
Finite State Machines (FSM)

Lecturer: Guillaume Beslon
(Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon

Fall 2025

1 / 38



Previously, on AC ...

Two ways of representing a sequential behavior:
I Time-diagrams(aka chronogrammes)

- Describe a specific sequence of input/output values
graphically

- But chronograms can only gives an example of a possible
(short) behavior

- They cannot represent arbitrarily long behaviors
I Finite State Machines (FSM):

- Describe the full system’s behavior formally

2 / 38



FSM: definition

A Finite State Machine (FSM or “Machine à États Finis”) is a
tuple (Q,q0, I,T ) with:

I Q is the set of states (“États”)
I q0 ∈ Q is the initial state (“État initial”)
I I is the input alphabet (“Alphabet d’entrée”)
I T ⊆ Q × I ×Q is a transition function (“Fonction de

transition”).

3 / 38



FSM: graphical representation

4 / 38



Acceptors (“Accepteurs” ou ‘Reconnaisseurs”)

I Special form of FSM
I Have at least one accepting state
I (Regular languages) recognizers

Theorem: Regular languages are the class of languages
recognizable by finite state machines (i.e. a language is regular
if and only if it is accepted by a finite state machine).

5 / 38



Acceptors — Example

6 / 38



By the way ... why are we here?

We want to describe systems that produce certain output
sequences based on input sequences...

But our FSMs don’t have outputs (yet).

Outputs can be introduced in two different ways:
I when the system is transitioning from one state to another
⇒ Mealy Machine

I when the system lies in one state
⇒ Moore Machine

7 / 38



Mealy Machines

A Mealy machine is a tuple (Q,q0, I,O,T ) with:
I Q is the set of states
I q0 ∈ Q is the initial state
I I is the input alphabet
I O is the output alphabet
I T ⊆ Q × I ×O ×Q is a transition function.

On every transition, we read one input symbol/event and
produce one output symbol/event (at least)

8 / 38



Mealy — Graphical Example

9 / 38



Moore Machines

A Moore machine is a tuple (Q,q0, I,O,T ,F ) with:
I Q is the set of states
I q0 ∈ Q is the initial state
I I is the input alphabet
I O is the output alphabet
I T ⊆ Q × I ×Q is a transition function.
I F ⊆ Q → O is an output function.

10 / 38



Moore — Graphical Example

11 / 38



Mealy or Moore?

I Equivalent in expressiveness
I Translation from one to the other is always possible (at

some costs)
I Mealy describes a very “event-driven” vision of the world
I In Computer Architecture, we will use Moore machines:

Events (i.e. rising or falling edges) trigger state changes in
registers and output are maintained for certain time.

12 / 38



Synchronous Moore Machine
We want to described Synchronous Circuits
Our automata should ultimately be driven by a clock

13 / 38



Synchronous Moore Machine
Most of the time, however, we will not include clock in
description
⇒ Diagrams are more readable.

But CLK is always here, IMPLICITELY!!!

14 / 38



Running Example - specification (again!?)

Remember...

Input: w
Output: z
Behavior: z is true whenever w has been true for at least 4
clock cycles in a row.

15 / 38



Running Example

Blackboard

16 / 38



Running Example

17 / 38



Reactivity and Determinism

In Hardware an FSMs need to be reactive and deterministic:

Let’s note cij the condition triggering transition between state si
and sj .
Let Succi ∈ Q the set of all successors of state si ∈ Q.

Reactive: Σsj∈Succi cij = 1
→ in any given state, for any input value, the next state is
known (i.e., the component is never blocked).

Deterministic: ∀(sj , sk ) ∈ Succi × Succi , with j 6= k , cij .cik = 0
→ in any given state, for any input value, there exist only one
next possible state

18 / 38



Blackboard

19 / 38



What Next?

FSM are theoretical objects
We need to transform them into circuits (“FSM Synthesis”)

We will proceed exactly like we did for combinatorial circuits:

Moore Machine→ Truth Tables→ Logical Equations→ Circuits

20 / 38



Principle

T 
Inputs Current 

state 

Clock 

FSM 

F 

S
ta

te
 

R
eg

is
te

r Next 
state Outputs 

Init 

I T implements the transition function of the FSM
→ T is a combinatorial circuit

I The State Register store the current FSM state
→ State Register is a sequential circuit

I F implements the output function of the FSM
→ F is a combinatorial circuit

I Init enforces q0 (initial state) in the state register
I At each time step the loop ensures the transition from the

current state to the next state according to T
21 / 38



FSM Synthesis

Method:
1. Input/output signals encoding
2. State encoding
3. Build truth tables for transition function and output function
4. Add state encoding to the truth tables
5. Translate truth tables into boolean functions
6. Build combinatorial circuits from boolean functions

22 / 38



1 Input/Output Encoding

Why encode?

I input and output alphabets are symbols
I Computer architecture deals with bits, not symbols
⇒ Need to encode symbols into bit words.

The final encoding...
I ... is often imposed by the hardware that will use the FSM
I ... is subject to optimizations that we will intentionally put

aside here.

