Information Coding

Lecturer: Guillaume Beslon (Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon
Fall 2023

Remember...

Example: Computing the sum of all integers from 1 to 100 ?

1	int main()
2	\{
3	int x, i;
4	$\mathrm{x}=0$;
5	$\mathrm{i}=0$;
6	for (i = 1; i<100;i++)
7	\{
8	$x=x+1 ;$
9	\}
10	return x ;

The compiler transforms the code into a sequence of instructions

```
1 int main()
2 {
3 int x,i;
4 x = 0;
5 i = 0;
6
7
8
```

```
    for (i = 1; i<100;i++)
```

 for (i = 1; i<100;i++)
 {
 {
 x = x+1;
 x = x+1;
 }
 }
 return x;
    ```
    return x;
```


| 0x0000000100000£70 <+0>: | push | \%rbp |
| :---: | :---: | :---: |
| 0x0000000100000£71 <+1>; | mov | \%rsp, \%rbp |
| 0x0000000100000£74 <+4>: | movl | \$0x0, -0x4 (\%rbp) |
| 0x0000000100000f7b <+11>: | movl | \$0x0,-0x8 (\%rbp) |
| 0x0000000100000f82 <+18>: | movl | \$0x0,-0xc (\% \% rbp) |
| 0x0000000100000f89 <+25>: | movl | \$0x1, -0xc (\%rbp) |
| 0x0000000100000f90 <+32>: | cmpl | \$0x64, -0xc(\%rbp) |
| 0x0000000100000f94 <+36>: | jge | 0x100000fb1 <main()+65> |
| 0x0000000100000f9a <+42>: | mov | -0x8(\%rbp), \%eax |
| 0x0000000100000f9d <+45>: | add | \$0x1,\%eax |
| 0x0000000100000fa0 <+48>: | mov | \%eax, -0×8 (\%rbp) |
| 0x0000000100000fa3 <+51>: | mov | -0xc(\%rbp), \%eax |
| 0x0000000100000fa6 <+54>: | add | \$0x1, \%eax |
| 0x0000000100000fa9 <+57>: | mov | \%eax, -0xc (\%rbp) |
| 0x0000000100000fac <+60> : | jmpg | 0x100000f90 <main()+32> |
| 0x0000000100000fbl <+65> : | mov | -0x8(\%rbp), \%eax |
| 0x0000000100000fb4 <+68>: | pop | \%rbp |

The assembler transforms the sequence of instructions into numbers

```
0x00000000100000f70 <+0>: push %rbp
0x0000000100000f71 <+1>: mov
0x0000000100000f74 <+4>:
0x0000000100000f7b <+11>:
0x00000001000000f82 <+18>:
0x0000000100000f89 <+25>:
0x0000000100000f90 <+32>:
0x0000000100000f94 <+36>:
0x0000000100000f9a <+42>:
0x0000000100000f9d <+45>:
0x0000000100000fa0 <+48>:
0x0000000100000fa3 <+51>
0x0000000100000fa6 <+54>
0x0000000100000fa9 <+57>
0x0000000100000fac <+60>
0x0000000100000fb1 <+65>
0x0000000100000fb4 <+68>
0x00000001000000f70<<0>:
mov %rsp,%rbp
movl $0x0,-0\times4(%rbp)
movl $0x0,-0x8(%rbp)
movl $0x0,-0xc(%rbp)
movl $0x1,-0xc(%rbp)
cmpl $0x64,-0xc(%rbp)
jge 0x100000fb1 <main()+65>
mov -0x8(%rbp),%eax
add $0x1,%eax
mov %eax, -0x8(%rbp)
mov -0xc(%rbp),%eax
add $0x1,%eax
mov %eax,-0xc(%rbp)
jmpq 0x100000f90 <main()+32>
mov -0x8(%rbp),%eax
pop %rbp
```


Who reads/writes what?

Programmers...
... usually manipulate complex instructions and numbers
(Integers, Reals, etc)
but at the end programs...
