Combinatorial Circuits

Lecturer: Guillaume Beslon (Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon
Fall 2023

- Until now we have seen how to compute logical functions using Boole algebra
- Now, we will show how to implement these logical functions into digital circuits

Logical gates and circuits

Logical gates are the basic building blocks of digital circuits :

A logical signal is a physical mean of transmitting a truth value from one place to another. We represent them as wires.

From the outside, a logical circuit shows input and output signals: every output signal is a function of the input signals (possibly a subset of).

Assembly rules - combinational circuits

Combinatorial Logical Circuits (CLC) can be defined recursively:

- as a gate
- as a wire
- as a side-by-side juxtaposition of 2 CLCs
- by connecting the outputs of a CLC to inputs of another CLC
- by connecting inputs of a CLC together.

This definition forbids:

- to make cycles, because they introduce undefined behaviors, eg

- to connect outputs with each other (what if an output is 1 and the other is 0 ?)

Blackboard Example

Decoder

A decoder n to 2^{n} is a circuit with:

- n inputs e_{i}, encoding an integer $\left(e_{n-1} \ldots e_{0}\right)_{2}$;
- 2^{n} outputs s_{i}, indexed from 0 à $2^{n}-1$.

The only active output line is $s_{\left(e_{n-1} \ldots e_{0}\right)_{2}}$.

E.g., a 3-to-8 decoder

Blackboard example: Building a 2-to-4 decoder from its truth table.

Multiplexer

A 2^{n} to 1 multiplexer is a circuit with:

- 2^{n} inputs e_{i} indexed from 0 to $2^{n}-1$;
- n selection lines, encoding the integer $\left(c_{n-1} \ldots c_{0}\right)_{2}$;
- 1 output s.

When selection lines for the value $\left(c_{n-1} \ldots c_{0}\right)_{2}$,

$$
s=e_{\left(c_{n-1} \ldots c_{0}\right)_{2}}
$$

E.g., a 2^{1} to 1 multiplexer

Blackboard example: Building the 2 to 1 multiplexer from its truth table.

Blackboard example: 1 to 2 demultiplexer

(Another) Multiplexer

An k-bits 2^{n}-to- 1 multiplexer is a circuit with:

- $k \cdot 2^{n}$ inputs and n selection lines;
- k output signals

It selects k signals among $k \cdot 2^{n}$ input signals
Ex: 8-bits 2-to-1 multiplexer:

