
Information Coding

Lecturer: Guillaume Beslon
(Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon

Fall 2025

1 / 39

Remember...

Example: Computing the sum of all integers from 1 to 100?

2 / 39

The compiler transforms the code into a sequence of
instructions

3 / 39

The assembler transforms the sequence of
instructions into (weird) numbers

4 / 39

Who reads/writes what?

Programmers...
... usually manipulate complex instructions and numbers
(Integers, Reals, etc)

but at the end programs...
... are made of numbers (Integers, Reals, etc)

and machines
... only understand binary
⇒We need a way to transform numbers into binary sequences
and binary sequences into numbers.

5 / 39

Just do it...

0100101101010010010101001010111010101001010111110111
0100010001001111110010101001101010101110101110100100
1000100010100110001010101001001000100100000100010001
0011101100100101001000101001000101111001001010010001
1111001001001010100010100111001010000001011011010001
1001000101100100101001000101100100011111001001001010
0110001010101001001000100100000001000100010011101100
1001010010001100100100101010001010011100100010000001
0110110100011001000101001001010010001011010010001111
1001001001010011000101010010101000101001110010001000
0001011011010001100100010110010010100100010110100100
01111100100100101001100010101010010010001001...

6 / 39

Bit vectors (aka “Words”)
Basic information: the bit ∈ {0,1} (for binary digit)

Example of word: 01010101110010011100001111

We work with finite words of predefined length l (why?)
l is the number of bits: in practice l = 8 ∗ n
n is the number of bytes (octets in french)

When programming (on a 32 or 64 bits machine):
I n = 1 is called a byte or a char
I n = 2 is called a short
I n = 4 is usually called an int (or float if it represents a

pseudo-real number)
I n = 8 is called long long (or double for a pseudo-real)

Beware, these are only naming conventions!
So, be always sure that you know what you are talking
about!

7 / 39

Length conventions help

Example with 32 bits words (4 bytes)
0100101101010010010101001010111010101001010111110111
0100010001001111110010101001101010101110101110100100
1000100010100110001010101001001000100100000100010001
0011101100100101001000101001000101111001001010010001
1111001001001010100010100111001010000001011011010001
1001000101100100101001000101100100011111001001001010
0110001010101001001000100100000001000100010011101100
1001010010001100100100101010001010011100100010000001
0110110100011001000101001001010010001011010010001111
1001001001010011000101010010101000101001110010001000
0001011011010001100100010110010010100100010110100100
01111100100100101001100010101010010010001001...
But we still need to transform binary words into numbers...

8 / 39

Natural numbers in base 2 (Unsigned integers)

Let x be a vector of n bits:
xn−1, xn−2, · · · , x1, x0, with xi ∈ 0,1 (in base 2).

Using positional notation1 we can interpret the value of x as a
natural number:

x =
n−1∑
i=0

xi · 2i

2n different values can be represented:

0 ≤ x ≤ 2n − 1

1Note that positional notation is what you use on an everyday basis when
you manipulate decimal numbers. Always remember that mechanisms are
similar (see the ’protopoly’ for a generalization to base β > 1)

9 / 39

Blackboard examples

10 / 39

LSB: Least Significant Bit (Byte)

LSBit is the bit position in a binary integer giving the units
value, that is, determining whether the number is even or odd2.

LSByte is the byte in that position of a multi-byte number which
has the least potential value.

2https://en.wikipedia.org/wiki/Least_significant_bit
11 / 39

https://en.wikipedia.org/wiki/Least_significant_bit

MSB: Most Significant Bit (Byte)

MSBit is the bit position in a binary number having the greatest
value3.

MSByte is the byte (or octet) in that position of a multi-byte
number which has the greatest potential value.

3https://en.wikipedia.org/wiki/Most_significant_bit
12 / 39

https://en.wikipedia.org/wiki/Most_significant_bit

Warning: MSB/LSB not to be confused with
“little-endian” and “big-endian”

I MSB/LSB are to be understood relatively to the Binary
code.

I “Little-Endian” and “Big-Endian” are ways to organise the
bytes of a word into the physical memory of a computer...

→ Comics vs. Mangas

I “Big-Endian”: The MSByte is stored first (mangas)...
I “Little-Endian”: The LSBytes is stored first (comics)...

→When you directly look at the memory content, be careful to
the “endianness” (aka “boutisme” en Français)...
→ Named after Jonathan Swift’s “Gulliver’s Travel” (1726)

13 / 39

WARNING

When computing with integers, computations are
mathematically exact EXCEPT if the value exceeds the limits of

the code (given the size of the word)...