23 / 38



Input/Output Encoding: Running example (4-in-a-row)

The example is trivial:

I I = {w}, a unique boolean signal
I O = {z}, a unique boolean signal

24 / 38



2 State encoding

Question: Given n states, how to choose a binary
representation, ie choose an injection from states to words
of bits.

I the binary representation is of size b, such that:
dlog2ne ≤ b ≤ n

I any injection works!
I State encoding has a major influence on the complexity of

functions T and F (some encodings lead to simpler
implementations)

I But will not focus on optimizations here

25 / 38



2 State encoding

Two main strategies
I Logarithmic encoding

I States are associated with numbers
I Numbers are encoded on b = dlog2ne bits
I All permutations are valid (but some may lead to simpler

implementations)
I Simpler solution: natural order (remember that we will not

focus on optimizations...)
I One-hot-coding

I n states encoded on n bits
I One and only one bit is active at a time
I The active bit indicates the state

→ In AC we will mainly use logarithmic encoding with natural
order...
→ BUT ... in AO you will need One-Hot-Coding so be sure you
understand it!

26 / 38



One-Hot Coding - Running Example

5 states⇒ state encoded on 5 bits (s0 to s4)

State s4 s3 s2 s1 s0
q0 0 0 0 0 1
q1 0 0 0 1 0
q2 0 0 1 0 0
q3 0 1 0 0 0
q4 1 0 0 0 0

The property of this encoding ensures that there is always one
and only one 1 in the encoding of the state. This property can
be used to simplify the computation of the next state.

27 / 38



Logarithmic Encoding - Running Example

5 states⇒ state encoded on 3 bits (dlog25e = 3)

State s2 s1 s0
q0 0 0 0
q1 0 0 1
q2 0 1 0
q3 0 1 1
q4 1 0 0

Warning: Be sure that you clearly distinguish states (qi with
i ∈ {0,1,2,3,4}) and state encoding bits (sj with j ∈ {0,1,2}).
Note that codes 101, 110 and 111 are impossible in this
example (because there is no state q5, q6 and q7 in the FSM).

28 / 38



Back to implementation principle

Blackboard!

29 / 38



3 Transition and Output Tables

State Transition Table:
I allows for the description of an FSM’s graph as a table
I defines T as a function of the state encoding.

Output Table
I describes state→ output function
I defines F as a function of the state encoding.
→ Both tables can be directly constructed by “reading” the
automaton ...

30 / 38



Transition and output tables: running example

Transition table
State w Next State

q0 0 q0
q0 1 q1
q1 0 q0
q1 1 q2
q2 0 q0
q2 1 q3
q3 0 q0
q3 1 q4
q4 0 q0
q4 1 q4

Output table

State z
q0 0
q1 0
q2 0
q3 0
q4 1

31 / 38



4 Include state encoding to get the truth tables

Truth table of the output function

State z
q0 0
q1 0
q2 0
q3 0
q4 1

⇒

s2 s1 s0 z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1

32 / 38



4 Include state encoding to get the truth tables

Truth table of the transition function
State w Next State

q0 0 q0
q0 1 q1
q1 0 q0
q1 1 q2
q2 0 q0
q2 1 q3
q3 0 q0
q3 1 q4
q4 0 q0
q4 1 q4

⇒

s2 s1 s0 w s′
2 s′

1 s′
0

0 0 0 0 0 0 0
0 0 0 1 0 0 1

0 0 1 0 0 0 0
0 0 1 1 0 1 0

0 1 0 0 0 0 0
0 1 0 1 0 1 1

0 1 1 0 0 0 0
0 1 1 1 1 0 0

1 0 0 0 0 0 0
1 0 0 1 1 0 0

33 / 38



5 Build the disjunctive normal forms #1
→output function

s2 s1 s0 z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1

⇓

z = s2.s1.s0

34 / 38



5 Build the disjunctive normal forms #2
→transition function

s2 s1 s0 w s′
2 s′

1 s′
0

0 0 0 0 0 0 0
0 0 0 1 0 0 1

0 0 1 0 0 0 0
0 0 1 1 0 1 0

0 1 0 0 0 0 0
0 1 0 1 0 1 1

0 1 1 0 0 0 0
0 1 1 1 1 0 0

1 0 0 0 0 0 0
1 0 0 1 1 0 0

⇓
s′

0 = s2.s1.s0.w + s2.s1.s0.w
s′

1 = s2.s1.s0.w + s2.s1.s0.w
s′

2 = s2.s1.s0.w + s2.s1.s0.w

35 / 38



6 Translate boolean expression to gates and circuit...

Demo time!

36 / 38



From the automaton to the circuit with the
“one-hot-coding” state encoding

I When using “one-hot-coding”, it is not necessary to write
the truth tables nor the logical equations!

I In “one-hot-coding”, each state is encoded in an
independent one-bit register

I The graph can be directly encoded in the circuit
I But be careful when initializing the circuit...

⇒Example...

37 / 38



From the automaton to the circuit with the
“one-hot-coding” state encoding

38 / 38


	Introduction
	Automates
	I/O and State Encoding
	Truth Tables
	Comb. Circuits Synthesis