... are made of numbers (Integers, Reals, etc)
and machines
... only understand binary
\Rightarrow We need a way to transform numbers into binary sequences and binary sequences into numbers.

Just do it...

0100101101010010010101001010111010101001010111110111 0100010001001111110010101001101010101110101110100100 1000100010100110001010101001001000100100000100010001 0011101100100101001000101001000101111001001010010001 1111001001001010100010100111001010000001011011010001 1001000101100100101001000101100100011111001001001010 0110001010101001001000100100000001000100010011101100 1001010010001100100100101010001010011100100010000001 0110110100011001000101001001010010001011010010001111 1001001001010011000101010010101000101001110010001000 0001011011010001100100010110010010100100010110100100 01111100100100101001100010101010010010001001...

Bit vectors (aka "Words")

Basic information: the bit $\in\{0,1\}$ (for binary digit)
Example of word: 01010101110010011100001111
We work with finite words of predefined length I (why?)
I is the number of bits: in practice $I=8 * n$
n is the number of bytes (octets in french)
When programming (on a 32 or 64 bits machine):

- $n=1$ is called a byte or a char
- $n=2$ is called a short
- $n=4$ is usually called an int (or float if it represents a pseudo-real number)
- $n=8$ is called long long (or double for a pseudo-real)

Beware, these are only naming conventions!
So, be always sure that you know what you are talking about!

Length conventions helps

Example with 32 bits words (4 bytes) 0100101101010010010101001010111010101001010111110111 0100010001001111110010101001101010101110101110100100 1000100010100110001010101001001000100100000100010001 0011101100100101001000101001000101111001001010010001 1111001001001010100010100111001010000001011011010001 1001000101100100101001000101100100011111001001001010 0110001010101001001000100100000001000100010011101100 1001010010001100100100101010001010011100100010000001 0110110100011001000101001001010010001011010010001111 1001001001010011000101010010101000101001110010001000 0001011011010001100100010110010010100100010110100100 01111100100100101001100010101010010010001001... But we still need to transform binary words into numbers...

Natural numbers in base 2 (Unsigned integers)

Let x be a vector of n bits:
$x_{n-1}, x_{n-2}, \cdots, x_{1}, x_{0}$, with $x_{i} \in 0,1$ (in base 2).
Using positional notation ${ }^{1}$ we can interpret the value of x as a natural number:

$$
x=\sum_{i=0}^{n-1} x_{i} \cdot 2^{i}
$$

2^{n} different values can be represented:

$$
0 \leq x \leq 2^{n}-1
$$

[^0]
Blackboard examples

LSB: Least Significant Bit (Byte)

LSBit is the bit position in a binary integer giving the units value, that is, determining whether the number is even or odd ${ }^{2}$.

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

LSByte is the byte in that position of a multi-byte number which has the least potential value.

[^1]
MSB: Most Significant Bit (Byte)

MSBit is the bit position in a binary number having the greatest value ${ }^{3}$.

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

MSByte is the byte (or octet) in that position of a multi-byte number which has the greatest potential value.

[^2]
Warning: MSB/LSB not to be confused with "little-endian" and "big-endian"

- MSB/LSB are to be understood relatively to the Binary code.
- "Little-Endian" and "Big-Endian" are ways to organise the bytes of a word into the physical memory of a computer...
\rightarrow Comics vs. Mangas
- "Big-Endian": The MSByte is stored first (mangas)...
- "Little-Endian": The LSBytes is stored first (comics)...
\rightarrow When you directly look at the memory content, be careful to the "endianness" (aka "boutisme" en Français)...
\rightarrow Named after Jonathan Swift's "Gulliver's Travel" (1726)

WARNING

When computing with integers, computations are mathematically exact EXCEPT if the value exceeds the limits of the code (given the size of the word)...

In that case... Well, the shit hits the fan and its called an oVerflow "V" (RIP Ariane V 501 flight)

Notations and important values ${ }^{4}$

We write: $\left(x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}\right)_{\beta}$ when writing x in base β. eg:

- $(101)_{2}=(5)_{10}$
- $(1010)_{2}=(10)_{10}$
for $n=8$:
- max: $2^{n}-1=255$
- 256 different values for $n=32$:
- $2^{n}-1=4.294 .967 .295$
- ≈ 4 billions different values
for $n=16$:
- $2^{n}-1=65.535$
- 65.536 different values
for $n=64$:
- $2^{n}-1=$ a lot!
- Still not a infinite number of values...
${ }^{4}$ Probably one of the rare things to be known by heart

Fast equivalence: the trick!

$$
2^{10}=1024 \approx 10^{3}=1000
$$

$$
\begin{aligned}
& \text { Example: } \\
& 2^{32}=2^{30} \times 2^{2}=2^{10^{3}} \times 4 \approx 1000^{3} \times 4=4.000 .000 .000
\end{aligned}
$$

Binary \rightarrow Decimal Conversion

Any number $p \in \mathbb{N}$ can be represented in a unique positional form in base 2 , using n bits (with $n=\left\lfloor\log _{2}(p)\right\rfloor+1$):

$$
\left(x_{n-1} x_{n-2} \cdots x_{1} x_{0}\right)_{2}:=\sum_{i=0}^{n-1} x_{i} 2^{i}
$$

\Rightarrow Binary to decimal conversion is straightforward

NB: bits are numbered from 0 to $n-1$

Binary \leftarrow Decimal Conversion

The remainder of the euclidean division of x by 2 gives the right-most digit of its representation in base 2:

$$
\begin{aligned}
x & =\sum_{i=0}^{n-1} x_{i} 2^{i} \\
x & =x_{n-1} \cdot 2^{n-1}+x_{n-2} \cdot 2^{n-2}+\cdots+x_{2} \cdot 2^{2}+x_{1} \cdot 2^{1}+x_{0} \\
& =\underbrace{\left(x_{n-1} \cdot 2^{n-2}+x_{p-2} \cdot 2^{n-3}+\cdots+x_{2} \cdot 2^{1}+x_{1}\right)}_{\text {quotient }} \cdot 2+\underbrace{x_{0}}_{\text {remainder }}
\end{aligned}
$$

We get all the digits of the binary representation of a natural number x by applying euclidean divisions (by 2) to the successive quotients until we reach 0 as a quotient.

NB: This gives least-significant bits first!

Again, see "poly" for a generalization to any base $\beta>1$

Binary \leftarrow Decimal Conversion - example

To convert $n=(423)_{10}$ to binary, we

| 423 | $=211 \times 2+1$ |
| ---: | :--- |
| 211 | $=105 \times 2+1$ |
| 105 | $=52 \times 2+1$ |
| 52 | $=26 \times 2+0$ |
| 26 | $=13 \times 2+0$ |
| 13 | $=6 \times 2+1$ |
| 6 | $=3 \times 2+0$ |
| 3 | $=1 \times 2+1$ |
| 1 | $=0 \times 2+1$ |

From this we deduce that: $(423)_{10}=(110100111)_{2}$

Blackboard examples

Fine, we are able to represent natural integers... What about signed integers?

Signed Integers?

Two ways of representing $-x$:

- 1 bit for the sign, the rest for $|x|$

$$
x_{n-1}=\left\{\begin{array}{ll}
0 & \text { if } x \geq 0, \\
1 & \text { if } x<0 .
