(%rbp)
-0xc(%rbp),%teax
$0x1,%eax
%eax,-0xc(%rbp)
0x100000£90 <main()+32>
-0x8 (%rbp),%eax

$rbp

37/47

Basic concepts in von Neumann'’s architecture

0x0000000100000£70
0x0000000100000£71
0x0000000100000£74
0x0000000100000£7b
0x0000000100000£82
0x0000000100000£89
0x0000000100000£90
0x0000000100000£94
0x0000000100000£9a
0x0000000100000£94d
0x0000000100000fa0
0x0000000100000£fa3
0x0000000100000£a6
0x0000000100000£a9
0x0000000100000fac
0x0000000100000£b1
0x0000000100000£b4

0000£70
0000£80
0000£90
0000£fa0
0000£b0
0000£c0

<+0>:

<+1>:

<t+4>:

<+1ll>:
<+18>:
<+25>1
<+32>:
<+36>:
<+42>:
<+45>:
<+48>:
<+51>:
<+54>:
<+57>:
<+60>:
<+65>:
<+68>:

$rbp

%rsp,$rbp
$0x0,-0x4(%rbp)
$0x0,-0x8(%rbp)
$0x0,-0xc(%rbp)
$0x1,-0xc(%rbp)
$0x64,-0xc(%rbp)
0x100000fbl <main()+65>
-0x8(%rbp),%eax

$0x1, %eax
$eax,-0x8(%rbp)
-0xc(%rbp),%eax

$0x1, %eax
$eax,-0xc(%rbp)
0x100000£90 <main()+32>
-0x8 (%rbp), $eax

$rbp

38/47

Basic concepts in von Neumann'’s architecture

0x0000000100000£70
0x0000000100000£71
0x0000000100000£74
0x0000000100000£7b
0x0000000100000£82
0x0000000100000£89
0x0000000100000£90
0x0000000100000£94
0x0000000100000£9a
0x0000000100000£94d
0x0000000100000fa0
0x0000000100000£fa3
0x0000000100000£a6
0x0000000100000£a9
0x0000000100000fac
0x0000000100000£b1
0x0000000100000£b4

0000£70
0000£80
0000£90
0000£fa0
0000£b0
0000£c0

<+0>:

<+1>:

<t+4>:

<+1ll>:
<+18>:
<+25>1
<+32>:
<+36>:
<+42>:
<+45>:
<+48>:
<+51>:
<+54>:
<+57>:
<+60>:
<+65>:
<+68>:

$rbp

%rsp,$rbp
$0x0,-0x4(%rbp)
$0x0,-0x8(%rbp)
$0x0,-0xc(%rbp)
$0x1,-0xc(%rbp)
$0x64,-0xc(%rbp)
0x100000fbl <main()+65>
-0x8(%rbp),%eax

$0x1, %eax
$eax,-0x8(%rbp)
-0xc(%rbp),%eax

$0x1, %eax
$eax,-0xc(%rbp)
0x100000£90 <main()+32>
-0x8 (%rbp), $eax

$rbp

39/47

Executing programs — The Von Neumann Cycle

Given the structure of a program in a von Neumann’s machine,
the algorithm to execute it is (astonishingly) simple:

Do forever:
Fetch Instruction
Decode Instruction
Execute Instruction

A von Neumann’s machine an ASM that executes this algorithm
(the “von Neumann cycle”) such that:

Fetch Copy the current instruction bit-vector from the
memory to the processor and compute the
address of the next one

Decode Use the instruction opcode to prepare the
DataPath

Execute Process the data in the DataPath such that the
instruction does what is has to do

40/47

von Neumann architecture — the control automaton

IR=0x44

ExecADD

41/47

von Neumann architecture — The datapath

Clock

l-——

llnit

Program
Counter

Instruction
Register

0010..0 Con?putation
Registers

01001..0
01010..0
Read /Write
Data Bus
m
Address Bus 11110..0
4 11100...1

Processor

n

addresses

Programs

AW N =

Data

2" —1

42/47

von Neumann architecture — The datapath

In a von Neumann architecture, the DataPath contains some
FUNDAMENTAL elements:

» The Program Counter (PC) stores the address of the
current/next instruction

» The Instruction Register (IR) stores the binary vector of
the (opcode of the) instruction that is being executed

» Registers temporarily store numerical data in the
processor

» The Arithmetic and Logic Unit, a combinatorial circuit
that is able to perform various computations (Add, Sub,
SHL...) on one or two operands. It has two outputs:

» The result of the computation

» A series of Flags that indicates whether the result is Zero
(Z) or Negative (N) and if the computation has produced a
Carry (C) or an oVerflow (V)

» These flags are stored in a specific register (SR — Status
Register) and used by conditional jump instructions.

43/47

Von Neumann Architecture — the datapath of a real

:- __ 1 MEMORY BUS
1 r
: e 0 T
1 '
) MAR: ::] REG FILE !'| memory Port P1
i MSP430 I
1 RI: e
: R2: sRICG1 |
1 R3: cez !
: Ré: .
1 RE: !
| L '
p R6: 1
! R7: !
' S— '
' R8: | P1OUT
1] | 0x0202
1 L 1
. ml| =
: RI1: : 0x0200
1 R12: 1
1 rizl | 1 PiDIR
1 i f— 1 0x0204
1 Ri&: 1 =
' —_— '
: RIS: .
1 1
1 1
i
I L
I 1
r 1
1 >
Lawsebessaaslvassmnangermalomsspelopnapelbaaass | DATA BUS

44/47

How is this code executed?

0x0000000100000£70 <+0>: $rbp
0x0000000100000£71 <+1>: %rsp,$rbp
0x0000000100000£74 <+4>: $0x0,-0x4 (%rbp)
0x0000000100000£7b <+11>: $0x0,-0x8(%rbp)
0x0000000100000£82 <+18>: $0x0,-0xc(%rbp)
0x0000000100000£89 <+25>: $0x1,-0xc(%rbp)
0x0000000100000£90 <+32>: $0x64,-0xc(%rbp)
0x0000000100000£94 <+36>: 0x100000£fbl <main()+65>
0x0000000100000£9a <+42>: -0x8(%rbp),%eax
0x0000000100000£9d <+45>: $0x1,%eax
0x0000000100000£a0 <+48>: $eax,-0x8(%rbp)
0x0000000100000£a3 <+51>: -0xc(%rbp),%eax
0x0000000100000£a6 <+54>: $0x1,%eax
0x0000000100000£fa%9 <+57>: $eax,-0xc(%rbp)

0x0000000100000fac <+60>: 0x100000£90 <main()+32>
0x0000000100000£b1 <+65>: -0x8(%rbp),%eax
0x0000000100000£fb4 <+68>: %rbp

0000£70
0000£80
0000£90
0000£fa0
0000£b0
0000£c0

45/47

Demo Time!

46/47

That all folks!

In this course, we followed a bottom-up approach:
v/ How information is coded — binary

v/ How we can deal with this information to compute other
information from it — boolean algebra

v/ How to build combinatorial circuits implementing simple
mathematical functions

v/ How to deal with time and describe sequential behaviors
v/ How to build a small programmable machine

= The “Computer Architecture” course will further this
discussion towards “real” computers.

4747