In that case... Well, the shit hits the fan and its called an
oVerflow “V” (RIP Ariane V 501 flight)

14 / 39

Notations and important values4

We write: (xn−1, xn−2, ..., x1, x0)β
when writing x in base β.
eg:

I (101)2 = (5)10

I (1010)2 = (10)10

for n = 8:
I 256 different values
I max: 28 − 1 = 255

for n = 32:
I ≈ 4 billions different

values
I max: 232 − 1 ≈ 4× 109

for n = 16:
I 65.536 different values
I max: 216 − 1 = 65.535

for n = 64:
I A lot but not a infinite

number of values...
I max: 264 − 1 ≈ 16× 1018

4These values are fundamental to any serious computer science work!
Probably one of the rare things to be known by heart

15 / 39

Fast equivalence: the trick!

210 = 1024 ≈ 103 = 1000

Example:
232 = 230 × 22 = 2103 × 4 ≈ 10003 × 4 = 4.000.000.000

16 / 39

Binary→ Decimal Conversion

Any number p ∈ N can be represented in a unique positional
form in base 2, using n bits (with n = blog2(p)c+ 1):

(xn−1xn−2 · · · x1x0)2 :=
n−1∑
i=0

xi2i .

⇒ Binary to decimal conversion is straightforward

NB: bits are numbered from 0 to n − 1

17 / 39

Binary← Decimal Conversion

The remainder of the euclidean division of x by 2 gives the
right-most digit of its representation in base 2:

x =
n−1∑
i=0

xi2i

x = xn−1·2n−1 + xn−2·2n−2 + · · ·+ x2·22 + x1·21 + x0

=
(
xn−1·2n−2 + xp−2·2n−3 + · · ·+ x2·21 + x1

)︸ ︷︷ ︸
quotient

·2 + x0︸︷︷︸
remainder

We get all the digits of the binary representation of a natural
number x by applying euclidean divisions (by 2) to the
successive quotients until we reach 0 as a quotient.

NB: This gives least-significant bits first!

Again, see “poly” for a generalization to any base β > 1
18 / 39

Binary← Decimal Conversion - example

To convert n = (423)10 to binary, we

423 = 211 × 2 + 1
211 = 105 × 2 + 1
105 = 52 × 2 + 1
52 = 26 × 2 + 0
26 = 13 × 2 + 0
13 = 6 × 2 + 1
6 = 3 × 2 + 0
3 = 1 × 2 + 1
1 = 0 × 2 + 1

From this we deduce that: (423)10 = (110100111)2

19 / 39

Blackboard examples

20 / 39

Fine, we are able to represent natural integers...
What about signed integers?

21 / 39

Signed Integers?

Two ways of representing −x :
I 1 bit for the sign, the rest for |x |

xn−1 =

{
0 if x ≥ 0,
1 if x < 0. and (xn−2, xn−3, . . . , x1, x0) = |x |

I Pros: Simple to understand
I Cons: 2 writings for 0
I Cons: hardware implementation 6= unsigned integers

I Two’s complement
I Cons: Less easy to understand
I Pros: numbering and hardware implementation is

unchanged
→ Used in 99.99% of digital circuits5

5But other solutions are also used, e.g. for floating values...
22 / 39

Two’s Complement - math
I Let x be a vector of n bits: xn−1, xn−2, · · · , x1, x0, with

xi ∈ 0,1
The value of x interpreted as a signed integer is:

x = −xn−12n−1 +
n−2∑
i=0

xi2i .

I Still only 2n different values can be represented for a word
of size n

I oVerflow may still happen but NOT AT THE SAME VALUE
than for natural integers:

−2n−1 ≤ x < 2n−1 − 1

e.g. for 32 bits,

−2.147.483.648 ≤ x < 2.147.483.647

23 / 39

Two’s Complement - intuition6

0000
0001

0010

0011

0100

0101

0110
0111

1111
1110

1101

1100

1011

1010

1001
1000

0
1

2

3

4

5

6
7

−1
−2

−3

−4

−5

−6

−7
−8

+

−

6credit: Benoît Lopez
24 / 39

Two’s Complement - compute the opposite of x

I The opposite of a number is obtained by inverting all the
bits of the word, then adding 1.

I Mathematically, if:

x = xn−1, xn−2, · · · , x1, x0

then
−x = (xn−1, xn−2, · · · , x1, x0) + 1

with a being the complement of bit a:

a =

{
1, when a = 0
0, when a = 1

I This algorithm computes the opposite of a number, being it
initially positive or negative!

25 / 39

Blackboard examples

26 / 39

Number Extension

How do we assign a n-bits vector to an m-bits vector?