\end{array} \quad \text { and } \quad\left(x_{n-2}, x_{n-3}, \ldots, x_{1}, x_{0}\right)=|x|\right.
$$

- Pros: Simple to understand
- Cons: 2 writings for 0
- Cons: hardware implementation \neq unsigned integers
- Two's complement
- Cons: Less easy to understand
- Pros: numbering and hardware implementation is unchanged \rightarrow Used in 99.99% of digital circuits ${ }^{5}$

[^3]
Two's Complement - math

- Let x be a vector of n bits: $x_{n-1}, x_{n-2}, \cdots, x_{1}, x_{0}$, with $x_{i} \in 0,1$
The value of x interpreted as a signed integer is:

$$
x=-x_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} x_{i} 2^{i}
$$

- Still only 2^{n} different values can be represented for a word of size n
- oVerflow may still happen but NOT AT THE SAME VALUE than for natural integers:

$$
-2^{n-1} \leq x<2^{n-1}-1
$$

e.g. for 32 bits,

$$
-2.147 .483 .648 \leq x<2.147 .483 .647
$$

Two's Complement - intuition ${ }^{6}$

Two's Complement - compute the opposite of x

- The opposite of a number is obtained by inverting all the bits of the word, then adding 1.
- Mathematically, if:

$$
x=x_{n-1}, x_{n-2}, \cdots, x_{1}, x_{0}
$$

then

$$
-x=\left(\overline{x_{n-1}}, \overline{x_{n-2}}, \cdots, \overline{x_{1}}, \overline{x_{0}}\right)+1
$$

with \bar{a} being the complement of bit a :

$$
\bar{a}= \begin{cases}1, & \text { when } a=0 \\ 0, & \text { when } a=1\end{cases}
$$

- This algorithm computes the opposite of a number, being it initially positive or negative!

Blackboard examples

Number Extension

How do we assign a n-bits vector to an m-bits vector?

- $n>m$, truncate \rightarrow lose most significant bits
- $n<m$, requires a sign extension

Consider ($x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}$). Let's write it as $\left(y_{m-1}, y_{m-2}, \ldots, y_{n}, y_{n-1}, y_{n-2}, \ldots, y_{1}, y_{0}\right)$. The value of x is preserved if we take:

$$
\begin{gathered}
y_{m-1}=x_{n-1}, y_{m-2}=x_{n-1}, \ldots, y_{n}=x_{n-1}, y_{n-1}=x_{n-1}, \\
y_{n-2}=x_{n-2}, \ldots, y_{1}=x_{1}, y_{0}=x_{0}
\end{gathered}
$$

Useful notations

Reading binary is a pain in the ass! In practice, everybody uses hexadecimal:

| binary | hexa | decimal | binary | hexa | decimal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0×0 | 0 | 1000 | 0×8 | 8 |
| 0001 | 0×1 | 1 | 1001 | 0×9 | 9 |
| 0010 | 0×2 | 2 | 1010 | $0 x A$ | 10 |
| 0011 | 0×3 | 3 | 1011 | $0 x B$ | 11 |
| 0100 | 0×4 | 4 | 1100 | $0 x C$ | 12 |
| 0101 | 0×5 | 5 | 1101 | $0 x D$ | 13 |
| 0110 | 0×6 | 6 | 1110 | $0 x E$ | 14 |
| 0111 | 0×7 | 7 | 1111 | $0 x F$ | 15 |

Max values:
Useful Notation: 0x...

- on 1 byte: $0 x F F=255_{10}$
- on 2 bytes: 0xFFFF $=65.535_{10}$
- on 4 bytes: $0 x F F F F . F F F F=4.294 .967 .295_{10}$

Remember...

0100101101010010010101001010111010101001010111110111 0100010001001111110010101001101010101110101110100100 1000100010100110001010101001001000100100000100010001 0011101100100101001000101001000101111001001010010001 1111001001001010100010100111001010000001011011010001 1001000101100100101001000101100100011111001001001010 0110001010101001001000100100000001000100010011101100 1001010010001100100100101010001010011100100010000001 0110110100011001000101001001010010001011010010001111 1001001001010011000101010010101000101001110010001000 0001011011010001100100010110010010100100010110100100 01111100100100101001100010101010010010001001...

Same in hexadecimal is more compact and (almost) human friendly...

