
Boolean Algebra

Lecturer: Guillaume Beslon
(Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon

Fall 2024

1 / 16



Interpretation of bits as Boolean values

Two elementary values:
I 0⇒ “false”
I 1⇒ “true”

From these values, we will (1) use Boolean algebra to build
expressions that transform bit vectors into other bit vectors (i.e.
an information into another information) and (2) implement
them as logical circuits.
→ Two types of expressions/circuits:

I Combinatorial expressions/circuits: output bits only
depend on values currently available on input bits.

I Sequential expressions/circuits: The circuit is
considered to have a state (i.e., a memory of its past
activity/inputs). Output bits depend both on values
currently available on input bits + circuit state.

3 / 16



Boolean functions

Boole Algebra is equipped with three operations
I a unary operation, negation, noted NOT;
I two binary commutative, associative operations:

I conjunction — AND, with 1 as neutral element;
I disjunction — OR, with 0 as neutral element;

I AND is distributive over OR and OR is distributive over AND
(!!! Boolean algebra is NOT elementary algebra !!!)

If a and b are 2 Boolean variables, we write:

NOT(a) = a, AND(a,b) = ab = a.b, OR(a,b) = a + b

or

NOT(a) = ¬a, AND(a,b) = a ∧ b, OR(a,b) = a ∨ b

4 / 16



Boolean Cheat Sheet1
• absorbing elements: a + 1 = 1, a·0 = 0
• neutral elements: a + 0 = a, a·1 = a
• idempotence: a + a = a, a·a = a
• tautology/antilogy: a + a = 1, a·a = 0
• commutativity: a + b = b + a, ab = ba
• distributivity: a + (bc) = (a + b)(a + c),

a(b + c) = ab + ac
• associativity: a + (b + c) = (a + b) + c = a + b + c,

a(bc) = (ab)c = abc
• De Morgan’s law: ab = a + b,

a + b = a·b
• others: a + (ab) = a, a + (ab) = a + b,

a(a + b) = a, (a + b)(a + b) = a
• Always keep in mind: ab 6= ab, a + b 6= a + b

1Probably one of the rare things to be known by heart
5 / 16



Boolean expressions

Using the basic operations, we can form Boolean
expressions.

A literal is a Boolean (potentially negated) variable in an
expression (e.g.,: if a, b, c are 3 boolean variables, we can
write the Boolean expression ab + cb, which has 4 literals).

→ Any function from Bn to B can be described with a
Boolean expression.

→ Any function from Bn to Bm can be described with m
Boolean expressions.

→ Any boolean expression with n variables represents a
function from Bn to B.

6 / 16



Truth tables

I A Boolean function can be represented by its truth table
I Columns list all variables and the result(s) of the

expression(s)
I Rows list all possible combinations of the variable’s values
I n variables⇒ 2n values⇒ 2n rows

x y x xy x + y x ⊕ y xy x + y x ⊕ y
0 0 1 0 0 0 1 1 1
0 1 1 0 1 1 1 0 0
1 0 0 0 1 1 1 0 0
1 1 0 1 1 0 0 0 1

8 / 16



Blackboard Examples

9 / 16



Normal forms
A Boolean function can be expressed with many different
Boolean expressions:
e.g., if f (a,b) = ab, then we also have f (a,b) = a + b or
f (a,b) = (a + (ab)) + (b(a + b)) (cf Boolean Cheat Sheet)

We thus are interested in two normal forms (forme canonique):

I Disjunctive normal form (DNF): a disjunction of
conjunctions of literals (sum of products→ sop):

abc + ab + ab

I Conjunctive normal form (CNF): a conjunction of
disjunctions of literals (product of sums→ pos):

(a + b + c)·(a + b + c)·(a + b + c)

11 / 16



From Boolean functions to DNF
1. given a Boolean function f
2. build the truth table of f
3. for each line where f = 1, form a conjunction of the literals

in the line (the “min-terms”)

a b c f (a,b, c)
0 0 0 1 → abc
0 0 1 0
0 1 0 1 → abc
0 1 1 0
1 0 0 1 → abc
1 0 1 1 → abc
1 1 0 0
1 1 1 0

4. then build the disjunction (sum) of the min-terms.

f (a,b, c) = abc + abc + abc + abc.

12 / 16



From Boolean functions to CNF
1. write f (a,b, c) in DNF

a b c f (a,b, c) f (a,b, c)
0 0 0 1 0
0 0 1 0 1 → abc
0 1 0 1 0
0 1 1 0 1 → abc
1 0 0 1 0
1 0 1 1 0
1 1 0 0 1 → abc
1 1 1 0 1 → abc

f (a,b, c) = abc + abc + abc + abc.

2. Use De Morgan’s law to build the CNF2

f (a,b, c) = (a + b + c)·(a + b + c)·(a + b + c)·(a + b + c).
2May seems difficult but CNF are useful – and actually simple – when the

truth table mainly contains false values...
13 / 16



Blackboard Examples

14 / 16



DNF and CNF can be roborative

Once you’ve got the DNF/CNF, you can use Boolean logic to
reduce the expression...

Useful operator - XOR (eXclusive-OR) noted
XOR(a,b) = a⊕ b :
a⊕ b = 1 iff one and only one of a and b has value 1.

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

XOR can be expressed with negations, con-
jonctions and disjonctions:

a⊕b = (a+b)ab = (a+b)(a+b) = ab+ab.

XOR is commutative and associative...

16 / 16


	Boolean Values, Functions and Expressions
	Truth Tables
	Normal Forms
	Tips