I n > m , truncate→ lose most significant bits
I n < m, requires a sign extension

Consider (xn−1, xn−2, . . . , x1, x0). Let’s write it as
(ym−1, ym−2, ..., yn, yn−1, yn−2, ..., y1, y0). The value of x is
preserved if we take:

ym−1 = xn−1, ym−2 = xn−1, . . . , yn = xn−1, yn−1 = xn−1,

yn−2 = xn−2, . . . , y1 = x1, y0 = x0

27 / 39

The Hexadecimal: a useful way to deal with binary
numbers

Reading binary is a pain in the ass! In practice, everybody uses
hexadecimal:

binary hexa decimal binary hexa decimal
0000 0x0 0 1000 0x8 8
0001 0x1 1 1001 0x9 9
0010 0x2 2 1010 0xA 10
0011 0x3 3 1011 0xB 11
0100 0x4 4 1100 0xC 12
0101 0x5 5 1101 0xD 13
0110 0x6 6 1110 0xE 14
0111 0x7 7 1111 0xF 15

Max values: Useful Notation: 0x...
I on 1 byte: 0xFF = 25510
I on 2 bytes: 0xFFFF = 65.53510
I on 4 bytes: 0xFFFF.FFFF = 4.294.967.29510

28 / 39

Remember...

0100101101010010010101001010111010101001010111110111
0100010001001111110010101001101010101110101110100100
1000100010100110001010101001001000100100000100010001
0011101100100101001000101001000101111001001010010001
1111001001001010100010100111001010000001011011010001
1001000101100100101001000101100100011111001001001010
0110001010101001001000100100000001000100010011101100
1001010010001100100100101010001010011100100010000001
0110110100011001000101001001010010001011010010001111
1001001001010011000101010010101000101001110010001000
0001011011010001100100010110010010100100010110100100
01111100100100101001100010101010010010001001...

29 / 39

Same in hexadecimal is more compact and (almost)
human friendly...

4B5254AEA95F7444FCA999EBA488A62A92241113B2
5229179291F24A8A72816D19164A4591F24A62A922
40444EC948C92A29C8816D1914948B48F9253152A2
9C8816D19164A45A47C9298AA489...

30 / 39

Other interpretation of bit vectors
As soon as you are able to transform bit vectors into integers,
you can code anything providing you have a conversion table
and/or a conversion formula
→ Digital (in French “Numérique”) corresponds to this idea of
transforming everything into numbers that computers are able
to deal with...

I (Pseudo-)real numbers
I Characters/symbols: encodings such as ASCII or ISO or

UTF-8.
I images (PNG, JPEG...), music (MP3, OGG...), video

(MOV, AVI, MP4...)
I Instructions = programs in their “final” form (that which is

interpreted by HW).
I ...

All this necessitates interpreting bit vectors!
31 / 39

Floating points

Integers have a constant precision but a very low dynamics...
I Difficult to represent very large values (e.g. mass of the

universe in kilograms)
I Impossible to represent very small values (e.g. mass of an

electron in kilograms)
I Encoding of useless (and sometimes misleading) LSB

Solution: scientific notation (3× 1052 and 9,109× 10−31)

⇒Floating points are the binary analogs to scientific notation.
Pseudo-real numbers are represented by a mantissa (or
fraction) and an exponent coded by (still finite) bit vectors.

32 / 39

Floating points

Floating points are normalised by the IEEE 754 format. Mainly
two formats are used:

I Single precision (32 bits): sign (1 bit), exponent (8 bits,
including exponent sign), fraction (23 bits)→ float

I Double precision (64 bits): sign (1 bit), exponent (11 bits,
including exponent sign), fraction (52 bits)→ double

Floating points are NOT reals. The maximum number of values
one can encode with a float is still 232 = 4.294.967.296!

⇒ Floating points have precision issues that are (1) too difficult
to be listed here and (2) extremely dangerous!
e.g., in general a + b + c 6= b + a + c and b + a− b − a 6= 0
(RIP Sleipner A offshore platform, 1991)

33 / 39

Character encoding — ASCII

34 / 39

Character encoding — UTF-8

35 / 39

Instruction encoding

36 / 39

Instructions can be encoded as binary vectors with
two parts: The “opcode” and the “operands”

37 / 39

Take Home Message

1. Binary information is encoded in bit vectors which length is
of utmost importance

2. Bit vectors can be interpreted as “integers”
3. Bit vectors can be interpreted as “reals” (floating points)
4. Integers can be interpreted as almost anything

(“digitalization”)
5. Numbers in computers don’t behave exactly as in math!
6. Bit vectors can be interpreted as instructions

⇒ So we are able to code data AND instructions...
⇒We’ve made a first step towards von Neumann’s machines...

38 / 39

Next step...

Combinatorial Logic and Circuits!!

ie, how to process information encoded in bit vectors?

39 / 39