4B5254AEA95F7444FCA999EBA488A62A92241113B2 5229179291F24A8A72816D19164A4591F24A62A922 40444EC948C92A29C8816D1914948B48F9253152A2 9C8816D19164A45A47C9298AA489...

Other interpretation of bit vectors

As soon as you are able to transform bit vectors into integers, you can code anything providing you have a conversion table and/or a conversion formula
\rightarrow Digital (in French "Numérique") corresponds to this idea of transforming everything into numbers that computers are able to deal with...

- (Pseudo-)real numbers
- Characters/symbols: encodings such as ASCII or ISO or UTF-8.
- images (PNG, JPEG...), music (MP3, OGG...), video (MOV, AVI, MP4...)
- Instructions = programs in their "final" form (that which is interpreted by HW).
- ...

All this necessitates interpreting bit vectors!

Floating points

Integers have a constant precision but a very low dynamics...

- Difficult to represent very large values (e.g. mass of the universe in kilograms)
- Impossible to represent very small values (e.g. mass of an electron in kilograms)
- Encoding of useless (and sometimes misleading) LSB

Solution: scientific notation (3×10^{52} and $9,109 \times 10^{-31}$)
\Rightarrow Floating points are the binary analogs to scientific notation.
Pseudo-real numbers are represented by a mantissa (or fraction) and an exponent coded by (still finite) bit vectors.

Floating points

Floating points are normalised by the IEEE 754 format. Mainly two formats are used:

- Single precision (32 bits): sign (1 bit), exponent (8 bits, including exponent sign), fraction (23 bits) \rightarrow float
- Double precision (64 bits): sign (1 bit), exponent (11 bits, including exponent sign), fraction (52 bits) \rightarrow double

Floating points are NOT reals. The maximum number of values one can encode with a float is still $2^{32}=4.294 .967 .296$!
\Rightarrow Floating points have precision issues that are (1) too difficult to be listed here and (2) extremely dangerous!
e.g., in general $a+b+c \neq b+a+c$ and $b+a-b-a \neq 0$
(RIP Sleipner A offshore platform, 1991)

Character encoding - ASCII

| Decimal | Hex | Char | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | [NULL] | 32 | 20 | [SPACE] | 64 | 40 | @ | 96 | 60 | |
| 1 | 1 | [START OF HEADING] | 33 | 21 | $!$ | 65 | 41 | A | 97 | 61 | a |
| 2 | 2 | [START OF TEXT] | 34 | 22 | " | 66 | 42 | B | 98 | 62 | b |
| 3 | 3 | [END OF TEXT] | 35 | 23 | \# | 67 | 43 | C | 99 | 63 | c |
| 4 | 4 | [END OF TRANSMISSION] | 36 | 24 | \$ | 68 | 44 | D | 100 | 64 | d |
| 5 | 5 | [ENQUIRY] | 37 | 25 | \% | 69 | 45 | E | 101 | 65 | e |
| 6 | 6 | [ACKNOWLEDGE] | 38 | 26 | \& | 70 | 46 | F | 102 | 66 | f |
| 7 | 7 | [BELL] | 39 | 27 | | 71 | 47 | G | 103 | 67 | g |
| 8 | 8 | [BACKSPACE] | 40 | 28 | 1 | 72 | 48 | H | 104 | 68 | h |
| 9 | 9 | [HORIZONTAL TAB] | 41 | 29 |) | 73 | 49 | H | 105 | 69 | , |
| 10 | A | [LINE FEED] | 42 | 2A | * | 74 | 4A | J | 106 | 6A | j |
| 11 | B | [VERTICAL TAB] | 43 | 2B | + | 75 | 4 B | K | 107 | 6B | k |
| 12 | C | [FORM FEED] | 44 | 2 C | , | 76 | 4 C | L | 108 | 6 C | I |
| 13 | D | [CARRIAGE RETURN] | 45 | 2D | - | 77 | 4D | M | 109 | 6D | m |
| 14 | E | [SHIFT OUT] | 46 | 2 E | , | 78 | 4E | N | 110 | 6 E | n |
| 15 | F | [SHIFT IN] | 47 | 2 F | 1 | 79 | 4 F | 0 | 111 | 6 F | - |
| 16 | 10 | [DATA LINK ESCAPE] | 48 | 30 | 0 | 80 | 50 | P | 112 | 70 | p |
| 17 | 11 | [DEVICE CONTROL 1] | 49 | 31 | 1 | 81 | 51 | Q | 113 | 71 | q |
| 18 | 12 | [DEVICE CONTROL 2] | 50 | 32 | 2 | 82 | 52 | R | 114 | 72 | r |
| 19 | 13 | [DEVICE CONTROL 3] | 51 | 33 | 3 | 83 | 53 | S | 115 | 73 | s |
| 20 | 14 | [DEVICE CONTROL 4] | 52 | 34 | 4 | 84 | 54 | T | 116 | 74 | t |
| 21 | 15 | [NEGATIVE ACKNOWLEDGE] | 53 | 35 | 5 | 85 | 55 | U | 117 | 75 | u |
| 22 | 16 | [SYNCHRONOUS IDLE] | 54 | 36 | 6 | 86 | 56 | v | 118 | 76 | v |
| 23 | 17 | [ENG OF TRANS. BLOCK] | 55 | 37 | 7 | 87 | 57 | w | 119 | 77 | w |
| 24 | 18 | [CANCEL] | 56 | 38 | 8 | 88 | 58 | X | 120 | 78 | x |
| 25 | 19 | [END OF MEDIUM] | 57 | 39 | 9 | 89 | 59 | Y | 121 | 79 | y |
| 26 | 1A | [SUBSTITUTE] | 58 | 3A | : | 90 | 5A | z | 122 | 7 A | z |
| 27 | 1 B | [ESCAPE] | 59 | 3B | ; | 91 | 5 B | [| 123 | 7 B | \{ |
| 28 | 1 C | [FILE SEPARATOR] | 60 | 3 C | $<$ | 92 | 5 C | 1 | 124 | 7 C | |
| 29 | 1D | [GROUP SEPARATOR] | 61 | 3D | = | 93 | 5D |] | 125 | 7 D | \} |
| 30 | 1 E | [RECORD SEPARATOR] | 62 | 3E | > | 94 | 5 E | ^ | 126 | 7E | ~ |
| 31 | 1 F | [UNIT SEPARATOR] | 63 | 3 F | ? | 95 | 5 F | - | 127 | 7F | [DEL] |

Character encoding — UTF-8

| Character | | Binary code point | | | | | | Binary UTF-8 | | | | Hexadecimal UTF-8 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ | $\mathrm{U}+0024$ | | | | | 010 | 0100 | 00100100 | | | | | 24 |
| 4 | $\mathrm{U}+00 \mathrm{~A} 2$ | | | | 000 | 1010 | 0010 | 11000010 | 10100010 | | | | C2 A2 |
| € | $\mathrm{U}+20 \mathrm{AC}$ | | | 0010 | 0000 | 1010 | 1100 | 11100010 | 10000010 | 10101100 | | | E2 82 AC |
| [10 | $\mathrm{U}+10348$ | 0 | 0001 | 0000 | 0011 | 0100 | 1000 | 11110000 | 10010000 | 10001101 | 10001000 | | F0 90 8D 88 |

Instruction encoding

| 0x0000000100000f70 <+0>: | push | \%rbp |
| :---: | :---: | :---: |
| 0x0000000100000f71 <+1>: | mov | \%rsp, \%rbp |
| 0x0000000100000f74 <+4>: | movl | \$0x0, 0×4 (\% rbp) |
| 0x0000000100000f7b <+11>: | movl | \$0x0,-0x8(\%rbp) |
| 0x0000000100000f82 <+18>: | movl | \$0x0,-0xc(\%)rbp) |
| 0x0000000100000f89 <+25> | movl | \$0x1, -0xc (\% $\%$ rbp) |
| 0x0000000100000f90 <+32>: | cmpl | \$0x64,-0xc (\%rbp) |
| 0x0000000100000f94 <+36>: | jge | 0x100000fb1 <main()+65> |
| 0x0000000100000f9a <+42>; | mov | -0x8(\%rbp), \%eax |
| 0x0000000100000f9d <+45>: | add | \$0x1, \%eax |
| 0x0000000100000fa0 <+48>: | mov | \%eax, -0×8 (\% \%bp) |
| 0x0000000100000fa3 <+51>: | mov | -0xc (\%rbp), \%¢eax |
| 0x0000000100000fa6 <+54> | add | \$0x1, \%eax |
| 0x0000000100000fa9 <+57> : | mov | \%eax, -0 xc (\% \% rbp) |
| 0x0000000100000fac <+60> | jmpq | 0x100000f90 <main() $+32>$ |
| 0x0000000100000fb1 <+65>: | mov | -0x8 (\%rbp) , \%eax |
| 0x0000000100000fb 4 <+68>: | pop | \%rbp |

Instructions can be encoded as binary vectors with two parts: The "opcode" and the "operands"

| 0x0000000100000f70 <+0>: | push | \%rbp |
| :---: | :---: | :---: |
| 0x0000000100000f71 <+1>: | mov | \%rsp, \%rbp |
| 0x0000000100000f74 <+4>: | movl | \$0x0, 0×4 (\% rbp) |
| 0x0000000100000f7b <+11>: | movl | \$0x0, $0 \times \mathrm{x} 8$ (\% \%bp) |
| 0x0000000100000f82 <+18>: | movl | \$0x0, -0xc (\% \%bp) |
| 0x0000000100000f89 <+25>: | movl | \$0x1, -0xc (\% \%bp) |
| 0x0000000100000f90 <+32>: | cmpl | \$0x64,-0xc (\%rbp) |
| 0x0000000100000f94 <+36>: | jge | 0x100000fb1 <main()+65> |
| 0x0000000100000f9a <+42>: | mov | -0x8(\%rbp), \%eax |
| 0x0000000100000f9d <+45>: | add | \$0x1, \%eax |
| 0x0000000100000fa0 <+48> : | mov | \%eax, -0×8 (\% \%bp) |
| 0x0000000100000fa3 <+51>: | mov | -0xc (\%rbp) , \%eax |
| 0x0000000100000fa6 <+54>: | add | \$0x1, \%eax |
| 0x0000000100000fa9 <+57> : | mov | \%eax, -0 xc (\% \%bp) |
| $0 \times 0000000100000 f a c<+60>$: | jmpq | 0x100000f90 <main()+32> |
| 0x0000000100000fbl <+65> : | mov | -0x8 (\%rbp) , \%eax |
| 0x0000000100000fb4 <+68> : | pop | \%rbp |

Take Home Message

1. Binary information is encoded in bit vectors which length is of utmost importance
2. Bit vectors can be interpreted as "integers"
3. Bit vectors can be interpreted as "reals" (floating points)
4. Integers can be interpreted as almost anything ("digitalization")
5. Numbers in computers don't behave exactly as in math!
6. Bit vectors can be interpreted as instructions
\Rightarrow So we are able to code data AND instructions...
\Rightarrow We've made a first step towards von Neumann's machines...

Next step...

Combinatorial Logic and Circuits!!

ie, how to process information encoded in bit vectors?

[^0]: ${ }^{1}$ Note that positional notation is what you use on an everyday basis when you manipulate decimal numbers. Always remember that mechanisms are similar (see the 'protopoly' for a generalization to base $\beta>1$)

[^1]: ${ }^{2}$ https://en.wikipedia.org/wiki/Least_significant_bit

[^2]: ${ }^{3}$ https://en.wikipedia.org/wiki/Most_significant_bit

[^3]: ${ }^{5}$ But other solutions are also used, e.g. for floating values...

